Прошли тысячелетия, прежде чем человечество в ходе своей
общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде
всего в природе две тенденции: наличие строгой упорядоченности,
соразмерности, равновесия и их нарушения.

Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на
деревьях, лепестков, цветов, семян растений и отобразили эту
упорядоченность в своей практической деятельности, мышлении
и искусстве.

Понятие «симметрия» употреблялось в двух значениях. В одном
смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с
помощью которого они объединяются в целое. Второй смысл этого
слова - равновесие.

Греческое слово snmmetra означает однородность, соразмерность,
пропорциональность, гармонию.

Познавая качественное многообразие проявлений порядка и
гармонии в природе, мыслители древности, особенно греческие
философы, пришли к выводу о необходимости выразить симметрию
и в количественных отношениях, при помощи геометрических
построений и чисел.

Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека
своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства
всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учении пифагорейцев симметрия, симметричные фигуры и тела (круг и шар) имели мистическое значение, являлись воплощением совершенства.

Следует обратить внимание и на учение Пифагора о гармонии.
Известно, что если уменьшить длину струны или флейты вдвое,
тон повысится на одну октаву. Уменьшению в отношении 3:2 и
4:3 будут соответствовать интервалы квинта и кварта. То, что важнейшие гармонические интервалы получаются при помощи отношений чисел 1, 2 и 3, 4, пифагорейцы использовали для своих мистических выводов о том, что «все есть число» или «все упорядочивается в соответствии с числами». Сами эти числа 1, 2, 3, 4 составляли
знаменитую «тетраду». Очень древнее изречение гласит: «Что есть
оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма
сирен». Геометрическим образом тетрады является треугольник из
десяти точек, основание которого составляют 4 точки плюс 3,
плюс 2, а одна находится в центре.

В геометрии, механике - всюду, где мы имеем дело с отрезками
прямых, мы встречаемся и с понятиями меры, сравнения и соотношения. Эти понятия являются отражением реальных отношений
между предметами в объективном мире. Чтобы пояснить это положение, можно выбрать на данной прямой АВ любую третью точку С.
Таким образом, совершается переход от единства к двойственности,
и мысль этим самым приводит к понятию пропорции. Следует
подчеркнуть, что соотношение есть количественное сравнение двух
однородных величин, или число, выражающее это сравнение. Про-
порция есть результат согласования или равноценности двух или нескольких соотношений. Следовательно, необходимо наличие
не менее трех величин (в рассматриваемом случае прямая и два
ее отрезка) для определения пропорции. Деление данного отрезка
прямой АВ путем выбора третьей точки С, находящейся между
А и В, дает возможность построить шесть различных возможных
соотношений:

a:b ; a:c ; b:a ; b:c ; c:a ; c:b

при условии отметки соответствующей длины отрезков прямой бук-
вами «а», «b», «с» и применения к данной длине любой системы
мер. Проанализировав возможные случаи деления отрезка АВ на
две части, мы приходим к выводу, что отрезок можно делить на:

1) две симметрические части a=b; 2) a:b = c:a

Так как c = a + b, то

a/b = (a + b)/a ;

((a + b)/a очевидно, превосходит единицу); дело обстоит так же и в отношении а/b; значит, «а» превосходит « b » и точка «С» стоит ближе к В, чем
к A.

Это соотношение a:b = c:a или AC/CB = AB/AC

может быть выражено следующим образом: длина АВ была разделе-
на на две неравные части таким образом, что большая из ее частей
относится к меньшей, как длина всего отрезка АВ относится

к его большей части:

3) a/b = b/c равноценно a/b = b/(a + b).

В этом случае «b» больше «а»; точка С ближе к А, чем к В, но отношения те же, что и во втором случае,

Рассмотрим равенство

a/b = c/a = (a + b)/a,

при котором отрезок АС длиннее отрезка СВ. Это общее простейшее
деление отрезка прямой АВ, являющееся логическим выражением
принципа наименьшего действия. Между точками А и В имеется
лишь одна точка C, поставленная таким образом, чтобы длина отрез-
ков АВ, СВ и АС соответствовала принципу простейшего деления;
следовательно, существует только одно числовое выражение, соответствующее отношению a/b. Эту же задачу можно решить путем гео-
метрического построения, известного как деление прямой на две
неравные части таким образом, чтобы соотношение меньшей и боль-
шей частей равнялось соотношению большей части и суммы длин
обеих частей, а это и соответствует формуле

a/b = (a + b)/a,

которую называют «божественная пропорция», «золотое сечение» т.д.

Изучение объективной реальности и задачи практики привели к возникновению наряду с понятием симметрия и понятия асимметрии, которое нашло одно из своих первых количественных выражений в так назыываемом золотом делении, или золотой пропорции.

Пифагор выразил «золотою пропорцию» соотношением:

где Н и R суть гармоническая и арифметическая средние между
величинами А и В.

R = (A + B)/2; H = 2AB/ (A + B).

Кеплер первый обращает вни-
мание на значение этой пропорции в ботанике и называет ее
sectio divina - «божественное сечение»; Леонардо да Винчи назы-
вает эту пропорцию «золотое сечение».

Проведем некоторые преобразования вышеприведенной формулы.
Прежде всего разделим на « b » оба элемента второго члена этого
равенства и обозначим

a/b = x; тогда a/b = (a/b + 1)/(a/b),

или x 2 = x + 1

x 2 - x – 1= 0

Корнями этого уравнения являются

х = 1± Ö5/2 = 1,61803398 .

Это число обладает характернейшими особенностями. Обозначим это число буквой Ф.

Ф = ( Ö5 + 1)/2 = 1,618…; 1/Ф = (Ö5 – 1) /2 = 0,618…;

Ф 2 = -(Ö5 + 3)/2 = 2,618…

Оказывается, что геометрическая прогрессия, в основании которой
лежит Ф, обладает следующей особенностью: любой член этого
ряда равен сумме двух предшествующих ему членов. Ряд 1, Ф, Ф 2 ,
Ф 3 , ..., Ф n является одновременно и мультипликативным, и аддитив-
ным, т. е. одновременно причастен природе геометрической прогрес-
сии и арифметического ряда. Следует обратить внимание на то, что
формула.

Ф = (Ö5 + 1)/2

выражает простейшее асимметрическое деление прямой АВ. С этой
точки зрения данное отношение является «логической» инвариан-
той, проистекающей из счислений отношений и групп. Пеано,
Бертран Рассел и Кутюра показали, что исходя из принципа тождественности можно вывести из этих отношений и групп принципы чистой математики.

Любопытно, что древние архитекторы уже пользовались приемом
асимметричного деления. Так, например, стороны пирамиды Фараона
Джосера относятся друг к другу, как 2: /5, а ее высота относится к большей стороне, как 1: 2.

Интересно, что на сохранившемся до наших дней изображении
древнеегипетского зодчего Хисеры (жил свыше 4,5 тыс. лет тому
назад) имеются две палки - очевидно, эталоны меры. Их длины
относятся, как 1: 1/5, т. е. как меньшая сторона прямоугольного
треугольника к гипотенузе.

Архитектор И. Шевелев рассматривая пропорции древнерусской
архитектуры (церковь Покрова на Нерли и храм Вознесения в
Коломенском) привел убедительные данные, свидетельствующие о том, что русские архитекторы также пользовались пропорциями,
связанными с «золотым сечением».

Пропорция «золотого сечения» дает возможность архитекторам
находить наиболее удачные, красивые, гармоничные сечения целого
и частей, единство разнообразного; в конечном счете они пользуются сочетанием принципов симметрии и асимметрии,

Если в период Возрождения внимание ученых и преподавателей
искусства было приковано к «золотому сечению», то впоследствии
оно постепенно падало, и только в 1855 г. немецкий ученый Цейзинг
вновь ввел его в обиход в своем труде
«Эстетические исследования». В нем он писал, что для того, чтобы
целое, разделенное на две неравные части, казалось прекрасным
с точки зрения формы, между меньшей и большей частями должно
быть то же отношение, что и между большей частью и целым,

Применение «золотого сечения» есть лишь частный случай общего закона периодической повторяемости одной и той же пропорции
в совокупности, в деталях целого,

Рассмотрение вопроса о «золотом сечении» приводит к выводу,
что здесь мы имеем дело с отображением средствами математики
(при помощи понятий симметрии и асимметрии) существующей
в природе пропорциональности.

Все вышеизложенное позволяет утверждать, что взгляды Пифагора и его школы содержали наряду с мистикой и идеализмом
и некоторые плодотворные математические и естественнонаучные
идеи. Впоследствии учение пифагорейцев получило развитие в философии крупнейшего представителя античного идеализма Платона.
Мир, утверждал Платон, состоит из правильных многоугольников,
обладающих идеальной симметрией. Физические тела - это идеальные математические сущности, составленные из треугольников,
упорядоченные демиургом.

Отдельные интересные суждения о симметрии и гармонии мы
встречаем в работах многих философов и естествоиспытателей
(прежде всего Леонардо да Винчи, Лейбница, Декарта, Спенсера,
Гегеля и других). В значительной
степени прав немецкий ученый Венцлав Бодо, когда пишет, что
«философия, за исключением некоторых высказываний, не пыталась
дать объяснение этой интересной стороне природы. На протяжении
веков спорили о причинности, детерминизме и других вопросах,
не видя взаимосвязи их с проблематикой симметрии или не стремясь
к этому. Симметрия, по-видимому, прибавлялась только как искусственная роскошь к довольно узкому готовому миру вещей с их
свойствами и силовыми взаимодействиями, их движениями и изменениями».

В настоящее время в науке преобладают
определения указанных категорий на основе перечисления их важнейших признаков. Например, симметрия определяется как совокупность
свойств: порядка, однородности, соразмерности, пропорциональности, гармоничности и т. д. Асимметрия же обычно определяется
как отсутствие признаков симметрии, как беспорядок, несоразмерность, неоднородность и т. д. Все признаки симметрии в такого рода
ее определениях, естественно, рассматриваются как равноправные,
одинаково существенные, и в отдельных конкретных случаях при
установлении симметрии какого-либо явления можно пользоваться
любым из них. Так, в одних случаях симметрия - это однородность,
а в других - соразмерность и т. д. Очевидно, что по мере развития
нашего познания к определению симметрии можно прибавлять все новые и новые признаки. Поэтому определения симметрии такого
рода всегда неполны.

То же можно сказать и о существующих определениях асимметрии. Очевидно, что в определениях понятий, сформулированных
по принципу перечисления свойств объектов, ими отражаемых,
отсутствует связь между перечисленными свойствами объектов.
Такие свойства симметрии, как, например, однородность и соразмерность, друг из друга не следуют. Сказанное, однако, не означает бесполезности вышеуказанных определений симметрии и асимметрии. Наоборот, они весьма полезны и необходимы. Без них
нельзя дать и более общее определение категорий симметрии
и асимметрии. На основе подобных эмпирических определений
симметрии и асимметрии развиваются определения более общего
характера, сущность которых - в соотнесении частных признаков
симметрии и асимметрии к определенным всеобщим свойствам движущейся материи. «В симметрии,- пишет А. В. Шубников,-
отражается та сторона явлений, которая соответствует покою, а в
дисимметрии (по нашей терминологии в асимметрии) та их
сторона, которая отвечает движению»

Таким образом, все свойства симметрии рассматриваются как
проявления состояний покоя, а все свойства асимметрии - как
проявления состояний движения. Если признать это правильным,
то очевидно, что соотношение симметрии и асимметрии в таком
случае таково же, как соотношение покоя и движения. Мы, следовательно, можем сказать, что симметрия относительна, а асимметрия
абсолютна. Симметрию мы должны, далее, рассматривать как частный случай асимметрии, как ее момент. Поэтому ни о каком равноправии симметрии и асимметрии и речи быть не может. Взаимоотношение симметрии и асимметрии здесь явно асимметрично. Но
вряд ли можно с таких позиций правильно понять многие свойства
симметрии и асимметрии. Почему, например,
такую симметрию пространства, как его однородность, должны
рассматривать как соответствующую покою? Почему мы должны искать симметрию только среди покоящихся
явлений? Разве нет симметрии во взаимодействии и движении явлений мира? Мысль о связи между понятиями симметрии и асимметрии и соответственно между понятиями покоя и движения точнее
можно выразить как единство покоя и движения. Понятие сим-
метрии раскрывает момент покоя, равновесия в состояниях движения, а понятие асимметрии - момент движения, изменения в со стояниях покоя, равновесия. Но и такой формулировкой не охваты­вают основные признаки симметрии и асимметрии. Например, сим­метрия частиц и античастиц и их ассиметрия в известной нам области мира не могут быть истолкованы исходя из понятий о единстве покоя и движения. Вряд ли существование частиц и анти­частиц можно рассматривать как момент покоя в каком-то движении материи, а несоответствие числа частиц числу античастиц в извест­ной нам области мира - как моменты движения в каком-то состоянии покоя. Можно сделать вывод, что в идее А. В. Шубникова о соот­несении симметрии с покоем, а асимметрии - с движением заклю­чается только момент истины.

Хорошо известно, что понятие симметрии охватывает и такие стороны существования явлений, которые ничего общего с покоем не имеют. Например, регулярная повторяемость тех или иных со­стояний движения, их определенная периодичность является одним из признаков симметрии, но к покою, она никакого отношения не имеет. Такой вид асимметрии, как анизотропность пространства, из свойств движения, конечно, выведена быть не может. Тем не менее многие свойства симметрии и асимметрии соответственно связаны с покоем и движением.

К общим определениям понятий симметрии и асимметрии можно подойти исходя из следующих положений:

во-первых, нужно признать, что эти понятия относятся ко всем известным нам атрибутам материи, что они отражают взаимные связи между ними;

во-вторых, эти понятия основываются на диалектике соотно­шения тождества и различия, существующей как между атрибутами материи, так и между их состояниями и признаками;

в-третьих, нужно иметь в виду, что единство симметрии и асим­метрии представляет собой одну из форм проявления закона един­ства и взаимоисключения противоположности. Правильность этих отправных положений может быть доказана как выводом их из многочисленных частных определений симметрии и асимметрии, так и правильностью их следствий, т. е. необходимостью и всеобщностью определений симметрии и асимметрии, полученных на их основе.

Непосредственной логической основой для определения понятий симметрии и асимметрии, на наш взгляд, является диалектика тожде­ства и различия. Здесь нужно отметить, что в диалектике тождество и различие рассматриваются лишь в определенных отношениях, во взаимодействии, во включении различия в тождество, а тождества в различие.

Тождество проявляется только в определенных отношениях и в определенных процессах; тождество всегда конкретно. К тождеству можно отнести: равновесие, равнодействие, сохранение, устойчи­вость, равенство, соразмерность, повторяемость и т. д. Тождество не существует вечно: оно возникает, становится и развивается. Если дать его общее определение, то можно сказать, что оно представляет собой процесс образования сходства в различном и противоположном.

Для того, чтобы имело место тождество, необходимо существо­вание различного и противоположного. Вне различий тождество вообще не имеет смысла, поэтому нельзя говорить о тождественном в тождественном, а только в различном и противоположном.

Характеризуя диалектическое понимание тождества, нужно выделить его следующие стороны: тождество не существует вне различия и противоположности, тождество возникает и исчезает; тождество существует только в определенных отношениях и возника­ет при определенных условиях, наиболее полным выражением тожде­ства является полное превращение противоположностей друг в друга. Проявления тождества бесконечно многообразны. Поэтому в процес­се познания явлений мира нельзя ограничиваться только установ­лением тождества между ними, но необходимо раскрывать то, как возникает это тождество, при каких условиях и в каких отношениях оно существует. Основываясь на этой характеристике диалектики тождества и различия, можно сформулировать следующие опре­деления симметрии и асимметрии.

Действительно ли является всеобщим
сформулированное нами определение понятия симметрии, охватывает
ли оно все известные нам формы проявления симметрии как в объективном мире, так и в процессе нашего познания? Очевидно, что
при ответе на этот вопрос придется ограничиться только наиболее
общими характерными примерами. Представим себе две точки, находящиеся по отношению к какой-то прямой на ее противоположных
сторонах; если эти противоположные точки равноудалены от этой
прямой, то о них говорят как о симметричных по отношению к
данной прямой. Если мы теперь совершим операцию перегиба, то
в результате наши точки полностью совпадут, сольются друг с другом,
следовательно, можно говорить об их полном тождестве. Симметрия
расположения данных точек указывает именно на то, при каком
процессе и при каких условиях они становятся тождественными.
Значит, этот вид симметрии полностью подходит под сформулирован-
ное определение симметрии. Как известно, существует определенная
симметрия между протоном и нейтроном; она выражается в том, что
в условиях сильных взаимодействий они не отличаются друг от друга,
становятся тождественными друг другу. Их симметрия и есть не что иное, как образование тождества между этими различными части-
цами в процессе сильных взаимодействий. В понятии изотопического
спина как раз и выражаются моменты тождества, имеющиеся у
протонов и нейтронов, т. е. их симметрия в условиях сильного
взаимодействия. Но подходят ли под данное определение симметрии
такие общие симметрии пространства и времени, как, например, их
однородность?

Однородность пространства означает, что по отношению к вза-
имодействиям явлений все места в пространстве тождественны и ни-
как не сказываются на характере взаимодействия. Тождествен-
ность всех мест в пространстве (точек в пространстве) по отноше-
нию к взаимодействиям явлений и есть их,строгая полная симметрия.
То же в общем виде можно сказать и об однородности времени.
Тождественность всех временных интервалов по отношению к взаимо-

Действию явлений и есть их строгая и полная,симметрия. На наш
взгляд, нельзя найти ни одного вида симметрии, который бы
противоречил данному нами определению. Но это не значит, что
данное определение симметрии является законченным и вполне
строгим - видимо, будут необходимы какие-то его уточнения.

Сформулированное определение понятия симметрии позволяет
распространить это понятие на все атрибуты материи, на все ее
состояния и структуры, а также на все типы связей и взаимодействий.
Так, группа преобразований Лоренца выражает существующую сим-
метрию во взаимосвязи пространства, времени и движения - этих
атрибутов материи". Симметрия группы изотопического спина выра-
жает тождественные моменты по отношению к сильным взаимодей-
ствиям у частиц, участвующих в этих взаимодействиях.

В первом издании этой книги (1968) мы писали: «Поскольку
существуют различные взаимодействия, и даже во многих отноше-
ниях противоположные, как, например, сильные и слабые, то есте-
ственно допустить, что в них при определенных условиях возникают
и существуют тождественные моменты, т. е. им свойственна опреде-
ленная симметричность. Открытие такой симметрии было бы значи-
тельным шагом вперед в деле создания теории элементарных
частиц. В настоящее время связь между известными видами взаимо-
действия в физике еще не установлена, но можно предвидеть эти
связи исходя из принципа симметрии». Теперь эти связи между
сильным, слабым и электромагнитным взаимодействиями установле-
ны, и это действительно явилось важным звеном в развитии теории
элеменарных частиц. Хотелось бы высказаться против жесткого
разделения многообразных видов симметрии на геометрические и
динамические. Первые отражают свойства симметрии пространства и
времени, а вторые - свойства симметрии состояния взаимодействия.
Но поскольку пространство, время, движение и входящее в него вза имодействие внутренне связаны между собой, должна быть внут-
ренняя связь также между геометрической и динамической сим-
метриями. И она на самом деле существует. Так, симметрия равно-
мерного прямолинейного движения и покоя (одна из черт сим-
метрии группы Галилея), очевидно, не может быть охарактери-
зована только как динамическая или только как геометрическая.
В ней выражены свойства симметрии как пространства и времени",
так и состояния движения. Вообще любая симметрия в своей основе
имеет единство и взаимосвязь различных атрибутов материи. Правда,
не всегда эта взаимосвязь носит непосредственный характер, что
и создает возможность разделения видов симметрии на геометри-
ческие и динамические. Оба эти вида симметрии могут быть вы-
ражены и в динамической, и в геометрической форме. Так, группу
симметрии изотопического спина, которая обычно относится к дина-
мической симметрии, можно выразить и в геометрической форме;
ядерные взаимодействия инвариантны относительно поворотов в изо-
топическом пространстве. Из этой формулировки можно получить
ряд характеристик взаимодействия нуклонов, например, положение
о том, что ядерные силы между протоном и протоном и протоном
и нейтроном одинаковы, и ряд других. При изучении различных видов
симметрии весьма важно учитывать единство атрибутов материи, а
следовательно, и внутреннюю связь между симметриями их свойств
и состояний. Значение этого положения особенно ясно выступает
при изучении вопроса о взаимоотношении группы симметрии и зако-
нов сохранения.

По этому вопросу существуют две точки зрения.

Часть физиков (Берестецкий, Вигнер, Штейнман и др.) утверж-
дает, что фундаментом законов сохранения являются формы геомет-
рической симметрии, в то время как другие, наоборот, считают,
что законы сохранения определяют формы геометрической сим-
метрии.. Согласно первой точке зрения, например, однородность
времени определяет закон сохранения энергии, а согласно второй-
закон сохранения энергии определяет однородность времени. Мы
думаем, что обе точки зрения являются некоторой абсолютизацией
возможных подходов к проблеме. Наличие обеих точек зрения про-
явилось в том, что возникло мнение о разделении законов сохранения
на две группы: наиболее общие из них связаны с геометрическими
симметриями, а менее общие - с динамическими.

Так, законы сохранения оказались разделенными на две группы:
кинематические (основанные на геометрических симметриях) и
динамические (основанные на динамических симметриях). К первой
группе относятся законы сохранения энергии, импульса, момента
импульса, ко второй - закон сохранения электрического заряда,
барионного числа, лептонного числа, изотопического спина и ряд
других.

Такое разделение законов сохранения в итоге основано на игно-
рировании единства атрибутов материи и на таком следствии этого игнорирования, как противопоставление динамических и геоме-
трических симметрий друг другу. Непосредственной же предпосылкой
деления законов сохранения на две группы является убеждение,
что законы сохранения зависят от определенных симметрий.
Бесспорно, что между формами симметрии и законами сохранения
существует глубокая связь, но эту связь нельзя преувеличивать.
С определенными симметриями связаны не сами законы сохранения,"
а определенные формы их проявления. Так, известные нам формы
проявления закона сохранения энергии, конечно, связаны с однород-
ностью времени, но в целом этот закон может быть связан и с другими
геометрическими симметриями, пока нам не известными. Кроме того,
каждый закон сохранения связан и с,определенными формами
асимметрии, об этом подробнее будет сказано ниже.

Формы симметрии и формы закона сохранения всегда взаимосвя-
заны, но в целом как симметрия, так и законы сохранения пред-
ставляют собой две различные, отнюдь не изолированные друг от
друга стороны единой закономерности мира.

Перейдем теперь к характеристике необходимых предпосылок
для определения асимметрии.

Как и для определения симметрии, так и для определения асим-
метрии непосредственной предпосылкой, основанием является диа-
лектика тождества и различия.

Вместе с процессами становления тождества в различном и
противоположном происходят процессы становления различий и
противоположностей в едином, тождественном, целом. Если основой
симметрии можно считать возникновение единого, то основу асим-
метрии нужно полагать в раздвоении единого на противополож-
ные стороны. Понятие асимметрии, как и понятие симметрии,
применимо ко всем атрибутам материи и выражает их различие, их
особенность по отношению друг к другу. Поэтому взаимосвязь
атрибутов материи выражается не только симметрией, но и асиммет-
рией. Применимо понятие асимметрии и к различным состояниям
атрибутов материи и их взаимосвязи. Вообще говоря, где применима
симметрия, там применима и асимметрия, и наоборот.

Исходя из сказанного можно дать следующее определение асим-
метрии: асимметрией называется категория, которая обозначает
существование и становление в определенных условиях и отношениях
различий и противоположностей внутри единства, тождества, цель-
ности явлений мира.

Рассмотрим некоторые виды асимметрии.

Весьма общим видом асимметрии является однонаправленность
хода времени, полнейшая невозможность фактической замены
настоящего прошедшим или будущим, а будущего - прошедшим или
настоящим, в свою очередь прошедшего - настоящим и будущим.
Все эти три состояния времени не заменяют друг друга - в них
на первом плане находится различие. В них нет симметрии. Извест-
ная операция обращения времени, рассматриваемая только как математический прием, основана на том положении, что законы
движения обладают большей устойчивостью и в обозримых интерва-
лах не изменяются. Мы убеждены, что законы явлений мира яв-
ляются вечными и поэтому действуют во всех состояниях времени:
настоящем, прошедшем и будущем. Значит, операция обращения
времени имеет реальный смысл лишь постольку, поскольку в какой-то
мере наше убеждение в полной устойчивости, вечности законов
явлений мира отвечает действительности.

Объективная диалектика обратимых и необратимых процессов
может быть выражена единством симметрии и асимметрии времени.
Необратимость является существенной характеристикой всякого раз-
вития: исходящая и нисходящая, прогрессивная и регрессивная
ветви развития сами по себе необратимы и асимметричны. Однако
соединенные общим и единым процессом развития, они с необходи-
мостью приводят к симметричным ситуациям: повторениям на ка-
чественно новых уровнях спиралеобразного движения.

Особым вариантом понятий симметрии и асимметрии являются
понятия ритма и аритмии. Регулярная повторяемость подавляющего
большинства процессов в природе, их устойчивое чередование (в жи-
вой природе, например, упорядоченная во времени смена поколений,
в неживой природе - повторяющиеся космические процессы) позво-
ляет видеть в ритмических процессах одну из фундаментальных
симметрий природы, С другой стороны, аритмия - это одна из ха-
рактеристик объективной асимметрии, суть которой в нерегулярной
и случайной смене и чередовании процессов. Понятия ритма и арит-
мии могут быть экстраполированы на процесс развития, поскольку
асимметричное время как атрибут развития придает смысл ритму и
аритмии. Вне времени они просто лишены смысла.

Симметрия обращения времени, таким образом, является резуль-
татом абстрагирования от изменчивости, присущей законам явлений
мира. И только в рамках применимости этой абстракции обращение
времени в уравнениях, выражающих законы движения, не противо-
речит действительности. В самом деле, в каких-то очень широких
пределах мы можем считать законы явлений мира вечными, а
следовательно, и допускать операцию обращения времени. Призна-
вая, что у нас сейчас нет никаких оснований утверждать, что в
действительности время может идти и от будущего к прошедшему,
все же в связи с высказанными выше положениями о единстве
атрибутов материи и о взаимопроникновении тождества и различия
напрашивается вопрос: если состояния времени глубоко различны,
то существует ли в каждом различии и тождество?

Время необратимо, его состояния не эквивалентны друг другу,
но, может быть, все же есть и моменты тождества между ними,
может быть, в необратимости времени есть и моменты его обра-
тимости, может быть, его состояния в каких-то отношениях
взаимозаменяемы, как взаимозаменяемы измерения пространства?
Мы думаем, что в различных состояниях времени есть и моменты их тождества, а в общей его необратимости есть моменты его об-
ратимости. Не рассматривая далее этого вопроса, только отметим,
что должны же быть реальные, природные основания для возмож-
ности обратного хода времени в отражении объективных событий,
как, например, на киноленте кадры, движущиеся в обратном на-
правлении? То, что реально существует в отражении, должно иметь
моменты каких-то реальных прообразов и в том, что отражается.
Поэтому в математической модели позитрона как электрона, дви-
жущегося из будущего в прошедшее, есть, видимо, какой-то
реальный смысл. Вообще факты асимметрии так же многочисленны
и многообразны, как и факты симметрии.

Асимметрия - такой же необходимый момент в структуре, в
изменении и во взаимосвязи явлений мира, как и симметрия. Асим-
метрия необходимо имеет место и в самой симметрии. Так, в сим-
метрии состояний покоя и равномерного прямолинейного движения
по отношению к законам движения есть все же асимметричность,
которая состоит в неравноправности этих их состояний и проявляется
в ряде различий между состояниями покоя и равномерного прямо-
линейного движения. У тела, покоящегося в данной системе отсчета
по отношению ко всем другим телам, покоящимся и движущимся
в этой же системе отсчета, скорость будет равна нулю, а у тела
движущегося скорость по отношению ко всем покоящимся и дви-
жущимся телам в данной системе отсчета будет иметь определенное
значение и только в частном случае равна нулю. Отсюда далеко
не полная эквивалентность состояний В практике эта асимметрия проявляется весьма резко - ведь
далеко не безразлично, движется ли поезд из Москвы к Ленинграду
или Ленинград движется навстречу поезду. Очевидно, что энергия
передается для передвижения поезда, а не расходуется на пере-
движение Ленинграда. Операция приближения поезда к Ленинграду
и опе а ии п иближения Ленинграда к поезду не эквивалентны и не взаимозаменяемы.

Весьма общими примерами асимметрии являются асимметрия
между фермионами и бозонами, асимметрия между реакциями
порождения и поглощения нейтрино, асимметрия спинов электронов,
асимметрия в прямых и обратных превращениях энергии.

Уже из определений симметрии и асимметрии следует их не-
разрывное единство.

Это обстоятельство в какой-то мере подчеркнуто А. В. Шубни-
ковым: «Какой бы трактовки симметрии мы ни придерживались, одно
остается обязательным: нельзя рассматривать симметрию без ее
антипода - дисимметрии» (29, 162).

По нашему мнению, более точным является название не «принцип
симметрии», а принцип единства симметрии и асимметрии.

Во всех реальных явлениях симметрия и асимметрия сочетаются
друг с другом. И надо думать, что во всех правильных, т. е. соот ветствующих действительности, научных обобщениях имеют место
не просто те или иные симметрии или асимметрии, а определенные
формы их единства.

Так, в группах преобразования Галилея и Лоренца наряду с чер-
тами симметрии существуют и черты асимметрии.

Например, в преобразованиях Галилея и Лоренца симметричны
все состояния покоя и равномерного прямолинейного движения,
но асимметричны состояния покоя и ускоренного движения.

Задача нахождения единства симметрии и асимметрии каких-
либо явлений сводится к нахождению таких групп операций,
в которых раскрывается как тождественное в различном, так и
различное в тождественном. Поэтому прежде чем поставить задачу
нахождения симметрии в данном явлении или совокупности явле-
ний по отношению к каким-то группам операций, необходимо
установить различия между сторонами данного явления или между
явлениями в их совокупности, так как симметрия представляет собой
наличие тождества не вообще, а только в различном. Если же мы
имеем совокупность абсолютно тождественных явлений, то никакой
симметрии в этой совокупности по отношению к любой группе
операции быть не может.

Значит, прежде чем искать симметрию, нужно найти асимметрию.
Прежде чем была установлена симметрия протонов и нейтронов по
отношению к сильным взаимодействиям, было установлено разли-
чие между ними, их определенная асимметричность по отношению
к электромагнитным взаимодействиям. Частицы и античастицы асим-
метричны потому, что в противоположности между ними имеются
тождественные моменты, в силу чего они и являются зеркальными
отражениями друг друга. Единство симметрии и асимметрии заклю-
чается и в том, что они предшествуют одна другой.

Диалектическое единство, присущее объективным процессам сим-
метрии и асимметрии, позволяет выдвинуть в качестве одного из
принципов познания принцип диалектического единства симметрии
и асимметрии,
согласно которому всякому объекту присуща та или
иная форма единства симметрии и асимметрии. Причем рассмотрение
данного объекта в генезисе выражается в переходе от симметрии к
асимметрии (или наоборот). Заметим, что данный процесс тождест-
вен смене конкретных форм единства симметрии и асимметрии.

Как известно, в объективной действительности не может иметь
места абсолютное единство противоположностей. Именно поэтому
отношение конкретного тождества, т. е. тождества, ограниченного
различиями, и является объективным аналогом гносеологическо-
го единства симметрии и асимметрии.

Всякий принцип познания воплощается в конкретный метод, ору-
дие и средство познающей деятельности. Таким методом может быть
метод перехода от симметрии к асимметрии (или наоборот). Он
позволяет осуществлять объясняющую и предсказывающую функ-
ции в развивающемся знании, а также в определенной мере опти мизировать поисковую деятельность. Этот метод оказывается тесно
связанным с методами сходства и различия, предвидения и гипотезы,
аналогии, экстраполяции.

Если принять за симметрию теоретической системы ее непроти-
воречивость, себетождественность и инвариантность по отношению
к описываемым объектам и явлениям, то развитие научного знания
можно определить как переход к симметрии (т. е. асимметрия- сим-
метрия). В этом случае симметрия выступает как идеализированная
цель познания. Поиск симметрии - это поиск единого и тождествен-
ного в том, что первоначально виделось различныМ, разобщенным.
Всякая более высокая симметрия реализует возможность переноса
научной теории для решения новых познавательных задач.

Упрощая в некоторых случаях теоретические системы, симмет-
рия совсем не обязательно выступает аналогом простоты научного
знания. Поиск новых форм симметрии интуитивно связан со стрем-
лением к порядку, гармонии. Однако нет достаточных оснований
для возведения антропоморфных понятий простоты и красоты тео-
рии в ранг методологических закономерностей (31. 1979. 12, 49 - 60).

Простота и красота - особые варианты симметрии, связанные
с рациональным и эмоциональным (образным) способами постиже-
ния человеком объективного мира. Абсолютизация роли этих понятий
в развивающемся знании представляется нам необоснованной,
поскольку связана с отрывом симметрии от своей диалектической
противоположности - асимметрии.

Асимметрия в познании проявляется как несоответствие тео-
рии и эксперимента, как взаимная противоречивость нескольких
независимых теорий, либо как их внутренняя противоречивость.
Асимметрия служит исходным пунктом в познании, на каждом из
этапов его развития; именно с ней связан процесс научного поиска
истины.

Асимметрия неоднократно играла эвристическую роль в познании.
Примерами являются; эпикурейское представление об отклонении
атомов от прямолинейного движения, несогласие Кеплера с симмет-
рией движения планет по Копернику и др. История науки свиде-
тельствует о том, что именно асимметрия обусловливает появление
в познании новой формы симметрии, которая и выступает в качестве
относительной истины.

Во взаимосвязи с принципом единства симметрии и асимметрии
находится принцип симметрии, согласно которому всякая научная
теория должна быть непротиворечивой и инвариантной отно-
сительно группы описываемых объектов и явлений. Симметрия
теории выражает также адекватность научного познания объектив-
ной действительности. Многие видные ученые (П. Дирак, П. Кюри,
Л. Пастер, А. Пуанкаре, А. Салам) интуитивно использовали прин-
цип симметрии при получении важных теоретических результатов.

Однако принцип симметрии не учитывает того обстоятельства, что всякой научной теории присущи внутренние (не логические, а диалектические) противоречия, а также недостатки, не говоря уже
о действительном или возможном существовании объектов, которые
"она описать не в состоянии. Отрицая, по сути дела, роль асимметрии
(признается только нарушение симметрии), данный принцип не
учитывает особенностей научного познания как процесса развития и
становления.

К ограниченности принципа симметрии следует отнести и то,
что он связан только с выявлением тождественных отношений среди
различных объектов. Между тем в познании не менее широко исполь-
зуется и противоположная процедура - нахождение различного и
противоположного среди тождественных объектов и явлений.

Несомненный интерес представляет статья немецкого философа
Герберта Герца, в которой он рассматривает роль симметрии и
асимметрии в теории элементарных частиц. Он справедливо утвер-
ждает, что «ни одна будущая теория (элементарных частиц.- В. Г.)
не может обойти проблему асимметрии. Из философских сообра-
жений все процессы в мире следует рассматривать как единство
симметрии и асимметрии» (183. 1963. 10; 227; 289). Автор считает, что
применение категорий симметрии и асимметрии, очевидно, приведет
к возникновению новых воззрений в диалектике природы.

Симметрия

Асимметрия

Ритм – это чередование каких-либо элементов в определенной последовательности.

Ритм – одно из средств, наиболее часто употребляемых для создания гармоничной композиции. Это средство отражает связь человеческой природы и деятельности, в том числе и творческой, с мирозданием...

Действительно, разве можно отрицать, что многие процессы жизнедеятельности человека протекают циклично? Человек ощущает ритмы сердца, дыхания, ритмично двигается при ходьбе, беге, танце. Любая трудовая деятельность связана с ритмичными движениями, то есть с повторами. Важнейшие признаки ритма – это повторяемость явлений, элементов или форм, закономерность их чередования. «Ритм» буквально означает «такт, мерность» (от греческого «рафмос»).

Ритмы можно разделить на:

- метрический или монотонный (повторение без изменения);

- направленный (к чередованию добавляются закономерные изменения);

- повторение ;

- ритм с группированием .

По характеру линий ритм можно разделить на прямолинейный и криволинейный .

Ритм бывает простым , когда меняется какая-то одна закономерность (меняться форма, цвет, фактура или расстояние между элементами), и сложным , когда в ритме изменения происходят сразу по нескольким параметрам. Например, меняется конфигурация формы и происходит насыщение по цвету, или изменяется расстояние между элементами и одновременно уменьшается форма, которая также изменяет свою фактурную характеристику.

Для метрических композиций характерна статика. Статика – это состояние покоя, равновесия. Ярким примером метрического ряда служит орнамент.

Хотя метрический повтор сам по себе уже закономерность, но это еще не гармония. Если бесконечно повторять одну и ту же ноту в музыке или строить архитектурную композицию на повторении только одного элемента, гармония не возникает. По-видимому, мы начинаем воспринимать повтор как некий порядок с момента, когда перестаем мгновенно улавливать количество элементов. С этой точки зрения и пять повторов еще не ряд, поскольку мы подсознательно считаем его элементы. Когда же количество повторов переходит за шесть, семь, мы перестаем считать их, воспринимая элементы не в отдельности, а как группу.


Однако природа не терпит однообразия и монотонности. Нельзя найти двух одинаковых деревьев или двух одинаковых камушков - при всем своем сходстве и общих признаках они все-таки различаются определенными параметрами. Наше восприятие окружающей действительности устроено точно так же - нас раздражает монотонный стук падающих капель из крана, навевает скуку ровный, без изъянов и характерных деталей забор, выводит из себя бесконечно длинный и монотонный бразильский сериал со своими повторами сюжетной схемы помногу раз...

Поэтому любой ритм в дизайне следует изменять перед самой той границей, когда он начинает становиться монотонным. Все хорошо в меру, и эту меру хорошо бы знать или чувствовать. Самый простой способ постичь это - поставить себя на место зрителя.

Вполне возможно использования в композициях сочетания метра и ритма. Метрическое повторение ритмических рядов помогает создавать весьма оригинальные произведения. Казалось бы, используя одно и то же средство, нельзя добиться такого большого разнообразия решений. Но, например, художник В. Вазарели всем своим творчеством доказывает обратное. Каждая его работа своеобразна и неповторима.

Любой сбой в ритме привлекает внимание, нарушая ритм можно расставить нужные акценты.

Ритм является одной из «волшебных палочек», с помощью которых можно передать движение на плоскости.

Почему же ритм передает движение? Это связано с особенностью нашего зрения. Взгляд, переходя от одного изобразительного элемента к другому, ему подобному, сам как бы участвует в движении.

Симметрия (от греч. тождество, подобие, соответствие) – это соответствие фигуры относительно оси симметрии, точки или плоскости.

Асимметрия – нарушение равновесия, баланса

Симметрия отвечает одному из самых глубоких законов природы – стремлению к устойчивости. Основная черта симметричной композиции – равновесие. Симметрия гармонична, но если всякое изображение делать симметричным, то через некоторое время мы будем окружены благополучными, но однообразными произведениями. Во многих случаях надо сознательно нарушать симметрию в композиции, иначе трудно передать движение, изменение, противоречие.

С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Отметим, например, симметрию, свойственную бабочке и кленовому листу, симметрию форм автомобиля и самолета, симметрию в ритмическом построении стихотворения и музыкальной фразы, симметрию атомной структуры молекул и кристаллов.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания, его широко используют все без исключения направления современной науки. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Простейший вид симметрии - зеркальная . Предмет или фигура, которые можно разделить плоскостью на две половины так, чтобы эти половины при наложении друг на друга совпали между собой, имеет зеркальную симметрию. Такая симметрия присуща, например, человеческому телу, телам животных и многому другому. Зеркальная симметрия способствует созданию впечатления уравновешенности и покоя, так как она делает обе половины изображения равноценными для нашего взгляда.

Иной вид симметрии присутствует в фигурах, которые совмещаются сами с собой без помощи зеркального отражения, а посредством поворота вокруг некоторой оси, перпендикулярной к плоскости изображения. Это - осевая симметрия , а число таких совмещений на протяжении полного кругового оборота фигуры называется порядком оси. Осевая симметрия может обладать порядком от второго и до бесконечности. Фигур с осевой симметрией бесконечно много, но все они четко организованы и равномерно распределены вокруг единого для них центра. Все углы поворотов должны быть равны. Осевая симметрия нередко встречается в природе и широко распространена в орнаментах. В первую очередь, к фигурам с осевой симметрией относятся розетки. Изображение, обладающее осевой симметрией производит впечатление движения, вращения вокруг своего центра.

Часто можно видеть розетки не только с осевой симметрией, но и с зеркальной. Подобные формы гораздо уравновешеннее и спокойнее предыдущих. Такая форма представляется более законченной, так как она не выражает вращения, а от ее центра расходятся равные элементы. Возможно поэтому розетки с двумя этими видами симметрии приобрели наибольшее распространение.

Вдоль некой линии могут быть равномерно расположены одинаковые мотивы. Так образуется линейный орнамент, или бордюр, при помощи параллельного переноса, который можно продолжить до бесконечности в обе стороны по направлению линии. Это - еще один вид симметрии: если мы весь орнаментальный ряд сдвинем вдоль осевой линии на один мотив, то каждая из фигур наложится на место соседней, то есть бордюр совместится сам с собой.

В искусстве орнамента нередко используется заполнение плоскости одинаковыми прямолинейными фигурами. В математике такое замощение называется паркетом (в дизайне - сетчатые орнаменты ). Известно, что только два рода фигур - различные параллелограммы (включая прямоугольники, квадраты и ромбы) и шестиугольники с попарно параллельными сторонами заполняют плоскость сплошь, без пропусков и наложений, с помощью одних лишь переносов, сохраняя ориентацию.

Виды симметрии – (зеркальная, поворотная, трансляционная, паркетная, комбинированная)

НОУ ВПО Дальневосточный институт международного бизнеса

Факультет «Экономика и международный бизнес»

КОНТРОЛЬНАЯ РАБОТА

По «Концепциям современного естествознания»

ТЕМА: «Принципы симметрии и асимметрии»

Выполнила: студентка гр. 319 - БУ

Костина Е.А.

Шифр 09-БУ-08

Проверил (а): к.с.н., доцент

Зяблова Е.Ю.

Хабаровск2009

ПЛАН РАБОТЫ

Введение 3

1. Симметрия как эстетический критерий. Операции и виды симметрии. Принципы симметрии. 5

2. Разновидность симметрии и асимметрии в природе - свойства материального мира. Понятие симметрии и асимметрии в биологии. 13

3. Золотое сечение – закон проявления гармонии природы. 26

Заключение 31

Список литературы

Введение

Первоначальный смысл симметрии – это соразмерность, сходство, подобие, порядок, ритм, согласование частей в целостной структуре. Симметрия и структура неразрывно связаны. Если некоторая система имеет структуру, то она обязательно имеет и некоторую симметрию. Идея симметрии имеет исключительное значение и как ведущее начало в осмыслении структуры естественнонаучного знания. Едва ли можно оспаривать эвристическую ценность и методологическое значение принципа симметрии. Известно, что при решении конкретных научных проблем этот принцип играет роль критерия истинности.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С симметрией мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки.

Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир? Существуют, в принципе, две группы симметрий.

К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией.

Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии.

«Симметрия, - пишет известный ученый Дж. Ньюмен, - устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...".

1. Симметрия как эстетический критерий. Операции и виды симметрии. Принципы симметрии.

Одним из косвенных результатов СТО Эйнштейна явилась доказанная ею необходимость анализа, казалось бы, хорошо известных понятий, которые многие поко-ления воспринимали как нечто привычное, не требую-щее разъяснения.

В этом плане историю науки можно представить как историю попыток уточнения содержания и области при-менения научных понятий. И здесь успех всегда сопут-ствовал понятиям, которые выделялись своей эстетиче-ской привлекательностью. К таким понятиям может быть отнесена симметрия, которая с древнейших времен фигу-рировала в качестве скорее эстетического критерия, чем строго научного понятия.

Симметрия (от греч. symmetria - соразмерность) -однородность, пропорциональность, гармония, инвари-антность структуры материального объекта относитель-но его преобразований. Это признак полноты и совер-шенства. Лишившись элементов симметрии, предмет ут-рачивает свое совершенство и красоту, т.е. эстетическое понятие.

Эстетическая окрашенность симметрии в наиболее общем понимании - это согласованность или уравнове-шенность отдельных частей объекта, объединенных в еди-ное целое, гармония пропорций. Многие народы с древ-нейших времен владели представлениями о симметрии в широком смысле как эквивалентности уравновешеннос-ти и гармонии. В геометрических орнаментах всех веков запечатлены неиссякаемая фантазия и изобретательность художников и мастеров. Их творчество было ограничено жесткими рамками, требованиями неукоснительно сле-довать принципам симметрии. Трактуемые несравненно шире, идеи симметрии нередко можно обнаружить в живописи, скульптуре, музыке, поэзии. Операции сим-метрии часто служат канонами, которым подчиняются балетные па: именно симметричные движения составля-ют основу танца. Во многих случаях именно язык сим-метрии оказывается наиболее пригодным для обсужде-ния произведений изобразительного искусства, даже если они отличаются отклонениями от симметрии или их со-здатели стремятся умышленно ее избежать.

Можно выде-лить следующие операции симметрии:

■ отражение в плоскости симметрии (отражение в зер-кале);

■ поворот вокруг оси симметрии (поворотная симметрия);

■ отражение в центре симметрии (инверсия);

■ перенос (трансляция) фигуры на расстояние;

■ винтовые повороты.

Отражение в плоскости симметрии

Отражение - это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно «видит», но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется ле-вой, так как пальцы расположены на ней в обратном порядке. Всем, наверное, с детства знаком фильм «Ко-ролевство кривых зеркал», где имена всех героев чита-лись в обратном порядке.

Зеркальную симметрию можно обнаружить повсюду: в листьях и цветах растений, архитектуре, орнаментах. Че-ловеческое тело, если говорить лишь о наружном виде, обладает зеркальной симметрией, хотя и не вполне стро-гой. Более того, зеркальная симметрия свойственна телам почти всех живых существ, и такое совпадение отнюдь не случайно. Важность понятия зеркальной симметрии вряд ли можно переоценить.

Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зер-кального отражения, или просто зеркальной плоскостью. Эту плоскость можно назвать элементом симметрии, а со-ответствующую операцию - операцией симметрии.

Отражение в зеркале - это один из способов повто-рения фигуры, приводящий к возникновению симмет-ричного узора. Если использовать не одно, а два зеркала, то можно получить устройство, названное калейдоско-пом, открытое в 1819 г. Д. Брюстером. В калейдоскопе совмещаются два вида симметрии: зеркальная и пово-ротная. Расположив зеркала под определенным углом, можно увидеть отражение, отражение отражения и т.д. Вечно изменяющаяся череда узоров завораживает взор каждого.

Если два зеркала не пересекаются, а установлены па-раллельно друг другу, то вместо орнамента с элемента-ми, расположенными по кругу, получается бесконечный узор, который повторяется и напоминает бордюр или ленту из ткани.

С трехмерными симметричными узорами мы сталки-ваемся ежедневно: это многие современные жилые зда-ния, а иногда и целые кварталы, ящики и коробки, гро-моздящиеся на складах, атомы вещества в кристалличес-ком состоянии образуют кристаллическую решетку - элемент трехмерной симметрии. Во всех этих случаях правильное расположение позволяет экономно исполь-зовать пространство и обеспечивать устойчивость.

Поворотная симметрия

Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Примером может служить детская игра «вертушка» с поворотной сим-метрией. Во многих танцах фигуры основаны на враща-тельных движениях, нередко совершаемых только в одну сторону (т.е. без отражения), например, хороводы.

Листья и цветы многих растений обнаруживают ра-диальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, обра-зующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Отражение в центре симметрии

Примером объекта наивысшей симметрии, характе-ризующим эту операцию симметрии, является шар. Ша-ровые формы распространены в природе достаточно ши-роко. Они обычны в атмосфере (капли тумана, облака), гидросфере (различные микроорганизмы), литосфере и космосе. Шаровую форму имеют споры и пыльца расте-ний, капли воды, выпущенной в состоянии невесомости на космическом корабле. На метагалактическом уровне наиболее крупными шаровыми структурами являются галактики шаровой формы. Чем плотнее скопление га-лактик, тем ближе оно к шаровой форме. Звездные скоп-ления - тоже шаровые формы.

Трансляция, или перенос фигуры на расстояние

Трансляция, или параллельный перенос фигуры на рас-стояние - это любой неограниченно повторяющийся узор. Она может быть одномерной, двумерной, трехмерной. Трансляция в одном и том же или противоположных на-правлениях образует одномерный узор. Трансляция по двум непараллельным направлениям образует двумерный узор. Паркетные полы, узоры на обоях, кружевные ленты, дорожки, вымощенные кирпичом или плитками, кристаллические фигуры образуют узоры, которые не имеют естественных границ.

При изучении орнаментов, используемых в книгопечатании, были обнаружены те элементы симметрии, что и в рисунке выложенных кафельными плитами полов. Орнаментальные бордюры связаны с музыкой. В музыке элементы симметричной конструкции включают в себя операции повторения (трансляции) и обращения (отра-жения). Именно эти элементы симметрии обнаружива-ются и в бордюрах.

Хотя в большинстве случаев музыка не отличается строгой симметрией, в основе многих музыкальных про-изведений лежат операции симметрии. Особенно замет-ны они в детских песенках, которые, видимо, поэтому так легко и запоминаются. Операции симметрии обна-руживаются в музыке средневековья и Возрождения, в музыке эпохи барокко (нередко в весьма изощренной форме). Во времена И.С. Баха, когда симметрия была важным принципом композиции, широкое распростра-нение получила своеобразная игра в музыкальные голо-воломки. Одна из них заключалась в решении загадоч-ных «канонов». Канон - это одна из форм многоголос-ной музыки, основанной на проведении темы, которую ведет один голос, в других голосах. Композитор предла-гал какую-нибудь тему, а слушателям требовалось уга-дать операции симметрии, которые он намеревался ис-пользовать при повторении темы.

Природа задает головоломки как бы противополож-ного типа: нам предлагается завершенный канон, а мы должны отыскать правила и мотивы, лежащие в основе существующих узоров и симметрии, и наоборот, отыс-кивать узоры, возникающие при повторении мотива по разным правилам. Первый подход приводит к изучению структуры вещества, искусства, музыки, мышления. Вто-рой подход ставит нас перед проблемой замысла или пла-на, с древних времен волнующей художников, архитек-торов, музыкантов, ученых.

Винтовые повороты

Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции сим-метрии. Поворот на определенное число градусов, со-провождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию вин-товой лестницы. Пример винтовой симметрии - распо-ложение листьев на стебле многих растений.

Головка подсолнечника имеет отростки, расположен-ные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находят-ся в центре.

В таких системах можно заметить два семейства спи-ралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития.

Вслед за Гете, который говорил о стремлении приро-ды к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вра-щения.

Можно выделить также следующие виды симметрии Радиально-лучевая и билатеральная симметрия, встречающиеся в природе.

Симметрия подобия

Рассмотрим игрушечную матрешку, цветок розы или кочан капусты. Важную роль в геометрии всех этих при-родных тел играет подобие их сходных частей. Такие ча-сти, конечно, связаны между собой каким-то общим, еще не известным нам геометрическим законом, позволяю-щим выводить их друг из друга.

К перечисленным выше операциям симметрии мож-но, таким образом, добавить операцию симметрии подо-бия, представляющую собой своеобразные аналогии транс-ляций, отражений в плоскостях, повороты вокруг осей с той только разницей, что они связаны с одновременным увеличением или уменьшением подобных частей фигу-ры и расстояний между ними.

Симметрия подобия, осуществляющаяся в простран-стве и во времени, повсеместно проявляется в природе на всем, что растет. А ведь именно к растущим формам относятся бесчисленные фигуры растений, животных и кристаллов. Форма древесного ствола - коническая, силь-но вытянутая. Ветви обычно располагаются вокруг ство-ла по винтовой линии. Это не простая винтовая линия: она постепенно суживается к вершине. Да и сами ветви уменьшаются по мере приближения к вершине дерева. Следовательно, здесь мы имеем дело с винтовой осью сим-метрии подобия.

Живая природа в любых ее проявлениях обнаружива-ет одну и ту же цель, один и тот же смысл жизни: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизни является ЖИЗНЬ, а доступная форма бы-тия заключается в существовании отдельных целостных организмов. И не только примитивные организации, но и сложные космические системы, такие как человек, де-монстрируют поразительную способность буквально по-вторять из поколения в поколение одни и те же формы, одни и те же скульптуры, черты характера, те же жесты, манеры.

Какое из чудес могло бы с большей силой поразить человеческое воображение, чем появление новой жиз-ни? Пространство, которое было ничем, становится де-ревом, яблоком, человеком. Возникновение живого су-щества - явление целостное, это таинство, так как чело-век не умеет познавать неделимое, не расчленяя его.

Природа обнаруживает подобие как свою глобальную ге-нетическую программу. Ключ в изменении тоже заключа-ется в подобии. Подобие правит живой природой в це-лом. Геометрическое подобие - общий принцип простран-ственной организации живых структур. Лист клена подобен листу клена, березы - березе. Геометрическое подобие пронизывает все ветви древа жизни.

Какие бы метаморфозы ни претерпевала в процессе роста в дальнейшем живая клетка, принадлежащая це-лостному организму и выполняющая функцию его вос-произведения в новый, особенный, единичный объект бытия, она является точкой «начала», которая в итоге деления окажется преобразована в объект, подобный пер-воначальному. Этим объединяются все виды живых струк-тур, по этой причине и существуют стереотипы жизни: человек, кошка, стрекоза, дождевой червь. Они беско-нечно интерпретируются и варьируются механизмами деления, но остаются теми же стереотипами организа-ции, формы и поведения.

Так же, как подобны одно другому целостные живые существа данного вида жизни, встроенные в ее непре-рывно разветвляющуюся цепь, так же подобны одно дру-гому и отдельные их члены, функционально специали-зированные.

Можно даже выделить, что функция зрения в целом, как и детальная структура органов зрительного восприя-тия, подчинена глобальному принципу организации жиз-ни - принципу геометрического подобия.

Определяя пространственную организацию живых организмов, прямой угол, который, кстати, правит физи-ческими процессами, организует жизнь силами гравита-ции. Биосфера (пласт бытия живых существ) ортогональ-на вертикальной линии земного тяготения. Вертикаль-ные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой гол является объектив-ной реальностью зрительного восприятия: выделение прямого угла осуществляют структуры сетчатки в цепи нейронных связей. Зрение чутко реагирует на кривизну прямых линий, отклонения от вертикальности и гори-зонтальности. Прямой угол, лежащий в основе треуголь-ника, правит пространством симметрии подобий, а по-добие, как уже говорилось, - есть цель жизни. И сама природа и первородная часть человека находятся во вла-сти геометрии, подчинены симметрии и как сущности и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, кото-рый отображен формой, будь то яблоко, зерно ржи или человек.

2. Разновидность симметрии и асимметрии в природе - свойства материального мира. Понятие симметрии и асимметрии в биологии.

Симметрия в природе

Внимательно приглядевшись к обступающей нас при-роде, можно увидеть общее даже в самых незначитель-ных вещах и деталях. Форма листа дерева не является случайной: она строго закономерна. Листок как бы скле-ен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусени-ца, бабочка, жучок и т.п.

Радиальнотлучевой симметрией обладают цветы, гри-бы, деревья, фонтаны. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях, бьющем фонтане или столбе паров плоскости симметрии ориен-тированы всегда вертикально.

Таким образом, можно сформулировать в несколько упрощенном и схематизированном виде общий закон, ярко и повсеместно проявляющийся в природе: все, что рас-тет или движется по вертикали, т.е. вверх или вниз отно-сительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, под-чиняется билатеральной симметрии, симметрии листка. Этому всеобщему закону подчиняются не только цве-ты, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на из-менчивые формы облаков. В безветренный день они име-ют куполовидную форму с более или менее ясно выра-женной радиально-лучевой симметрией.

Влияние универсального закона симметрии являет-ся по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

Асимметрия в живой природе

Молекулярная асимметрия была обнаружена и открыта Л. Пастером, которому удалось выделить левые и правые кристаллы винной кислоты. Асимметрия кристаллов квар-ца-в его оптической активности. В отличие от молекул неживой природы молекулы органических веществ име-ют ярко выраженный асимметричный характер.

Если считать, что равновесие характеризуется состо-янием покоя и симметрии, а асимметрия связана с дви-жением и неравновесным состоянием, то понятие рав-новесия играет в биологии не менее важную роль, чем в физике. Всеобщий закон биологии - принцип устойчиво-го термодинамического равновесия живых систем, опре-деляет специфику биологической формы движения ма-терии. Действительно, устойчивое термодинамическое равновесие (асимметрия) является основным принци-пом, который не только охватывает все уровни позна-ния живого, но и выступает в качестве ключевого прин-ципа постановки и решения происхождения жизни на земле.

Понятие равновесия может быть рассмотрено не толь-ко в статическом аспекте, но и в динамическом. Сим-метричной считается среда, находящаяся в состоянии термодинамического равновесия, среда с высокой энтропией и максимальным беспорядком частиц. Асиммет-ричная среда характеризуется нарушением термодинами-ческого равновесия, низкой энтропией и высокой упо-рядоченностью структуры.

При рассмотрении целостного объекта картина ме-няется. Симметричные системы, например кристаллы, характеризуются состоянием равновесия и упорядочен-ности. Но асимметричные системы, которыми являются живые тела, также характеризуются равновесием и упо-рядоченностью с тем только различием, что в последнем случае имеем дело с динамической системой.

Таким образом, устойчивое термодинамическое рав-новесие (или асимметрия) статической системы есть дру-гая форма выражения устойчивого динамического равновесия, высокой упорядоченности и структурности орга-низма на всех его уровнях. Такие системы называются асимметричными динамическими системами. Здесь нужно только указать, что структурность носит динамический характер.

Понятие равновесия тоже не является только стати-ческим, имеется и динамический аспект. Состояние сим-метрии и движения не есть нарушение равновесия вооб-ще, а есть состояние динамического равновесия. Здесь можно говорить о мере симметрии вообще, подобно тому, как в физике оперируют понятием движения.

Асимметрия как разграничивающая линия между живой и неживой природой

Пастером было установлено, что все аминокислоты и белки, входящие в состав живых организмов, являют-ся «левыми», т.е. отличаются оптическими свойствами. Объяснить происхождение «левизны» живой природы он пытался асимметрией, глобальной анизотропией про-странства.

Вселенная есть асимметричное целое, и жизнь в та-ком виде, в каком она представляется, должна быть функцией асимметрии Вселенной и вытекающих отсю-да следствий. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выражен-ный асимметричный характер. Придавая большое значе-ние асимметрии живого вещества, Пастер считал ее имен-но той единственной, четко разграничивающей линией, которую в настоящее время можно провести между живой и неживой природой, т.е. тем, что отличает живое вещество от неживого. Современная наука доказала, что в живых организмах, как и в кристаллах, изменениям в строении отвечают изменения свойств.

Для неживой природы характерно преобладание сим-метрии, при переходе от неживой к живой природе на микроуровне преобладает асимметрия. Асимметрия на уровне элементарных частиц - это абсолютное преоб-ладание в нашей части Вселенной частиц над античас-тицами.

Все это говорит о большом значении симметрии и асимметрии в живой и неживой природе, показывает их связь с основными свойствами материального мира, со структурой материальных объектов на микро-, макро- и мегауровнях, со свойствами пространства и времени как форм существования материи. Накопленные наукой фак-ты показывают объективный характер симметрии и асим-метрии как одних из важнейших характеристик движения и структуры материи, пространства и времени, наряду с такими характеристиками, как прерывное и непрерыв-ное, конечное и бесконечное.

Развитие современного естествознания приводит к выводу, что одним из наиболее ярких проявлений зако-на единства и борьбы противоположностей является един-ство и борьба симметрии и асимметрии в структуре сим-метрии и в процессах, имеющих место в живой и нежи-вой природе, что симметрия и асимметрия являются парными относительными категориями.

Таким образом, симметрия играет роль в сфере мате-матического знания, асимметрия - в сфере биологического знания. Поэтому принцип симметрии - это единственный принцип, благодаря которому есть возможность отличать вещество биогенного происхождения от вещества нежи-вого. Парадокс: мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличать живое от нежи-вого.

Понятие симметрии и асимметрии в биологии.

На явление симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные симметрии растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий - Э. Геккель), биогенных молекул (французские - А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории симметрии (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о симметрии - биосимметрики.

Наиболее интенсивно изучалась структурная симметрия биообъектов. Исследование симметрии биоструктур - молекулярных и надмолекулярных - с позиций структурной симметрии позволяет заранее выявить возможные для них виды симметрии, а тем самым число и вид возможных модификаций, строго описывать внешнюю форму и внутреннее строение любых пространственных биообъектов. Это привело к широкому использованию представлений структурной симметрии в зоологии, ботанике, молекулярной биологии. Структурная симметрия проявляется прежде всего в виде того или иного закономерного повторения. В классической теории структурной симметрии, развитой немецким учёным И. Ф. Гесселем, Е.С. Федоровым и другими, вид симметрии объекта может быть описан совокупностью элементов его симметрии, т. е. таких геометрических элементов (точек, линий, плоскостей), относительно которых упорядочены одинаковые части объекта. Например, вид симметрии цветка флокса - одна ось 5-го порядка, проходящая через центр цветка; производимые посредством её операции - 5 поворотов (на 72, 144, 216, 288 и 360°), при каждом из которых цветок совпадает с самим собой. Вид симметрии фигуры бабочки - одна плоскость, делящая её на 2 половины - левую и правую; производимая посредством плоскости операция - зеркальное отражение, «делающее» левую половинку правой, правую - левой, а фигуру бабочки совмещающей с самой собой. Вид симметрии радиолярии Lithocubus geometricus, помимо осей вращения и плоскостей отражения содержит ещё и центр симметрии. Любая проведённая через такую единственную точку внутри радиолярии прямая по обе стороны от неё и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. Операции, производимые посредством центра симметрии, - отражения в точке, после которых фигура радиолярии также совмещается сама с собой.

В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов симметрии, чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной симметрии - вплоть до организмов, характеризующихся симметрией правильных многогранников и шара. Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n) и актиноморфной (вида n (m) симметрии (в обоих случаях n может принимать значения от 1 до ∞). Биообъекты с аксиальной симметрией (лист плюща, медуза Aurelia insulinda, цветок плюща) характеризуются лишь осью симметрии порядка n. При повороте этих фигур вокруг оси симметрии равные части каждого из них совпадут друг с другом соответственно 1, 4, 5 раз (оси 1, 4, 5-го порядка). Лист плюща асимметричен. Биообъекты актиноморфной симметрии (бабочка; лист кислицы; симметрии соответственно 1×m, 3×m. Бабочке свойственна двусторонняя, или билатеральная, симметрия) характеризуются одной осью порядка n и пересекающимися по этой оси плоскостями m. В живой природе наиболее распространены симметрия вида n = 1 и 1×m = m, называется соответственно асимметрией и двусторонней, или билатеральной, симметрией.

Асимметрия характерна для листьев большинства видов растений, двусторонняя симметрия - до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая симметрия, по-видимому, связана с различиями их движения вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной симметрии неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50-70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (диссимметрические D- и L-биообъекты: 1. цветки анютиных глазок; 2. раковины прудовика; 3. молекулы винной кислоты; 4. листья бегонии.). Последние могут существовать по крайней мере в двух модификациях - в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая - левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (Лист липы, иллюстрирующий возможность существования диссимметрических объектов более чем в двух модификациях. Для листа липы диссфакторы - это 4 морфологических признака: преимущественные ширина и длина, асимметричные жилкование и загиб главной жилки. Так как каждый из диссфакторов может проявляться двояко - в (+) или (-) -формах - и соответственно приводить к D- или L-мoдификациям, то число возможных модификаций будет 2 4 = 16, а не две); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (разных биообъектов одного состава.

При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Советский учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% - с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов - к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).

При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8-44% (в зависимости от сорта) тяжелее и содержат на 0,5-1% больше сахара, чем D-kopнеплоды.

Изучение наследования признаков у D- и L-форм показало, что их правизна или левизна может быть наследственной, ненаследственной или имеет характер длительной модификации. Это означает, что по крайней мере в ряде случаев правизну-левизну организмов и их частей можно изменить действием мутагенных или немутагенных химических соединений. В частности, D-штаммы (по морфологии колоний) микроорганизма Bacillus mycoides при выращивании их на агаре с D-сахарозой, L-днгитонином, D-винной кислотой можно превратить в L-штаммы, а L-штаммы можно превратить в D-штаммы, выращивая их на агаре с L-винной кислотой и D-аминокислотами. В природе взаимопревращения D- и L-форм могут происходить и без вмешательства человека. При этом смена видов симметрии в эволюции происходила не только у диссимметрических организмов. В результате возникли многочисленные эволюционные ряды симметрии, специфичные для тех или иных ветвей древа жизни.

Симметрия в мире растений:

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии.

Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы.

Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек.

Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимально возможном объеме наиболее экономно использовать строительный материал-воск.

Листья на стебле расположены не по прямой, а окружают ветку по спирали. Сумма всех предыдущих шагов спирали, начиная с вершины, равна величине последующего шага

А+В=С, В+С=Д и т.д.

Расположение семянок в головке подсолнуха или листьев в побегах вьющихся растений соответствует логарифмической спирали

Симметрия в мире насекомых, рыб, птиц, животных:

Типы симметрии у животных:

    центральная

  • радиальная

    билатеральная

    двулучевая

    поступательная (метамерия)

    поступательно-вращательная

Ось симметрии. Ось симметрии - это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадней осью тела.

Плоскость симметрии. Плоскость симметрии - это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti – против; mer – часть). Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь равное число щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём. У гребневиков только две плоскости симметрии - глоточная и щупальцевая. Наконец, у двусторонне-симметричных организмов только одна плоскость и только две зеркальные антимеры – соответственно правая и левая стороны животного.

Типы симметрии. Известны всего два основных типа симметрии – вращательная и поступательная. Кроме того, встречается модификация из совмещения этих двух основных типов симметрии – вращательно-поступательная симметрия.

Вращательная симметрия. Любой организм обладает вращательной симметрией. Для вращательной симметрии существенным характерным элементом являются антимеры. Важно знать, при повороте на какой градус контуры тела совпадут с исходным положением. Минимальный градус совпадения контура имеет шар, вращающийся около центра симметрии. Максимальный градус поворота 360 , когда при повороте на эту величину контуры тела совпадут.

Если тело вращается вокруг центра симметрии, то через центр симметрии можно провести множество осей и плоскостей симметрии. Если тело вращается вокруг одной гетерополярной оси, то через эту ось можно провести столько плоскостей, сколько антимер имеет данное тело. В зависимости от этого условия говорят о вращательной симметрии определённого порядка. Например, у шестилучевых кораллов будет вращательная симметрия шестого порядка. У гребневиков две плоскости симметрии, и они имеют симметрию второго порядка. Симметрию гребневиков также называют двулучевой. Наконец, если организм имеет только одну плоскость симметрии и соответственно две антимеры, то такую симметрию называют двусторонней или билатеральной. Лучеобразно отходят тонкие иглы. Это помогает простейшим «парить» в толще воды. Шарообразны и другие представители простейших – лучевики (радиолярии) и солнечники с лучевидными отростками-псевдоподиями.

Поступательная симметрия. Для поступательной симметрии характерным элементом являются метамеры (meta – один за другим; mer – часть). В этом случае части тела расположены не зеркально друг против друга, а последовательно друг за другом вдоль главной оси тела.

Метамерия – одна из форм поступательной симметрии. Она особенно ярко выражена у кольчатых червей, длинное тело которых состоит из большого числа почти одинаковых сегментов. Этот случай сегментации называют гомономной. У членистоногих животных число сегментов может быть относительно небольшим, но каждый сегмент несколько отличается от соседних или формой, или придатками (грудные сегменты с ногами или крыльями, брюшные сегменты). Такую сегментацию называют гетерономной.

Вращательно-поступательная симметрия. Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий логарифмически увеличивает на определённую величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер, а также спиральные камерные раковины некоторых головоногих моллюсков (современный наутилус или ископаемые раковины аммонитов. С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков.

Рассмотрим ещё один тип симметрии, который встречается в животном мире. Это винтовая или спиральная симметрия. Винтовая симметрия есть симметрия относительно комбинации двух преобразований - поворота и переноса вдоль оси поворота, т.е. идёт перемещение вдоль оси винта и вокруг оси винта. Встречаются левые и правые винты. Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающего в северных морях) – левый винт; раковина улитки – правый винт; рога памирского барана – энантиоморфы (один рог закручен по левой, а другой по правой спирали). Спиральная симметрия не бывает идеальной, например, раковина у моллюсков сужается или расширяется на конце.

Исключительно важную роль в мире живой природы играют молекулы дезоксирибонуклеиновой кислоты – ДНК, являющейся носителем наследственной информации в живом организме. Молекула ДНК имеет структуру двойной правой спирали, открытой американскими учёными Уотсоном и Криком. За её открытие они были удостоены Нобелевской премии. Двойная спираль молекулы ДНК есть главный природный винт.

Отметим, билатеральную симметрию человеческого тела (речь идёт о внешнем облике и строении скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом.

Наша собственная зеркальная симметрия очень удобна для нас, она позволяет нам двигаться прямолинейно и с одинаковой лёгкостью поворачиваться вправо и влево. Столь же удобна зеркальная симметрия для птиц, рыб и других активно движущихся существ.

3. Золотое сечение – закон проявления гармонии природы.

Одним из наиболее ярких проявлений гармонии в природе является закон пропорциональной связи целого и составляющих его частей, получивший название «золотое сечение». Золотое сечение - это деление целого на две неравные части так, чтобы большая часть относилась к меньшей, как целое к большей части.

Пифагор был первым, кто обратил внимание на это особое, «гармоническое» деление любого отрезка, названное впоследствии золотым сечением. В 1509 г., т.е. примерно через две тысячи лет после Пифагора, итальянец Лука Пачоли (1445-1509) опубликовал книгу «О божественной пропорции», рисунки к которой выполнил знаменитый друг Пачоли Леонардо да Винчи, кому и принадлежит сам термин «золотое сечение».

Классический пример золотого сечения, дающий представление о нем, - это деление отрезка в среднепропор-циональном отношении:

Приближенные корни этого уравнения - числа Ф = 1,61803398875 и

–Ф-1 = -0,61803398875, которые не менее замечательны, чем числа (пи) и е. О них после Пифагора писали Платон, Поликлет, Евклид, Витрувий и многие другие. Золотым сечением кроме Леонардо да Винчи интересовались многие художники, скульпторы, архитекторы, многие деятели науки и искусства. Вызвано это тем, что везде, где появляется число Ф, живые формы и произведения искусства приятны для глаз, отличаются явной гармонией и красотой.

Для построения правильных симметричных многогранников: куба, октаэдра, тетраэдра, икосаэдра, додекаэдра нужно использовать золотую пропорцию, так как диагонали их образуют пентаграмму. Золотое сечение связано с пространственным отношением природных объек-тов, человека, архитектурных сооружений, музыкальной гармонии, в геометрических фигурах, имеющих ось пя-того порядка, - их имеют многие цветы, морские звез-ды, ежи, вирусы.

У человека золотое сечение - это отношение его роста к расстоянию от пупка до подошв ног: при рождении оно равно 2, а к 21 годам - 1,625, у женщин - 1,6. Многие женщины интуитивно пытаются приблизить это отноше-ние к золотой пропорции, надевая туфли на каблуках.

Золотое сечение владело умами многих ученых и вы-дающихся мыслителей прошлого, продолжает волновать и сейчас - не ради математических свойств, а потому, что оно неотделимо от целостности объектов искусства и в то же время обнаруживает себя как признак структур-ного единства объектов природы.

Феномен золотого сечения - одно из ярких, давно уже замеченных человеком проявлений гармонии при-роды. Он рассматривается в общей картине историчес-кого становления архитектуры, обнаруживается в фор-мах живой природы, в области музыкальной гармонии. Он рассматривается также и как объективная характери-стика искусства и как явление в области восприятия. Се-годня мы не можем с абсолютной достоверностью опре-делить, когда и кем понятие золотого сечения было выде-лено в человеческом знании из интуитивной и опытной категории. В эпоху Ренессанса среднепропорциональное отношение именовали «божественной пропорцией». Лео-нардо да Винчи дает ему имя «золотое сечение», которое живет и поныне.

Уже в наши дни физиологи обнаружили, что волны электрической активности мозга также характеризуются золотым сечением. И, наконец, совсем недавно выдвину-та идея-гипотеза, что золотое сечение является основой существования любых самоорганизующихся систем.

Правило золотого сечения показывает, что большее относится к меньшему, как целое относится к большему. Если большее - это человечество, а меньшее - окружа-ющая его природа, то по тому, как человечество отно-сится к тому, что ему по силам, что оно может изменить, так и весь Космос, вся Вселенная относится к человече-ству (как целое - к большему). Человечество на протя-жении всей своей истории действует в корыстных инте-ресах, перемалывая и переламывая, превращая в мусор-ную свалку все вокруг себя. Так же к человечеству будет относиться и Космос и Вселенная.

О золотом сечении написано много трактатов. В пос-леднее время оно все больше привлекает внимание уче-ных: используется в технике, архитектуре, обнаружива-ется в ритмах мозга, астрономии. Доказаны фундамен-тальность и его исключительность.

За всем этим многообразием достаточно четко видно отражение особенностей самого общего явления, которому подвергается все телесное в мире, начиная от эле-ментарных частиц и кончая галактиками, - это движе-ние. Гармония может быть расшифрована на ее собствен-ном языке, отображенном фундаментальными принци-пами естествознания.

Интуиция - нередко источник плодотворной науч-ной гипотезы. Современная астрономия поднимает зна-чение человека. Человек - это не пылинка бессмыслен-но движущегося существа, а микрокосмос, т.е. явление, связанное с мирозданием. Между микрокосмосом - че-ловеком - и космосом пропасть начинает исчезать. На-блюдая спектры звезд, галактик, близких и удаленных на миллиарды световых лет, радиоастрономы обнаружили, что наша Вселенная однородна не только тем, что веще-ство в ней распределено в среднем равномерно, но и тем, что возникла она сразу, одновременно и как одно целое из одной точки начала, так же, как приходит в жизнь человек.

Итак, современная космология сделала решительный шаг к космоцентризму, убедительно показав, что весь строительный материал мироздания, представляющий космическое пространство, был стянут в точку начала. Закон его становления был заключен в этой точке. Так возникает все живое, любой живой объект бытия. Дру-гих видов жизни природа пока не знает. Все живое име-ет своим началом сгусток материи. Существование точ-ки начала становления объекта бытия - такова причина целостности, потому что природа не знает неструктур-ных единиц. Вне связи частей в целое структуры не представимы. Закон связи частей в целое - закон гармонии - и есть закон развития свернутой точки начала. И он один.

Высокая эстетичность золотого сечения заключается в том, что в нем отражается воспринимаемая на образно-эмоциональном уровне основа бытия телесного состав-ляющего целостной Природы.

1. Золотая пропорция Пифагора оказалась связанной с фундаментальными проблемами науки. Сквозь годы и века она привела не только к структурной, но и к геометрической и динамической симметриям.

2. На основе биологических законов сохранения, раз-нообразных вариантов симметрии законов живой природы относительно тех или иных преобразований рано или поздно удастся проникнуть в сущность жи-вого, объяснить ход эволюции, ее вершины и тупи-ки, предсказать неизвестные сейчас ветви - теоре-тически возможные и действительные числа типов, классов, семейств организмов, т.е. можно поставить вопрос о не единственности той картины мира, ко-торую мы знаем.

3. Золотое сечение неотделимо от ценностей искусства, так как обнаруживает себя как признак структурного единства объектов природы.

4. Раскрытие объективных законов гармонии формиру-ет прочный фундамент мировоззренческого и про-фессионального отношения к творчеству, к жизни. Вспомним слова Л. Фейербаха: «То, что человек на-зывает целесообразностью природы и как таковую по-стигает, есть в действительности не что иное, как един-ство мира, гармония причин и следствий, вообще та взаимная связь, в которой все в природе существует и действует».

Изучение и постижение законов гармонии способны направить творческую деятельность человека не в русло формотворчества, а в русло создания нового, созвучного основным объективным законам восприятия, которым отображены законы гармонии в природе.

ЗАКЛЮЧЕНИЕ

Таким образом, представления о симметрии и ее следствиях в разных областях деятельности (искусстве, науке, технике, обыденной жизни) использовались человечеством с древнейших времен.

Симметрия – в широком и узком смысле является той идеей, которой человек на протяжении веков пытался постичь и создать порядок во всех физических явлениях. И нашу Вселенную со всеми ее сложностями, видимо, построят в будущем согласно понятиям о симметрии

Симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. если хотите, некий элемент гармонии. Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы.

Помимо симметрии существует также понятие ассиметрии

Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы. Таким образом и из соображений симметрии-асимметрии мы приходим к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур нетрудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида

Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

С симметрией человек встречаемся везде – в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Существует множество видов симметрии как в растительном, так и в животном мире, но при всем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира

Симметрия - асимметрия играют важную роль в математике, логике, философии, искусстве, биологии, физике, химии и других науках, которые имеют дело с системами, а также исследованиями в области общей методологии.

Список литературы

    Вигнер Е. Этюды о симметрии. – М., 1971.

    Горбачев В.В.Концепции современного естествознания. В 2 ч.:Учебное пособие. М.: Издательство МГУП, 2000.

    Жёлудев И.С. симметрия и её приложения. –М.: Энергоатомиздат, 1983г.

    Сонин А.С. Постижение совершенства: симметрия, асимметрия, диссимметрия, антисимметрия. – М.: ЗНАНИЕ, 1987г.

    Урманцев Ю.А. Симметрия природы и природа симметрии - М.: Мысль, 1974г.

    буквально пронизывает... симметрии играют важную роль в биологии... чем «несимметричные». Симметрия - это показатель здоровья! Асимметрия лица - это... общим для всех них принципом симметрии . Симметрия проявляется в многообразных структурах...

Кстати говоря, у умерших людей лица симметричные. Впрочем, наши лица меняются в течение всей жизни.

Симметрия и асимметрия лиц. В чем же их секрет? Почему нас так привлекают симметричные лица? Известно, что В XV веке Леонардо да Винчи создал чертежи, отображающие эталонные пропорции человеческого лица и тела. Но в живой природе абсолютно симметричных объектов не существует. Однако тем, кому повезло иметь лицо очень близкое к симметричному, вероятно заметили, что пользуются успехом у противоположного пола. Более того, факт наличия симметричного лица может также свидетельствует и об отменном здоровье его обладателя. Даже обычная простуда и та почти всегда отступает перед людьми, у которых левая сторона тела точно повторяет очертания правой стороны.

Симметрия связана с воздействием тестостерона и эстрогена на человека. Мужчины с симметричными лицами кажутся более мужественными, а женщины – более женственными. Такие лица говорят о том, что человек порожден большим числом генов. Исследования симметрии лица показали, что очень асимметричное лицо отталкивает людей. А симметричное лицо служит возбуждающим фактором. Это объясняется тем, что на протяжении эволюции люди стремились воспроизводить потомство с теми, кого воспринимали как более здоровых особей. Симметричное лицо указывает на здоровые гены.

Кстати говоря, у умерших людей лица симметричные. Впрочем, наши лица меняются в течение всей жизни. Асимметрия лица является синонимом жизни. Человек рождается с асимметричным лицом. Его левая и правая стороны совершенно разные. Чем больше разница между ними, тем совершеннее человек в психическом, духовном и творческом плане. Именно благодаря асимметрии молодые лица такие выразительные — с яркими чертами. А с годами лицо как будто сглаживается, расплывается. Смерть человека выражает абсолютную симметрию. При этом, как считают некоторые исследователи, люди умирают вовсе не от болезней или несчастных случаев. Приходит срок, асимметрия лица выравнивается, и человек уходит из этого мира.

А если вернуться к вопросу о симметрии лица, то стоит отметить, что мы смотрим на лица целиком, а не на симметрию отдельных частей. Человек разглядывает лица слева направо. Наш мозг одновременно может оценить только одну половину лица. Поэтому различия между правой и левой сторонами мы часто не замечаем. Конечно значительные нарушения симметрии мы можем заметить, а незначительные отклонения от симметрии не вносят дисгармонию, а лишь выгодно оттеняют индивидуальность человека перед нами.

Каждый вопрос экзамена может иметь несколько ответов от разных авторов. Ответ может содержать текст, формулы, картинки. Удалить или редактировать вопрос может автор экзамена или автор ответа на экзамен.

ТИПЫ СИММЕТРИЙ

Понятия симметрии и асимметрии фигурируют в науке с древнейших времен скорее в качестве эстетического критерия, чем строго научных определений. До появления идеи симметрии математика, физика, естествознание в целом напоминали отдельные островки безнадежно изолированных друг от друга и даже противоречивых представлений, теорий, законов. Симметрия характеризует и знаменует собой эпоху синтеза, когда разрозненные фрагменты научного знания сливаются в единую, целостную картину мира. В качестве одной из основных тенденций этого процесса выступает математизация научного знания.

Симметрию принято рассматривать не только как основополагающую картину научного знания, устанавливающую внутренние связи между системами, теориями, законами и понятиями, но и относить ее к атрибутам таким же фундаментальным, как пространство и время, движение. В этом смысле симметрия определяет структуру материального мира, всех его составляющих. Симметрия обладает многоплановым и многоуровневым характером. Например, в системе физических знаний симметрия рассматривается на уровне явлений, законов, описывающих эти явления, и принципов, лежащих в основе этих законов, а в математике - при описании геометрических объектов. Симметрия может быть классифицирована как:

  • структурная;
  • геометрическая;
  • динамическая, описывающая соответственно кристаллографический, математический и физический аспекты данного понятия.

Простейшие симметрии представимы геометрически в нашем обычном трехмерном пространстве и потому наглядны. Такие симметрии связаны с геометрическими операциями, которые приводят рассматриваемое тело к совпадению с самим собой. Говорят, что симметрия проявляется в неизменности (инвариантности) тела или системы по отношению к определенной операции. Например, сфера (без каких-либо меток на ее поверхности) инвариантна относительно любого поворота. В этом проявляется ее симметричность. Сфера с меткой, например, в виде точки, совпадает сама с собой лишь при повороте, после которого в исходное положение попадает метка на ней. Наше трехмерное пространство изотропно. Это означает, что как и сфера без меток, оно совпадает с самим собой при любом повороте. Пространство неразрывно связано с материей. Поэтому наша Вселенная также изотропна. Пространство кроме того однородно. Это означает, что оно (и наша Вселенная) обладает симметрией относительно операции сдвига. Той же симметрией обладает и время.

Кроме простых (геометрических) симметрий в физике широко встречаются весьма сложные, так называемые динамические симметрии, то есть симметрии, связанные не с пространством и временем, а с определенным типом взаимодействий. Они не являются наглядными, и даже простейшие из них, например, так называемые калибровочные симметрии , затруднительно пояснить без использования довольно сложной физической теории. Калибровочным симметриям в физике также отвечают некоторые законы сохранения. Например, калибровочная симметрия электромагнитных потенциалов приводит к закону сохранения электрического заряда.

В ходе общественной практики человечество накопило много фактов, свидетельствующих как о строгой упорядоченности, равновесии между частями целого, так и о нарушениях этой упорядоченности. В этой связи можно выделить следующие пять категорий симметрии:

  • симметрия;
  • асимметрия;
  • дисимметрия;
  • антисимметрия;
  • суперсимметрия.

Асимметрия

Асимметрия - это несимметрия, т.е. такое состояние, когда симметрия отсутствует. Но еще Кант говорил, что отрицание никогда не является простым исключением или отсутствием соответствующего положительного содержания. Например, движение - это отрицание своего предыдущего состояния, изменение объекта. Движение отрицает покой, но покой не есть отсутствие движения, так как очень мало информации и эта информация ошибочна. Отсутствия покоя, как и движения, не бывает, поскольку это две стороны одной и той же сущности. Покой - это другой аспект движения.

Полного отсутствия симметрии также не бывает. Фигура, не имеющая элемента симметрии, называется асимметричной. Но, строго говоря, это не так. В случае асимметричных фигур расстройство симметрии просто доведено до конца, но не до полного отсутствия симметрии, так как эти фигуры еще характеризуются бесконечным числом осей первого порядка, которые также являются элементами симметрии.

Асимметрия связана с отсутствием у объекта всех элементов симметрии. Такой элемент неделим на части. Примером является рука человека. Асимметрия - это категория, противоположная симметрии, которая отражает существующие в объективном мире нарушения равновесия, связанные с изменением, развитием, перестройкой частей целого. Так же, как мы говорим о движении, имея в виду единство движения и покоя, так же симметрия и асимметрия - две полярные противоположности объективного мира. В реальной природе нет чистых симметрии и асимметрии. Они всегда находятся в единстве и непрерывной борьбе.

На разном уровне развития материи присутствует то симметрия (относительный порядок), то асимметрия (тенденция нарушения покоя, движение, развитие), но всегда эти две тенденции едины и их борьба абсолютна. Реальные, даже самые совершенные кристаллы далеки по своей структуре от кристаллов идеальной формы и идеальной симметрии, рассматриваемой в кристаллографии. В них имеются существенные отступления от идеальной симметрии. Они имеют и элементы асимметрии: дислокации, вакансии, оказывающие влияние на их физические свойства.

Определения симметрии и асимметрии указывают на универсальный, общий характер симметрии и асимметрии как свойств материального мира. Анализ понятия симметрии в физике и математике (за редким исключением) имеет тенденцию к абсолютизации симметрии и трактовке асимметрии как отсутствия симметрии и порядка. Антипод симметрии выступает как понятие чисто негативное, но заслуживающее внимания. Значительный интерес к асимметрии возник в середине XIX века в связи с опытами Л. Пастера по изучению и разделению стереоизомеров.

Дисимметрия

Дисимметрией называется внутренняя, или расстроенная, симметрия, т.е. отсутствие у объекта некоторых элементов симметрии. Например, у рек, текущих вдоль земных меридианов, один берег выше другого (в Северном полушарии правый берег выше левого, а в Южном - наоборот). По Пастеру, дисимметричной является та фигура, которая не совмещается простым наложением со своим зеркальным отражением. Величина симметрии дисимметричного объекта может быть сколь угодно высокой. Дисимметрию в самом широком смысле ее понимания можно было бы определить как любую форму приближения от бесконечно симметричного объекта к бесконечно асимметричному.

Антисимметрия

Антисимметрией называется противоположная симметрия, или симметрия противоположностей. Она связана с переменой знака фигуры: частицы - античастицы, выпуклость - вогнутость, черное - белое, растяжение - сжатие, вперед - назад и т.д. Это понятие можно объяснить примером с двумя парами черно-белых перчаток. Если из куска кожи, две стороны которой окрашены соответственно в белый и черный цвета, сшить две пары черно-белых перчаток, то их можно различать по признаку правизны - левизны, по цвету - черноты и белизны, иначе говоря, по признаку знакоинформатизма и некоторому другому знаку. Операция антисимметрии состоит из обыкновенных операций симметрии, сопровождаемых переменой второго признака фигуры.

Суперсимметрия

В последние десятилетия XX века стала развиваться модель суперсимметрии, которая была предложена российскими теоретиками Гельфандом и Лихтманом. Упрощенно говоря, их идея состояла в том, что, подобно тому как существуют обычные размерности пространства и времени, должны иметься экстра-размерности, которые можно измерить в так называемых числах Грассмана. Как говорил С. Хокинг, даже научные фантасты не додумались до чего-нибудь столь же странного, как размерности Грассмана. В нашей обычной арифметике, если число 4 умножить на 6, - это то же самое, что 6 умножить на 4. Но странность чисел Грассмана состоит в том, что если X умножить на Y, то это равно минус Y умножить на X. Чувствуете, как это далеко от наших классических представлений о природе и методах ее описания?

Симметрию можно рассматривать и по формам движения или так называемым операциями симметрии. Можно выделить следующие операции симметрии:

  • отражение в плоскости симметрии (отражение в зеркале);
  • поворот вокруг оси симметрии (поворотная симметрия );
  • отражение в центре симметрии (инверсия);
  • перенос (трансляция ) фигуры на расстояние;
  • винтовые повороты;
  • перестановочная симметрия.

Отражение в плоскости симметрии

Отражение - это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно "видит", но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке. Всем, наверное, с детства знаком фильм "Королевство кривых зеркал", где имена всех героев читались в обратном порядке. Зеркальную симметрию можно обнаружить повсюду: в листьях и цветах растений, архитектуре, орнаментах. Человеческое тело, если говорить лишь о наружном виде, обладает зеркальной симметрией, хотя и не вполне строгой. Более того, зеркальная симметрия присуща телам почти всех живых существ, и такое совпадение отнюдь не случайно. Важность понятия зеркальной симметрии вряд ли можно переоценить.

Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения, или просто зеркальной плоскостью. Эту плоскость можно назвать элементом симметрии, а соответствующую операцию - операцией симметрии. С трехмерными симметричными узорами мы сталкиваемся ежедневно: это многие современные жилые здания, а иногда и целые кварталы, ящики и коробки, громоздящиеся на складах, атомы вещества в кристаллическом состоянии образуют кристаллическую решетку - элемент трехмерной симметрии. Во всех этих случаях правильное расположение позволяет экономно использовать пространство и обеспечивать устойчивость.

Замечательным примером зеркальной симметрии в литературе является фраза-"перевертыш": "А роза упала на лапу Азора". В этой строке центром зеркальной симметрии является буква "н", относительно которой все остальные буквы (не учитывая пропуски между словами) расположены во взаимно противоположной очередности.

Поворотная симметрия

Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Примером может служить детская игра "вертушка" с поворотной симметрией. Во многих танцах фигуры основаны на вращательных движениях, нередко совершаемых только в одну сторону (т.е. без отражения), например, хороводы.

Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Отражение в центре симметрии

Примером объекта наивысшей симметрии, характеризующим эту операцию симметрии, является шар. Шаровые формы распространены в природе достаточно широко. Они обычны в атмосфере (капли тумана, облака), гидросфере (различные микроорганизмы), литосфере и космосе. Шаровую форму имеют споры и пыльца растений, капли воды, выпущенной в состоянии невесомости на космическом корабле. На метагалактическом уровне наиболее крупными шаровыми структурами являются галактики шаровой формы. Чем плотнее скопление галактик, тем ближе оно к шаровой форме. Звездные скопления - тоже шаровые формы.

Трансляция, или перенос фигуры на расстояние

Трансляция, или параллельный перенос фигуры на расстояние - это любой неограниченно повторяющийся узор. Она может быть одномерной, двумерной, трехмерной. Трансляция в одном и том же или противоположных направлениях образует одномерный узор. Трансляция по двум непараллельным направлениям образует двумерный узор. Паркетные полы, узоры на обоях, кружевные ленты, дорожки, вымощенные кирпичом или плитками, кристаллические фигуры образуют узоры, которые не имеют естественных границ. При изучении орнаментов, используемых в книгопечатании, были обнаружены те же элементы симметрии, что и в рисунке выложенных кафельными плитами полов. Орнаментальные бордюры связаны с музыкой. В музыке элементы симметричной конструкции включают в себя операции повторения (трансляции) и обращения (отражения). Именно эти элементы симметрии обнаруживаются и в бордюрах. Хотя в большинстве случаев музыка не отличается строгой симметрией, в основе многих музыкальных произведений лежат операции симметрии. Особенно заметны они в детских песенках, которые, видимо, поэтому так легко и запоминаются. Операции симметрии обнаруживаются в музыке средневековья и Возрождения, в музыке эпохи барокко (нередко в весьма изощренной форме). Во времена И.С. Баха, когда симметрия была важным принципом композиции, широкое распространение получила своеобразная игра в музыкальные головоломки. Одна из них заключалась в решении загадочных "канонов". Канон - это одна из форм многоголосной музыки, основанной на проведении темы, которую ведет один голос, в других голосах. Композитор предлагал какую-нибудь тему, а слушателям требовалось угадать операции симметрии, которые он намеревался использовать при повторении темы.

Природа задает головоломки как бы противоположного типа: нам предлагается завершенный канон, а мы должны отыскать правила и мотивы, лежащие в основе существующих узоров и симметрии, и наоборот, отыскивать узоры, возникающие при повторении мотива по разным правилам. Первый подход приводит к изучению структуры вещества, искусства, музыки, мышления. Второй подход ставит нас перед проблемой замысла или плана, с древних времен волнующей художников, архитекторов, музыкантов, ученых.

Винтовые повороты

Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии. Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию винтовой лестницы. Пример винтовой симметрии - расположение листьев на стебле многих растений. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

Перестановочная симметрия

Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия. Она основана на принципиальной неразличимости одинаковых микрочастиц, которые движутся не по определенным траекториям, а их положения оцениваются по вероятностным характеристикам, связанным с квадратом модуля волновой функции. Перестановочная симметрия и заключается в том, что при "перестановке" квантовых частиц не изменяются вероятностные характеристики, квадрат модуля волновой функции - величина постоянная.

Симметрия подобия

Еще один тип симметрии - симметрия подобия, связанная с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними. Примером такого рода симметрии служит матрешка. Очень широко распространена такая симметрия в живой природе. Ее демонстрируют все растущие организмы.

Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрии имеют определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии можно ввести некую структуру, учитывающую четыре фактора:

  • объект или явление, которое исследуется;
  • преобразование, по отношению к которому рассматривается симметрия;
  • Инвариантность каких-либо свойств объекта или явления, выражающая рассматриваемую симметрию. Связь симметрии физических законов с законами сохранения;
  • границы применимости различных видов симметрии.

Изучение свойств симметрии физических систем или законов требует привлечения специального математического анализа, в первую очередь представлений теории групп, наиболее развитой в настоящее время в физике твердого тела и кристаллографии.СИММЕТРИЯ В ЖИВОЙ ПРИРОДЕ

Преобладание симметрии характерно для неживой природы, хотя наблюдается асимметрия на уровне элементарных частиц (абсолютное преобладание в нашей части Вселенной частиц над античастицами). При переходе от неживой к живой природе на микроуровне возрастает роль асимметрии. Это говорит о большом значении симметрии и асимметрии в неживой и живой природе, показывает их связь с основными свойствами материального мира, со структурой материальных объектов на микро-, макро- и мегауровнях, со свойствами пространства и времени как форм существования материи. Накопленные наукой факты показывают объективный характер симметрии и асимметрии как одних из важнейших характеристик движения и структуры материи, пространства и времени, наряду с такими характеристиками, как прерывное и непрерывное, конечное и бесконечное. Развитие современного естествознания приводит к выводу, что одним из наиболее ярких проявлений закона единства и борьбы противоположностей является единство и борьба симметрии и асимметрии в процессах, имеющих место в живой и неживой природе, что симметрия и асимметрия являются парными относительными категориями.

Симметрия играет основную роль в сфере математического знания, асимметрия - в сфере биологического знания. Поэтому принцип симметрии - это единственный принцип, благодаря которому есть возможность надежно отличать вещество биогенного происхождения от вещества неживого. Парадокс: мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличать живое от неживого.

Если считать, что равновесие характеризуется состоянием покоя и симметрии, а асимметрия связана с движением и неравновесным состоянием, то понятие равновесия играет в биологии не менее важную роль, чем в физике. Всеобщий закон биологии -принцип устойчивого термодинамического равновесия живых систем, определяет специфику биологической формы движения материи. Действительно, устойчивое термодинамическое равновесие является основным принципом, который не только охватывает все уровни познания живого, но и выступает в качестве ключевого принципа постановки и решения вопроса о происхождении жизни на Земле. Понятие равновесия может быть рассмотрено не только в статическом аспекте, но и в динамическом. Симметричной считается среда, находящаяся в состоянии термодинамического равновесия, среда с высокой энтропией и максимальным беспорядком частиц. Асимметричная среда характеризуется нарушением термодинамического равновесия, низкой энтропией и высокой упорядоченностью структуры.

При рассмотрении целостного объекта картина меняется. Симметричные системы, например кристаллы, характеризуются состоянием равновесия и упорядоченности. Но асимметричные системы, которыми являются живые тела, также характеризуются равновесием и упорядоченностью с тем только различием, что в последнем случае имеем дело с динамической системой. Таким образом, устойчивое термодинамическое равновесие (или асимметрия) статической системы есть другая форма выражения устойчивого динамического равновесия, высокой упорядоченности и структурности организма на всех его уровнях. Такие системы называются асимметричными динамическими системами. Здесь нужно только указать, что структурность носит динамический характер.

Теперь уместно связать симметрию с энтропией живых организмов. Известно, что переход вещества на более высокую степень организации, упорядоченности снижает энтропию как меру хаотичности. Но наибольшей симметрией обладает как раз равновесное хаотическое состояние. Значит, уменьшение энтропии неизбежно приводит к уменьшению симметрии, т.е. увеличению асимметрии живых организмов. Чем выше уровень организации материи, тем меньше энтропия и симметрия. Для снижения энтропии живых организмов как открытых систем, обменивающихся энергией и материей (пища и отправления) с окружающей средой, необходима энергия, причем значительная, которая вырабатывается в соответствующих частях клеток (митохондриях) живых организмов за счет пищи, т.е. поглощения энергии внешней среды (Солнца и биосферы). Образно выражаясь, мы забираем от природы более организованную структурированную материю, обладающую меньшей энтропией, а отдаем ей неструктурированную материю, обладающую большей энтропией. "Питаемся", с энергетической физической точки зрения, отрицательной энтропией, а отдаем положительную энтропию. И когда в естественных условиях этот баланс нарушается, то наступает некоторое динамическое равновесие - обмен энтропией между человеком и окружающей средой стабилизируется, энтропия системы человек - окружающая среда возрастает, и живой организм гибнет (энтропия его возросла). Поэтому биологическая смерть живого организма - это рост энтропии до ее уровня в окружающей среде. Повышение же энергетического потенциала в живом организме при "нормальном" обмене энтропией с окружающей средой увеличивает химическую активность клеток и дает возможность самовоспроизведения и развития.

По мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует над симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия, например разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так, устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Вселенная есть асимметричное целое, и жизнь в таком виде, в каком она представляется, должна быть функцией асимметрии Вселенной и вытекающих отсюда следствий. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер (хиральность ). Придавая большое значение асимметрии живого вещества, Пастер считал ее именно той единственной, четко разграничивающей линией, которую в настоящее время можно провести между живой и неживой природой, т.е. тем, что отличает живое вещество от неживого. Современная наука доказала, что в живых организмах, как и в кристаллах, изменениям в строении отвечают изменения свойств.

Внимательно приглядевшись к природе, можно увидеть общее даже в самых незначительных вещах и деталях, найти проявления симметрии. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

Радиально-лучевой симметрией обладают цветы, грибы, деревья. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях плоскости симметрии ориентированы всегда вертикально. Определяя пространственную организацию живых организмов, прямой угол организует жизнь силами гравитации. Биосфера (пласт бытия живых существ) ортогональна вертикальной линии земного тяготения. Вертикальные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой гол является объективной реальностью зрительного восприятия: выделение прямого угла осуществляют структуры сетчатки в цепи нейронных связей. Зрение чутко реагирует на кривизну прямых линий, отклонения от вертикальности и горизонтальности. Прямой угол, лежащий в основе треугольника, правит пространством симметрии подобий, а подобие, как уже говорилось, - есть цель жизни. И сама природа, и первородная часть человека находятся во власти геометрии, подчинены симметрии и как сущности, и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, который отображен формой, будь то яблоко, зерно ржи или человек.

На основании этого можно сформулировать в несколько упрощенном и схематизированном виде (из двух пунктов) общий закон симметрии, ярко и повсеместно проявляющийся в природе:

1. Все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию винтовой лестницы. Пример винтовой симметрии - расположение листьев на стебле многих растений. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

2. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка.

Этому всеобщему закону из двух постулатов подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией. Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

Основой эволюции живой материи является симметрия подобия. Рассмотрим игрушечную матрешку, цветок розы или кочан капусты. Важную роль в геометрии всех этих природных тел играет подобие их сходных частей. Такие части, конечно, связаны между собой каким-то общим, еще не известным нам геометрическим законом, позволяющим выводить их друг из друга. Симметрия подобия, осуществляющаяся в пространстве и во времени, повсеместно проявляется в природе на всем, что растет. А ведь именно к растущим формам относятся бесчисленные фигуры растений, животных и кристаллов. Форма древесного ствола - коническая, сильно вытянутая. Ветви обычно располагаются вокруг ствола по винтовой линии. Это не простая винтовая линия: она постепенно сужается к вершине. Да и сами ветви уменьшаются по мере приближения к вершине дерева. Следовательно, здесь мы имеем дело с винтовой осью симметрии подобия.

Живая природа в любых ее проявлениях обнаруживает одну и ту же цель, один и тот же смысл жизни: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизни является жизнь, а доступная форма бытия заключается в существовании отдельных целостных организмов. И не только примитивные организации, но и сложные космические системы, такие как человек, демонстрируют поразительную способность буквально повторять из поколения в поколение одни и те же формы, одни и те же скульптуры, черты характера, те же жесты, манеры.

Природа обнаруживает подобие как свою глобальную генетическую программу. Ключ в изменении тоже заключается в подобии. Подобие правит живой природой в целом. Геометрическое подобие - общий принцип пространственной организации живых структур. Лист клена подобен листу клена, березы - листу березы. Геометрическое подобие пронизывает все ветви древа жизни. Какие бы метаморфозы ни претерпевала в процессе роста в дальнейшем живая клетка, принадлежащая целостному организму и выполняющая функцию его воспроизведения в новый, особенный, единичный объект бытия, она является точкой "начала", которая в итоге деления окажется преобразована в объект, подобный первоначальному. Этим объединяются все виды живых структур, по этой причине и существуют стереотипы жизни: человек, кошка, стрекоза, дождевой червь. Они бесконечно интерпретируются и варьируются механизмами деления, но остаются теми же стереотипами организации, формы и поведения.

Так же, как подобны одно другому целостные живые существа данного вида жизни, встроенные в ее непрерывно разветвляющуюся цепь, так же подобны одно другому и отдельные их члены, функционально специализированные. Можно сказать, что функция зрения в целом, как и детальная структура органов зрительного восприятия, подчинена глобальному принципу организации жизни - принципу геометрического подобия. Для живых организмов симметричное расположение частей органов тела помогает сохранять им равновесие при передвижении и функционировании, обеспечивает их жизнестойкость и лучшее приспособление к окружающему миру, что справедливо и в растительном мире. Например, ствол ели или сосны чаще всего прямой и ветви равномерно расположены относительно ствола. Дерево, развиваясь в условиях действия силы тяжести, достигает устойчивого положения. К вершине дерева ветви его становятся меньше в размерах - оно приобретает форму конуса, поскольку на нижние ветви, как и на верхние, должен падать свет. Кроме того, центр тяжести должен быть как можно ниже, от этого зависит устойчивость дерева. Законы естественного отбора и всемирного тяготения способствовали тому, что дерево не только эстетически красиво, но устроено целесообразно. Получается, что симметрия живых организмов связана с симметрией законов природы. На житейском уровне, когда мы видим проявление симметрии в живой и неживой природе, то невольно испытываем чувство удовлетворения тем всеобщим, как нам кажется, порядком, который царит в природе.

В общем смысле мы можем считать, что возникновение жизни в целом связано со спонтанным нарушением имевшейся до того в природе зеркальной симметрии. Предполагают, что возникшая асимметрия произошла скачком в результате Большого Биологического Взрыва (по аналогии с Большим Взрывом, в результате которого образовалась Вселенная) под действием радиации, температуры, электромагнитных полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс, по существу, также является процессом самоорганизации.