В последние годы у нас значительно повысился интерес к изучению симметрии. Однако обычно понятия симметрии и ин­формации рассматриваются в отрыве друг от друга. Здесь мы попытаемся обратить внимание на объективную основу их взаи­мосвязи.

Представляется, что изучение этой взаимосвязи позво­лит глубже познать природу информации и симметрии, будет со­действовать дальнейшему развитию и взаимопроникновению методов их исследования.

Правильный ответ на вопрос о том, что такое симметрия, лежит на пути анализа становления понятия симметрии в науке . Этот логико-гносеологический анализ позволяет выявить те об­щие тенденции, которые связаны с развитием данного понятия, вычленить наиболее существенные его признаки.

Развитие понятий симметрии и асимметрии неразрывно свя­зано с понятиями однородности и неоднородности, изотропности и анизотропности, равномерности и неравномерности, однообра­зия и разнообразия, порядка и беспорядка, покоя и движения, со­хранения и изменения, равенства и неравенства и т. д. Г. В. Вульф отмечает, что «симметрия состоит прежде всего в однообразии частей фигур и в однообразном расположении этих частей в фи­гуре. Это однообразие мы обнаруживаем, перемещая в простран­стве часть симметричной фигуры и замечая, что при одинаковых перемещениях эта часть периодически совпадает с другими такими же частями фигуры» . О повторении однообразия, как характерной черте симметрии, говорят также К. Л. Вольф и Р. Вольф . В. С. Готт увязывает понятие симметрии с поряд­ком, пропорциональностью, соразмерностью, равновесием, ус­тойчивостью, Н. П. Депенчук - с однородностью, В. И. Сви- дерский - с равномерностью и т. д.

А. В. Шубников в ряде работ понятие симметрии развивает

на основе понятия равенства ****** .

Наиболее простым является равенство совместимое (кон­груэнтность). Смысл совместимого равенства легко понять, если рассмотреть зеркальное отображение шара. Шар, отраженный в зеркало, не отличим от своего оригинала - отображение и ориги­нал можно мысленно совместить.

Однако зеркальное отображение ряда предметов можно от­личить от оригинала. Например, если мы будем двигать правой рукой, то наше изображение в зеркале будет двигать левой рукой. В этом случае можно говорить о равенстве зеркальном (зеркаль­ности).

Исторически понятие симметрии возникло на основе ра­венства зеркального. Затем появилось уже синтетическое, родо­вое понятие равенства, включающее в себя свойства зеркально - сти и совместимости.

В геометрии оно основано на метрическом равенстве: фи­гуры считаются равными, если расстояние между произвольны­ми точками одной фигуры равны расстояниям между соответст­вующими точками другой фигуры.

Синтетическое понятие равенства, являясь единством упо­мянутых противоположностей (совместимости и зеркальности), носит двойственный характер. И эта двойственность понятия ра­венства в учении о симметрии, отмечает А. В. Шубников, вполне оправдана опытом.

Дальнейшее развитие понятия симметрии связано с вклю­чением и других видов равенств. Так, А. В. Шубников и другие ученые добавляют еще два вида равенства: антиравенство со­вместимое и антиравенство зеркальное . В результате учение симметрии стало базироваться на еще более общем понятии равенства, объем которого увеличился, а содержание сущест­венно изменилось. Представления о симметрии все больше проникают в различные науки - физику, химию, биологию, причем они не обязательно связаны с геометрическими свойст­вами объектов.

Современная наука имеет дело с равенством, сохранением объектов, их свойств, связей, отношений, функций, законов и т. д. И в каждом таком случае могут рассматриваться специ­альные случаи симметрии, соответствующие определенным равенствам.

Важно подчеркнуть, что эволюция понятий симметрии в определенном отношении основана на расширении понятия ра­венства как в геометрическом, так и в других аспектах. Можно поэтому предположить, что наиболее общее понятие симметрии связано и с наиболее общим, абстрактным понятием равенства, т. е. с тождеством как философской категорией.

Наличие некоторого тождества, инварианта есть необходи­мое, но еще не достаточное условие симметрии. Тождество лишь тогда выступает в роли симметрии, когда оно неотделимо от со­ответствующих преобразований, сохраняющих данное тождест­во. Например, чтобы доказать, что круг симметричен относи­тельно линии, лежащей в плоскости круга и проходящей через его центр, необходимо мысленно совместить одну половину кру­га с другой. Совмещение и есть определенное изменение, в ре­зультате которого сохраняется тождество (равенство двух поло­винок круга). Именно тот или иной тип изменения (вращение, сдвиг и т. д.), в результате которого появляются инварианты, то­ждества, и определяет так называемую группу симметрии (если пользоваться принятыми теоретико-групповыми понятиями). Можно предполагать, что различным видам инвариантов, тож­деств, по-видимому, взаимнооднозначно соответствуют опреде­ленные изменения, в частности группы преобразований, опреде­ляющих операцию симметрии.

Без того или иного преобразования симметрии не сущест­вует. На это вполне определенно указывали исследователи сим­метрии Г. В. Вульф, А В. Шубников, Ю. А. Урманцев и др. уче­ные. Причем в случае наиболее общего, философского понима­ния симметрии преобразование можно рассматривать как изме­нение вообще.

Полная совокупность нетождественных между собой опе­раций симметрии образует группу. Неэквивалентные, нетожде­ственные операции называются элементами группы, или элемен­тами симметрии. Нет таких объектов, которые бы не обладали ни одним элементом симметрии, так как любые объекты (или их части) всегда могут быть тождественными в отношении некото­рых изменений (например, при всех своих изменениях объект генетически тождествен самому себе).

Любое конкретное тождество, связанное с симметрией, не­обходимо дополняется изменением, движением, а значит, и раз­личием. Связь симметрии с различием выступает в двух аспек­тах: во-первых, любой инвариант (тождество) внутри себя со­держит неинвариантные, различные компоненты и, во-вторых, любой инвариант (внешне) связан с соответствующим преобра­зованием, изменением.

Из вышеизложенного вытекает связь тождества и различия как существенных и самых общих признаков, входящих в содер­жание понятия симметрии. Это позволяет дать общее определе­ние этому понятию на базе понятий тождества и различия. Сим­метрия - это категория, обозначающая процесс существования и становления тождественных моментов (в определенных услови­ях и в определенных отношениях) между различными и проти­воположными состояниями явлений мира . Понятие симметрии на основе единства тождества и различия, сохранения и измене­ния развивается и в монографии Н. Ф. Овчинникова «Принципы сохранения».

Однако Ю. А. Урманцев в рецензии на книгу Н. Ф. Овчин­никова обратил внимание на то, что в этом случае остается не­выясненным, чем же симметрия отличается от единства сохра­нения и изменения (тождества и различия), т. е. не указывается видовое отличие симметрии от сохранения и изменения. Ю. А. Урманцев дает иное общее определение симметрии. Сим­метрия - это особого рода инвариантности (виды сохранения) относительно соответствующих групп преобразований (реаль­ных и/или мыслимых изменений, обладающих теоретико­групповыми свойствами) .

В этом определении в качестве видового признака симмет­рии выделяются теоретико-групповые свойства. Действительно, теоретико-групповые свойства являются, с одной стороны, весь­ма общими, а с другой стороны, достаточно частными, чтобы выделить симметрию из всех других видов единства тождества и различия. Однако возникает вопрос: все ли свойства симметрии определяются теоретико-групповыми свойствами? И всегда ли симметрия будет использовать лишь один математический аппа­рат - теорию групп?

Нам представляется, что свойств симметрии бесконечно много: симметрия так же неисчерпаема, как и электрон, и ин­формация, и т. п., как любой объект и как любое свойство дви­жущейся материи. Поэтому выявленные в настоящее время теоретико-групповые свойства симметрии вряд ли являются самыми общими видовыми признаками симметрии. Эти свой­ства характеризуют лишь наиболее распространенное совре­менное понимание симметрии, и, надо полагать, в дальнейшем человеческое познание обнаружит еще более общие свойства симметрии, нежели те, которые изучаются теорией групп. По­этому, учитывая дальнейшую возможную эволюцию понятия симметрии, нужно признать, что границы между понятием симметрии и единством тождества и различия оказываются в общем не столь уж определенными. Эти границы достаточно четки, если мы имеем дело с данной математической теорией симметрии (теорией групп), а само понятие симметрии рас­сматриваем как «застывшее» в этой теории. Но эти границы уже неопределенны, если рассматривать возможную эволюцию понятия симметрии, если заранее не исключать того, что уче­ние о симметрии будет использовать не только теорию групп, но и другой математический аппарат. Ситуация здесь напоми­нает положение с теорией информации. Подобно тому как по­следняя не может использовать только теорию вероятностей, так и учение о симметрии не будет ограничиваться лишь тео­рией групп.

A. Д. Урсул. Природа информации

Из сказанного вытекает, что приведенные определения

B. С. Готта, А. Ф. Перетурина и близкое к нему определение Н. Ф. Овчинникова, будучи достаточно широкими, позволяют понятию симметрии выйти и за обычные, теоретико-групповые, рамки, схватывают важные свойства симметрии. Подобное ши­рокое определение симметрии методологически эффективно, по­скольку, как мы покажем дальше, в этом случае можно получить некоторые новые результаты.

Но прежде всего несколько слов о категории, которая яв­ляется полярной категории симметрии, т е. об асимметрии. Под асимметричными объектами можно было бы понимать объек­ты, в которых полностью отсутствовали бы элементы симмет­рии. Однако в действительности, как мы отмечали выше, по­добных объектов не существует, так как всегда обнаруживается

такой элемент симметрии, как единичный элемент группы. В наличии единичного элемента группы отражается тот простой факт, что объект как таковой существует, что он тождествен самому себе. Как бы ни были различны объекты, всегда между ними обнаружится тождество (относительное равенство).

Под полностью асимметричным можно подразумевать объ­ект с бесконечным числом асимметризующих признаков. Но любой конечный объект на данном уровне не является беско­нечно асимметричным, а представляет собой или объект с мак­симальной симметрией, или объект с минимальной симметрией (или нечто промежуточное между ними). Именно минимальная симметрия и есть реально существующая асимметрия конечных объектов.

Объекты, которые не являются максимально симметричны­ми или минимально симметричными (асимметричными), будем называть диссимметричными. Таким образом, симметрия и асимметрия есть частные случаи (абстракции) диссимметрии. В самом деле, в мире не существует раздельно ни абсолютно сим­метричных, ни абсолютно асимметричных объектов. Следова-

тельно, в любом объекте всегда существует единство симметрии и асимметрии, т. е. диссимметрия.

По аналогии с элементами симметрии можно говорить и об элементах диссимметрии .

Взаимосвязь понятий симметрии и информации становит­ся очевидной, если сравнить их наиболее широкие определения. Предельное определение симметрии основано на связи с кате­гориями тождества и различия, понятие информации также оп­ределялось нами именно на основе этих же категорий. В из­вестном смысле категории симметрии и информации противо­положны. Ведь увеличение в объекте симметризующих призна­ков должно вести к уменьшению количества информации. И на­оборот, уменьшение в объекте числа элементов симметрии все­гда должно быть связано с увеличением количества структур­ной информации.

При этом необходимо сделать оговорку, что изменение чис­ла элементов симметрии и количества информации должно рас­сматриваться в одном и том же отношении. Если этого не учиты­вать, то легко прийти к противоположному выводу. Как ранее было отмечено, тождество, сохранение симметрии в одном от­ношении связано с различием, изменением в другом отношении, поэтому увеличение тождества (в плане инвариантности) сопро­вождается увеличением различий (скажем, изменений, обла­дающих теоретико-групповыми свойствами).

Рассмотрим подробнее различные области действительно - сти, в которых можно проследить взаимосвязь симметрии и ин­формации.

Известно, что в области неживой природы происходят как процессы симметризации и асимметризации (а лучше сказать, диссимметризации), так и изменение количества связанной в структуре косных систем информации. Нами уже отмечалось, что увеличение структурной информации неживых объектов вы­текает из действия термодинамических закономерностей (при этом рассматривались лишь открытые системы). Число спосо­бов, которыми можно осуществить распределение молекул по объему, связано с термодинамической вероятностью, причем наиболее вероятное распределение молекул - равномерное. Это состояние характеризуется максимальной энтропией (минималь­ным количеством структурной информации). Переход от нерав­номерного распределения к равномерному означает уменьшение различий в определенных аспектах, а значит, и увеличение сим­метрии именно в этих же отношениях.

Рассмотрим теперь процесс кристаллизации, происходящий под действием внесенных в жидкость кристаллов или при воз­никновении центров кристаллизации в соответствующих услови­ях. Кристаллизация характеризуется диссимметризацией жидко­сти, если возникающий кристалл по сравнению с жидкостью об­ладает меньшим количеством элементов симметрии. Сам тип диссимметризации существенно зависит от внешних условий (от температуры, давления, силы тяжести и т. д.). Например, для од­ного и того же вещества - углерода в зависимости от условий возможны различные типы симметрии кристаллов. Но переход от жидкости к кристаллу связан с увеличением информационного содержания системы . Следовательно, в данном случае процессы диссимметризации и увеличения количества информации отра­жают взаимосвязанные стороны процесса кристаллизации.

В живой природе прогрессивная эволюция также связана с накоплением информации, если рассматривать ее с точки зрения изменения внутреннего разнообразия. Этот процесс в данном отношении может быть охарактеризован и как имеющий тенден­цию к асимметризации . Ив области биологических явлений связь симметрии и информации имеет свою основу в изменении степени тождества и различия.

Взаимосвязь симметрии и информации начинает изучаться и в науках об обществе. Так, в настоящее время учение о сим­метрии и асимметрии используется в психологии и педагогике . Как известно, в этих науках применяются теоретико-информа­ционные методы. Например, в психологии изучается «пропуск­ная способность» зрения, слуха, вкуса (проводятся опыты с раз­личением интенсивности тонов, яркости, оттенков, концентра­ции растворов, цветов зрительных раздражителей и т. д.), «про­пускная способность» и принципы переработки информации мозгом, процессы восприятия образов, хранение информации в памяти и т. д. По-видимому, именно в психологии появились первые работы, в которых сознательно использовалась связь симметрии и информации. Упомянутая связь служила исходным пунктом для изучения памяти известным американским психо­логом Ф. Эттнивом (исследовались представления о предметах в различной степени симметричных). Как отмечает Ф. Эттнив, «эффекты симметрии ассоциировались с уменьшением количе - ства информации» .

К сожалению, проблема симметрии в науках об обществе исследуется еще недостаточно. Однако это не может служить основанием для вывода о том, что в обществе нет явлений сим­метрии и асимметрии. В ряде работ по симметрии приводится достаточно примеров использования явлений симметрии и асимметрии в технике, архитектуре, прикладном искусстве

(бордюры, ленты, орнаменты и т. п.) и других сферах человече-

ской деятельности.

Рассмотрим кратко проблему связи симметрии и информа­ции в познании. Принцип симметрии (и его частный случай - принцип инвариантности как симметрии законов) - необходимое условие процесса познания физических явлений. Например, за­коны классической механики связаны с симметрией относитель­но преобразований Галилея, законы релятивистской механики - с симметрией относительно преобразований Лоренца и т. д. Принцип симметрии, по-видимому, является необходимым со­ставляющим всякого познания, хотя и не во всех науках он полу­чил математическое выражение.

В философском отношении важно выявить именно всеобщ­ность принципа симметрии (а если говорить точнее, - принципа диссимметрии) как принципа познания и предсказать тем самым его появление в тех науках, где он в явном, осознанном виде еще не используется. В плане доказательства этого положения заме­тим, что в определенном отношении познание есть выявление законов исследуемых явлений. Но любой закон есть некоторое конкретное тождество в различном. Выделение законов в явле­ниях, тождественного в различном, общего в единичных объек­тах и т. п. есть в определенном аспекте также выявление сим­метричного в диссимметричном.

Вместе с тем этот же процесс есть процесс диссимметри- зации, если рассматривать отношение новых законов, более содержательных, к старым, менее содержательным. Естествен­но, что данное уже познанное единство тождества и различия не учитывает, не выявляет всего разнообразия, различия явлений, а потому в процессе познания заменяется более глубоким един­ством тождества и различия, т. е. тождеством, включающим в себе все новые и новые различия. Стремление выразить в фор­мах научного познания бесконечное различие явлений приводит к процессу диссимметризации, к разработке более совершен­ных теорий, к формулированию качественно новых законов. И хотя самое выражение законов связано с симметрией, во все более общих теориях происходит увеличение элементов дис- симметрии.

Появление, например, новых типов симметрии в физике связано с выявлением диссимметрии во внутренней структуре элементарных объектов .

Благодаря выявлению элементов диссимметрии (и выпа­дению элементов симметрии) в теоретических моделях реаль­ных объектов наше познание действительности становит­ся глубже, полнее, адекватнее. Полностью адекватное отраже­ние должно было бы охватить все реальное разнообразие, которое во всех отношениях бесконечно. Процесс познания связан со стремлением к этому абсолюту - бесконечному раз­нообразию.

Таким образом, можно сделать вывод, что в процессе по­знания действуют одновременно две противоположные, соот­носительные тенденции - симметризация и дисеимметризация.

Любой закон, выявленный в процессе познания, есть отра­жение разнообразия и в то же время его ограничение. Он ограни­чивает разнообразие в том смысле, что показывает, какие возмож­ности разрешены, а какие запрещены. Так, из релятивистской ме­ханики известно, что возможны не все скорости, а лишь скорости, не превышающие скорость света, что существуют ограничения

взаимосвязи между массой и энергией, и т. д. В гносеологическом аспекте ограничение разнообразия сказывается в выделении из бесконечного разнообразия лишь некоторого его количества. Дру­гими словами, субъект в процессе познания воспринимает не все разнообразие, а лишь часть его, так как приходится ограничивать­ся конечными пространственно-временными параметрами, лишь определенными связями объекта со средой и т. д.

Подобное ограничение разнообразия соответствует сим­метризации в процессе познания, поскольку из явления выделя­ется нечто относительно тождественное, т. е. закон. Вместе с тем переход в процессе познания от законов низшего порядка к все более адекватным законам (диссимметризация) означает расши­рение разнообразия. А это есть не что иное, как накопление (рост количества) информации.

Анализируя понятия симметрии и асимметрии, можно сде­лать вывод, что они отражают всеобщие свойства материи и, сле­довательно, постепенно становятся философскими категориями (В. С. Готт, Ю. А. Урманцев, Н. Ф. Овчинников, А. Г. Спиркин и др.). Наряду с этим высказываются возражения против этой точки зрения. Так, В. И. Свидерский полагает, что возведение понятий симметрии и асимметрии в ранг философских катего­рий неоправданно, так как не доказана их применимость, в ча­стности, в сфере общественных явлений. Это не совсем так. Во-первых, понятия симметрии и асимметрии, как отмечалось, уже начинают использоваться и при изучении общественных явлений. Во-вторых, применимость понятий симметрии и асимметрии на общественной ступени развития следует и из весьма общих установленных выше положений. Ведь тождест­во и различие, на которых основано самое общее понятие сим­метрии, имеют место и в сфере общественных явлений.

В. И. Свидерский отмечает, что свойства симметрии связаны с однородностью, одинаковостью, а асимметрии - с неоднород-

ностью, неодинаковостью. Но однородность, одинаковость, как и их противоположности, также присущи общественным явлениям.

Теория информации уже внедряется в общественные нау­ки - психологию, лингвистику, экономику, юриспруденцию, пе­дагогику и т. д. Следовательно, здесь может быть применено и учение о симметрии. Объективная причина слабого использова­ния понятия симметрии (и асимметрии) и связанного с ними ма­тематического аппарата в общественных науках сопряжена, как нам думается, с еще слабым применением в них математики (по­скольку общественные явления сложнее биологических, а тем более химических и физических).

Поскольку симметрия, асимметрия и информация являют­ся определенными сторонами тождества и различия, а послед­ние неразрывно связаны, можно говорить и о взаимосвязи, взаимопроникновении симметрии, асимметрии и информации. Представляется, что эта взаимосвязь и взаимопроникновение есть одна из сторон единства всеобщих свойств материи (атри­бутов) .

Связь информации и симметрии (асимметрии) приводит к выводу о том, что явления симметризации, диссимметризации и процессы изменения количества информации в различных областях действительности, возможно, имеют одинаковые спе­цифические особенности. Мы уже упоминали о предполагае­мых отличиях информационных процессов в неживой и живой природе и общественных явлениях. В настоящее время иссле­дуется, в частности, реальное отличие проявлений симметрии и асимметрии в мире элементарных частиц, кристаллов и жи­вого вещества. Например, уже выявлена специфика типов сим­метрии живого вещества, что привело даже к возникновению особой науки - биосимметрики (Ю. А. Урманцев и др.). Можно ожидать, что выявление особенностей проявлений симметрии должно указывать на специфику информационных закономер­ностей, и наоборот. Сказанное, конечно, не означает, что не существует общих закономерностей проявления симметрии (асимметрии) и информационных процессов во всех областях действительности.

Взаимосвязь и взаимопроникновение симметрии (асиммет­рии) и информации делают возможным использование общих методов их исследования. Сейчас наиболее распространенным математическим методом исследования симметрии является тео­рия групп. Однако уже в рамках развития теории диссимметрии был сделан вывод о том, что «теория групп... не может полно­стью отразить характер днссимметрии материальных объектов и особенно асимметрических» . Возникла проблема исследования диссимметрии более точными математическими методами. Ю. А. Урманцевым был предложен метод, основанный на ис­пользовании теории конечных множеств (комбинаторики). Это свидетельствует о возможности конкретного использования и методов теории информации, в частности комбинаторного подхода. Более общие соображения, изложенные в этом пара­графе, свидетельствуют о возможности внедрения и статисти­ческой теории информации, и невероятностных подходов к изучению диссимметрии (симметрии и асимметрии). Можно также ожидать и еще более широкого использования методов теории групп в теории информации, и в особенности в теории кодирования.

В заключение остановимся на понятии симметрии в опре­делении понятия вероятности. В первой главе уже упомина­лось о классическом подходе к определению понятия вероят­ности. Считается, что, устанавливая число равновозможных (равновероятных) событий, исходят из соображений сим­метрии, скажем, симметрии двух сторон монеты, симметрии грани куба и т. д. Симметрия в этом случае выступает как не­что первичное по отношению к вероятности, как нечто вполне очевидное, интуитивно данное. Когда речь идет о симметрии монеты, игральной кости и т. д., то можно, конечно, иметь в виду, что стороны монеты, грани кости не отличаются друг от друга и могут быть совмещены друг с другом в результате оп­ределенных преобразований. Но они тождественны лишь в не­котором отношении, в других же отношениях они различны (например, всегда различно их пространственное положение). Поэтому, несмотря на конкретное тождество, мы все же можем отличить одну сторону монеты от другой, одну грань играль­ной кости от другой. Определяя далее вероятность выпадения определенной грани (стороны монеты) мы обращаем внимание уже на количество этих граней, сторон, то есть опять-таки на их разнообразие.

Однако это разнообразие не рассматривается как разнооб­разие преобразований, соответствующих данному типу симмет­рии. Если бы здесь были важны преобразования, то применялась бы теория групп для определения вероятности. В действитель­ности же вероятности определяются не из теоретико-групповых соображений, а из соображений теории конечных множеств (комбинаторики). Следовательно, хотя в теории вероятностей ис­ходят из соображений симметрии, но они не являются жестко привязанными к теории групп.

Понятие симметрии может быть использовано, конечно, для рассмотрения не только классического, но и статистическо­го подхода к определению понятия вероятности. Подобно тому как в физике нарушение данного типа симметрии обычно ведет к поиску других, более общих групп симметрии, и в теории ве­роятностей нарушение условий симметрии классического под­хода привело к возникновению нового - частотного (статисти­ческого) подхода. Здесь имеется в виду нарушение симметрии, выражающей равновозможность (равновероятность) событий, в результате, например, действия возмущений в процессе ис­пытаний, неравномерного распределения материала игральной кости и т. д.

Рассмотренный пример связи симметрии и вероятности еще раз подтверждает взаимосвязь свойств симметрии и ин­формации, вытекающую из взаимоотношения тождества и раз­личия, и показывает возможность применения теоретико­вероятностных и теоретико-информационных методов в уче­нии о симметрии.

Симметрия и асимметрия

Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде всего в природе две тенденции: наличие строгой упорядоченности, соразмерности, равновесия и их нарушения. Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на деревьях, лепестков, цветов, семян растений и отобразили эту упорядоченность в своей практической деятельности, мышлении и искусстве. Понятие «симметрия» употреблялось в двух значениях. В одном смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие. Греческое слово, означает однородность, соразмерность, пропорциональность, гармонию. Познавая качественное многообразие проявлений порядка и гармонии в природе, мыслители древности, особенно греческие философы, пришли к выводу о необходимости выразить симметрию и в количественных отношениях, при помощи геометрических построений и чисел. Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учении пифагорейцев симметрия, симметричные фигуры и тела (круг и шар) имели мистическое значение, являлись воплощением совершенства. Следует обратить внимание и на учение Пифагора о гармонии. Известно, что если уменьшить длину струны или флейты вдвое, тон повысится на одну октаву. Уменьшению в отношении 3:2 и 4:3 будут соответствовать интервалы квинта и кварта.

То, что важнейшие гармонические интервалы получаются при помощи отношений чисел 1, 2 и 3, 4, пифагорейцы использовали для своих мистических выводов о том, что «все есть число» или «все упорядочивается в соответствии с числами». Сами эти числа 1, 2, 3, 4 составляли знаменитую «тетраду». Очень древнее изречение гласит: «Что есть оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма сирен». Геометрическим образом тетрады является треугольник из десяти точек, основание которого составляют 4 точки плюс 3, плюс 2, а одна находится в центре. В геометрии, механике - всюду, где мы имеем дело с отрезками прямых, мы встречаемся и с понятиями меры, сравнения и соотношения. Эти понятия являются отражением реальных отношений между предметами в объективном мире. Чтобы пояснить это положение, можно выбрать на данной прямой АВ любую третью точку С.

Таким образом, совершается переход от единства к двойственности, и мысль этим самым приводит к понятию пропорции. Следует подчеркнуть, что соотношение есть количественное сравнение двух однородных величин, или число, выражающее это сравнение. Пропорция есть результат согласования или равноценности двух или нескольких соотношений. Следовательно, необходимо наличие не менее трех величин (в рассматриваемом случае прямая и два ее отрезка) для определения пропорции. Деление данного отрезка прямой АВ путем выбора третьей точки С, находящейся между А и В, дает возможность построить шесть различных возможных соотношений: a:b; a:c; b:a; b:c; c:a; c:b при условии отметки соответствующей длины отрезков прямой буквами «а», «b», «с» и применения к данной длине любой системы мер. Проанализировав возможные случаи деления отрезка АВ на две части, мы приходим к выводу, что отрезок можно делить на:

1) две симметрические части a=b; 2) a:b = c:a

Так как c = a + b, то a/b = (a + b)/a;

((a + b)/a очевидно, превосходит единицу); дело обстоит так же и в отношении а/b; значит, «а» превосходит «b» и точка «С» стоит ближе к В, чем к A.

Это соотношение a:b = c:a или AC/CB = AB/AC может быть выражено следующим образом: длина АВ была разделена на две неравные части таким образом, что большая из ее частей относится к меньшей, как длина всего отрезка АВ относится к его большей части:

3) a/b = b/c равноценно a/b = b/(a + b).

В этом случае «b» больше «а»; точка С ближе к А, чем к В, но отношения те же, что и во втором случае, Рассмотрим равенство a/b = c/a = (a + b)/a, при котором отрезок АС длиннее отрезка СВ. Это общее простейшее деление отрезка прямой АВ, являющееся логическим выражением принципа наименьшего действия. Между точками А и В имеется лишь одна точка C, поставленная таким образом, чтобы длина отрезков АВ, СВ и АС соответствовала принципу простейшего деления; следовательно, существует только одно числовое выражение, соответствующее отношению a/b. Эту же задачу можно решить путем геометрического построения, известного как деление прямой на две неравные части таким образом, чтобы соотношение меньшей и большей частей равнялось соотношению большей части и суммы длин обеих частей, а это и соответствует формуле a/b = (a + b)/a, которую называют «божественная пропорция», «золотое сечение» т.д.

Изучение объективной реальности и задачи практики привели к возникновению наряду с понятием симметрия и понятия асимметрии, которое нашло одно из своих первых количественных выражений в так называемом золотом делении, или золотой пропорции. Пифагор выразил «золотою пропорцию» соотношением:

А:Н = R:B, где Н и R суть гармоническая и арифметическая средние между величинами А и В.

R = (A + B)/2; H = 2AB/ (A + B).

Кеплер первый обращает внимание на значение этой пропорции в ботанике и называет ее sectio divina - «божественное сечение»; Леонардо да Винчи называет эту пропорцию «золотое сечение». Проведем некоторые преобразования вышеприведенной формулы.

Прежде всего разделим на «b» оба элемента второго члена этого равенства и обозначим a/b = x; тогда a/b = (a/b + 1)/(a/b), или x2 = x + 1

Отсюда x2 - x - 1= 0

Корнями этого уравнения являются х = 1 (5/2 = 1,61803398).

Это число обладает характернейшими особенностями. Обозначим это число буквой Ф.

Ф = ((5 + 1)/2 = 1,618…; 1/Ф = ((5 - 1) /2 = 0,618…;

Ф2 = - ((5 + 3)/2 = 2,618…

Оказывается, что геометрическая прогрессия, в основании которой лежит Ф, обладает следующей особенностью: любой член этого ряда равен сумме двух предшествующих ему членов. Ряд 1, Ф, Ф2, Ф3,…, Фn является одновременно и мультипликативным, и аддитивным, т.е. одновременно причастен природе геометрической прогрессии и арифметического ряда.

Следует обратить внимание на то, что формула. Ф = ((5 + 1)/2 выражает простейшее асимметрическое деление прямой АВ. С этой точки зрения данное отношение является «логической» инвариантной, проистекающей из счислений отношений и групп. Пеано, Бертран Рассел и Кутюра показали, что исходя из принципа тождественности можно вывести из этих отношений и групп принципы чистой математики.

Любопытно, что древние архитекторы уже пользовались приемом асимметричного деления. Так, например, стороны пирамиды Фараона Джосера относятся друг к другу, как 2:5, а ее высота относится к большей стороне, как 1:2. Интересно, что на сохранившемся до наших дней изображении древнеегипетского зодчего Хисеры (жил свыше 4,5 тыс. лет тому назад) имеются две палки - очевидно, эталоны меры. Их длины относятся, как 1:1/5, т.е. как меньшая сторона прямоугольного треугольника к гипотенузе.

Архитектор И. Шевелев рассматривая пропорции древнерусской архитектуры (церковь Покрова на Нерли и храм Вознесения в Коломенском) привел убедительные данные, свидетельствующие о том, что русские архитекторы также пользовались пропорциями, связанными с «золотым сечением».

Пропорция «золотого сечения» дает возможность архитекторам находить наиболее удачные, красивые, гармоничные сечения целого и частей, единство разнообразного; в конечном счете они пользуются сочетанием принципов симметрии и асимметрии, Если в период Возрождения внимание ученых и преподавателей искусства было приковано к «золотому сечению», то впоследствии оно постепенно падало, и только в 1855 г. немецкий ученый Цейзинг вновь ввел его в обиход в своем труде «Эстетические исследования». В нем он писал, что для того, чтобы целое, разделенное на две неравные части, казалось прекрасным с точки зрения формы, между меньшей и большей частями должно быть то же отношение, что и между большей частью и целым,

Применение «золотого сечения» есть лишь частный случай общего закона периодической повторяемости одной и той же пропорции в совокупности, в деталях целого, Рассмотрение вопроса о «золотом сечении» приводит к выводу, что здесь мы имеем дело с отображением средствами математики (при помощи понятий симметрии и асимметрии) существующей в природе пропорциональности.

Все вышеизложенное позволяет утверждать, что взгляды Пифагора и его школы содержали наряду с мистикой и идеализмом и некоторые плодотворные математические и естественнонаучные идеи. Впоследствии учение пифагорейцев получило развитие в философии крупнейшего представителя античного идеализма Платона.

Мир, утверждал Платон, состоит из правильных многоугольников, обладающих идеальной симметрией. Физические тела - это идеальные математические сущности, составленные из треугольников, упорядоченные демиургом.

Отдельные интересные суждения о симметрии и гармонии мы встречаем в работах многих философов и естествоиспытателей (прежде всего Леонардо да Винчи, Лейбница, Декарта, Спенсера, Гегеля и других). В значительной степени прав немецкий ученый Венцлав Бодо, когда пишет, что «философия, за исключением некоторых высказываний, не пыталась дать объяснение этой интересной стороне природы. На протяжении веков спорили о причинности, детерминизме и других вопросах, не видя взаимосвязи их с проблематикой симметрии или не стремясь к этому. Симметрия, по-видимому, прибавлялась только как искусственная роскошь к довольно узкому готовому миру вещей с их свойствами и силовыми взаимодействиями, их движениями и изменениями».

Об определении категорий симметрии и асимметрии В настоящее время в науке преобладают определения указанных категорий на основе перечисления их важнейших признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, пропорциональности, гармоничности и т.д. Асимметрия же обычно определяется как отсутствие признаков симметрии, как беспорядок, несоразмерность, неоднородность и т.д. Все признаки симметрии в такого рода ее определениях, естественно, рассматриваются как равноправные, одинаково существенные, и в отдельных конкретных случаях при установлении симметрии какого-либо явления можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, а в других - соразмерность и т.д. Очевидно, что по мере развития нашего познания к определению симметрии можно прибавлять все новые и новые признаки. Поэтому определения симметрии такого рода всегда неполны. То же можно сказать и о существующих определениях асимметрии. Очевидно, что в определениях понятий, сформулированных по принципу перечисления свойств объектов, ими отражаемых, отсутствует связь между перечисленными свойствами объектов. Такие свойства симметрии, как, например, однородность и соразмерность, друг из друга не следуют. Сказанное, однако, не означает бесполезности вышеуказанных определений симметрии и асимметрии. Наоборот, они весьма полезны и необходимы. Без них нельзя дать и более общее определение категорий симметрии и асимметрии. На основе подобных эмпирических определений симметрии и асимметрии развиваются определения более общего характера, сущность которых - в соотнесении частных признаков симметрии и асимметрии к определенным всеобщим свойствам движущейся материи. «В симметрии, - пишет А.В. Шубников, - отражается та сторона явлений, которая соответствует покою, а в дисимметрии (по нашей терминологии в асимметрии) та их сторона, которая отвечает движению» Таким образом, все свойства симметрии рассматриваются как проявления состояний покоя, а все свойства асимметрии - как проявления состояний движения. Если признать это правильным, то очевидно, что соотношение симметрии и асимметрии в таком случае таково же, как соотношение покоя и движения. Мы, следовательно, можем сказать, что симметрия относительна, а асимметрия абсолютна. Симметрию мы должны, далее, рассматривать как частный случай асимметрии, как ее момент. Поэтому ни о каком равноправии симметрии и асимметрии и речи быть не может. Взаимоотношение симметрии и асимметрии здесь явно асимметрично. Но вряд ли можно с таких позиций правильно понять многие свойства симметрии и асимметрии. Почему, например, такую симметрию пространства, как его однородность, должны рассматривать как соответствующую покою? Почему мы должны искать симметрию только среди покоящихся явлений? Разве нет симметрии во взаимодействии и движении явлений мира?

Мысль о связи между понятиями симметрии и асимметрии и соответственно между понятиями покоя и движения точнее можно выразить как единство покоя и движения. Понятие симметрии раскрывает момент покоя, равновесия в состояниях движения, а понятие асимметрии - момент движения, изменения в состояниях покоя, равновесия. Но и такой формулировкой не охватывают основные признаки симметрии и асимметрии. Например, симметрия частиц и античастиц и их асимметрия в известной нам области мира не могут быть истолкованы исходя из понятий о единстве покоя и движения. Вряд ли существование частиц и античастиц можно рассматривать как момент покоя в каком-то движении материи, а несоответствие числа частиц числу античастиц в известной нам области мира - как моменты движения в каком-то состоянии покоя. Можно сделать вывод, что в идее А.В. Шубникова о соотнесении симметрии с покоем, а асимметрии - с движением заключается только момент истины.

Хорошо известно, что понятие симметрии охватывает и такие стороны существования явлений, которые ничего общего с покоем не имеют. Например, регулярная повторяемость тех или иных состояний движения, их определенная периодичность является одним из признаков симметрии, но к покою, она никакого отношения не имеет. Такой вид асимметрии, как анизотропность пространства, из свойств движения, конечно, выведена быть не может. Тем не менее многие свойства симметрии и асимметрии соответственно связаны с покоем и движением.

К общим определениям понятий симметрии и асимметрии можно подойти исходя из следующих положений: во-первых, нужно признать, что эти понятия относятся ко всем известным нам атрибутам материи, что они отражают взаимные связи между ними; во-вторых, эти понятия основываются на диалектике соотношения тождества и различия, существующей как между атрибутами материи, так и между их состояниями и признаками; в-третьих, нужно иметь в виду, что единство симметрии и асимметрии представляет собой одну из форм проявления закона единства и взаимоисключения противоположности. Правильность этих отправных положений может быть доказана как выводом их из многочисленных частных определений симметрии и асимметрии, так и правильностью их следствий, т.е. необходимостью и всеобщностью определений симметрии и асимметрии, полученных на их основе.

Непосредственной логической основой для определения понятий симметрии и асимметрии, на наш взгляд, является диалектика тождества и различия. Здесь нужно отметить, что в диалектике тождество и различие рассматриваются лишь в определенных отношениях, во взаимодействии, во включении различия в тождество, а тождества в различие.

Тождество проявляется только в определенных отношениях и в определенных процессах; тождество всегда конкретно. К тождеству можно отнести: равновесие, равнодействие, сохранение, устойчивость, равенство, соразмерность, повторяемость и т.д. Тождество не существует вечно: оно возникает, становится и развивается. Если дать его общее определение, то можно сказать, что оно представляет собой процесс образования сходства в различном и противоположном.

Для того, чтобы имело место тождество, необходимо существование различного и противоположного. Вне различий тождество вообще не имеет смысла, поэтому нельзя говорить о тождественном в тождественном, а только в различном и противоположном. Характеризуя диалектическое понимание тождества, нужно выделить его следующие стороны: тождество не существует вне различия и противоположности, тождество возникает и исчезает; тождество существует только в определенных отношениях и возникает при определенных условиях, наиболее полным выражением тождества является полное превращение противоположностей друг в друга. Проявления тождества бесконечно многообразны. Поэтому в процессе познания явлений мира нельзя ограничиваться только установлением тождества между ними, но необходимо раскрывать то, как возникает это тождество, при каких условиях и в каких отношениях оно существует. Основываясь на этой характеристике диалектики тождества и различия, можно сформулировать следующие определения симметрии и асимметрии.

Действительно ли является всеобщим сформулированное нами определение понятия симметрии, охватывает ли оно все известные нам формы проявления симметрии как в объективном мире, так и в процессе нашего познания? Очевидно, что при ответе на этот вопрос придется ограничиться только наиболее общими характерными примерами. Представим себе две точки, находящиеся по отношению к какой-то прямой на ее противоположных сторонах; если эти противоположные точки равноудалены от этой прямой, то о них говорят как о симметричных по отношению к данной прямой. Если мы теперь совершим операцию перегиба, то в результате наши точки полностью совпадут, сольются друг с другом, следовательно, можно говорить об их полном тождестве. Симметрия расположения данных точек указывает именно на то, при каком процессе и при каких условиях они становятся тождественными.

Значит, этот вид симметрии полностью подходит под сформулированное определение симметрии. Как известно, существует определенная симметрия между протоном и нейтроном; она выражается в том, что в условиях сильных взаимодействий они не отличаются друг от друга, становятся тождественными друг другу. Их симметрия и есть не что иное, как образование тождества между этими различными частицами в процессе сильных взаимодействий. В понятии изотопического спина как раз и выражаются моменты тождества, имеющиеся у протонов и нейтронов, т.е. их симметрия в условиях сильного взаимодействия. Но подходят ли под данное определение симметрии такие общие симметрии пространства и времени, как, например, их однородность?

Однородность пространства означает, что по отношению к взаимодействиям явлений все места в пространстве тождественны и никак не сказываются на характере взаимодействия. Тождественность всех мест в пространстве (точек в пространстве) по отношению к взаимодействиям явлений и есть их, строгая полная симметрия. То же в общем виде можно сказать и об однородности времени. Тождественность всех временных интервалов по отношению к взаимодействию явлений и есть их строгая и полная, симметрия. На мой взгляд, нельзя найти ни одного вида симметрии, который бы противоречил данному определению. Но это не значит, что данное определение симметрии является законченным и вполне строгим - видимо, будут необходимы какие-то его уточнения. Сформулированное определение понятия симметрии позволяет распространить это понятие на все атрибуты материи, на все ее состояния и структуры, а также на все типы связей и взаимодействий.

Так, группа преобразований Лоренца выражает существующую симметрию во взаимосвязи пространства, времени и движения - этих атрибутов материи". Симметрия группы изотопического спина выражает тождественные моменты по отношению к сильным взаимодействиям у частиц, участвующих в этих взаимодействиях. В первом издании этой книги (1968) мы писали: «Поскольку существуют различные взаимодействия, и даже во многих отношениях противоположные, как, например, сильные и слабые, то естественно допустить, что в них при определенных условиях возникают и существуют тождественные моменты, т.е. им свойственна определенная симметричность. Открытие такой симметрии было бы значительным шагом вперед в деле создания теории элементарных частиц. В настоящее время связь между известными видами взаимодействия в физике еще не установлена, но можно предвидеть эти связи исходя из принципа симметрии». Теперь эти связи между сильным, слабым и электромагнитным взаимодействиями установлены, и это действительно явилось важным звеном в развитии теории элементарных частиц. Хотелось бы высказаться против жесткого разделения многообразных видов симметрии на геометрические и динамические. Первые отражают свойства симметрии пространства и времени, а вторые - свойства симметрии состояния взаимодействия.

Но поскольку пространство, время, движение и входящее в него взаимодействие внутренне связаны между собой, должна быть внутренняя связь также между геометрической и динамической симметриями. И она на самом деле существует. Так, симметрия равномерного прямолинейного движения и покоя (одна из черт симметрии группы Галилея), очевидно, не может быть охарактеризована только как динамическая или только как геометрическая.

В ней выражены свойства симметрии как пространства и времени, так и состояния движения. Вообще любая симметрия в своей основе имеет единство и взаимосвязь различных атрибутов материи. Правда, не всегда эта взаимосвязь носит непосредственный характер, что и создает возможность разделения видов симметрии на геометрические и динамические. Оба эти вида симметрии могут быть выражены и в динамической, и в геометрической форме. Так, группу симметрии изотопического спина, которая обычно относится к динамической симметрии, можно выразить и в геометрической форме; ядерные взаимодействия инвариантны относительно поворотов в изотопическом пространстве. Из этой формулировки можно получить ряд характеристик взаимодействия нуклонов, например, положение о том, что ядерные силы между протоном и протоном и протоном и нейтроном одинаковы, и ряд других. При изучении различных видов симметрии весьма важно учитывать единство атрибутов материи, а следовательно, и внутреннюю связь между симметриями их свойств и состояний. Значение этого положения особенно ясно выступает при изучении вопроса о взаимоотношении группы симметрии и законов сохранения.

По этому вопросу существуют две точки зрения. Часть физиков (Берестецкий, Вигнер, Штейнман и др.) утверждает, что фундаментом законов сохранения являются формы геометрической симметрии, в то время как другие, наоборот, считают, что законы сохранения определяют формы геометрической симметрии. Согласно первой точке зрения, например, однородность времени определяет закон сохранения энергии, а согласно второй - закон сохранения энергии определяет однородность времени. Возможно обе точки зрения являются некоторой абсолютизацией возможных подходов к проблеме. Наличие обеих точек зрения проявилось в том, что возникло мнение о разделении законов сохранения на две группы: наиболее общие из них связаны с геометрическими симметриями, а менее общие - с динамическими.

Так, законы сохранения оказались разделенными на две группы: кинематические (основанные на геометрических симметриях) и динамические (основанные на динамических симметриях). К первой группе относятся законы сохранения энергии, импульса, момента импульса, ко второй - закон сохранения электрического заряда, барионного числа, лептонного числа, изотопического спина и ряд других. Такое разделение законов сохранения в итоге основано на игнорировании единства атрибутов материи и на таком следствии этого игнорирования, как противопоставление динамических и геометрических симметрий друг другу. Непосредственной же предпосылкой деления законов сохранения на две группы является убеждение, что законы сохранения зависят от определенных симметрий. Бесспорно, что между формами симметрии и законами сохранения существует глубокая связь, но эту связь нельзя преувеличивать.

С определенными симметриями связаны не сами законы сохранения», а определенные формы их проявления. Так, известные нам формы проявления закона сохранения энергии, конечно, связаны с однородностью времени, но в целом этот закон может быть связан и с другими геометрическими симметриями, пока нам не известными. Кроме того, каждый закон сохранения связан и с определенными формами асимметрии, об этом подробнее будет сказано ниже.

Формы симметрии и формы закона сохранения всегда взаимосвязаны, но в целом как симметрия, так и законы сохранения представляют собой две различные, отнюдь не изолированные друг от друга стороны единой закономерности мира.

Перейдем теперь к характеристике необходимых предпосылок для определения асимметрии. Как и для определения симметрии, так и для определения асимметрии непосредственной предпосылкой, основанием является диалектика тождества и различия. Вместе с процессами становления тождества в различном и противоположном происходят процессы становления различий и противоположностей в едином, тождественном, целом. Если основой симметрии можно считать возникновение единого, то основу асимметрии нужно полагать в раздвоении единого на противоположные стороны. Понятие асимметрии, как и понятие симметрии, применимо ко всем атрибутам материи и выражает их различие, их особенность по отношению друг к другу. Поэтому взаимосвязь атрибутов материи выражается не только симметрией, но и асимметрией. Применимо понятие асимметрии и к различным состояниям атрибутов материи и их взаимосвязи. Вообще говоря, где применима симметрия, там применима и асимметрия, и наоборот. Исходя из сказанного можно дать следующее определение асимметрии: асимметрией называется категория, которая обозначает существование и становление в определенных условиях и отношениях различий и противоположностей внутри единства, тождества, цельности явлений мира.

Рассмотрим некоторые виды асимметрии. Весьма общим видом асимметрии является однонаправленность хода времени, полнейшая невозможность фактической замены настоящего прошедшим или будущим, а будущего - прошедшим или настоящим, в свою очередь прошедшего - настоящим и будущим. Все эти три состояния времени не заменяют друг друга - в них на первом плане находится различие. В них нет симметрии. Известная операция обращения времени, рассматриваемая только как математический прием, основана на том положении, что законы движения обладают большей устойчивостью и в обозримых интервалах не изменяются. Мы убеждены, что законы явлений мира являются вечными и поэтому действуют во всех состояниях времени: настоящем, прошедшем и будущем. Значит, операция обращения времени имеет реальный смысл лишь постольку, поскольку в какой-то мере наше убеждение в полной устойчивости, вечности законов явлений мира отвечает действительности. Объективная диалектика обратимых и необратимых процессов может быть выражена единством симметрии и асимметрии времени.

Необратимость является существенной характеристикой всякого развития: исходящая и нисходящая, прогрессивная и регрессивная ветви развития сами по себе необратимы и асимметричны. Однако соединенные общим и единым процессом развития, они с необходимостью приводят к симметричным ситуациям: повторениям на качественно новых уровнях спиралеобразного движения.

Особым вариантом понятий симметрии и асимметрии являются понятия ритма и аритмии. Регулярная повторяемость подавляющего большинства процессов в природе, их устойчивое чередование (в живой природе, например, упорядоченная во времени смена поколений, в неживой природе - повторяющиеся космические процессы) позволяет видеть в ритмических процессах одну из фундаментальных симметрий природы, С другой стороны, аритмия - это одна из характеристик объективной асимметрии, суть которой в нерегулярной и случайной смене и чередовании процессов. Понятия ритма и аритмии могут быть экстраполированы на процесс развития, поскольку асимметричное время как атрибут развития придает смысл ритму и аритмии. Вне времени они просто лишены смысла.

Симметрия обращения времени, таким образом, является результатом абстрагирования от изменчивости, присущей законам явлений мира. И только в рамках применимости этой абстракции обращение времени в уравнениях, выражающих законы движения, не противоречит действительности. В самом деле, в каких-то очень широких пределах мы можем считать законы явлений мира вечными, а следовательно, и допускать операцию обращения времени. Признавая, что у нас сейчас нет никаких оснований утверждать, что в действительности время может идти и от будущего к прошедшему, все же в связи с высказанными выше положениями о единстве атрибутов материи и о взаимопроникновении тождества и различия напрашивается вопрос: если состояния времени глубоко различны, то существует ли в каждом различии и тождество?

Время необратимо, его состояния не эквивалентны друг другу, но, может быть, все же есть и моменты тождества между ними, может быть, в необратимости времени есть и моменты его обратимости, может быть, его состояния в каких-то отношениях взаимозаменяемы, как взаимозаменяемы измерения пространства?

Мы думаем, что в различных состояниях времени есть и моменты их тождества, а в общей его необратимости есть моменты его обратимости. Не рассматривая далее этого вопроса, только отметим, что должны же быть реальные, природные основания для возможности обратного хода времени в отражении объективных событий, как, например, на киноленте кадры, движущиеся в обратном направлении? То, что реально существует в отражении, должно иметь моменты каких-то реальных прообразов и в том, что отражается.

Поэтому в математической модели позитрона как электрона, движущегося из будущего в прошедшее, есть, видимо, какой-то реальный смысл. Вообще факты асимметрии так же многочисленны и многообразны, как и факты симметрии.

Асимметрия - такой же необходимый момент в структуре, в изменении и во взаимосвязи явлений мира, как и симметрия. Асимметрия необходимо имеет место и в самой симметрии. Так, в симметрии состояний покоя и равномерного прямолинейного движения по отношению к законам движения есть все же асимметричность, которая состоит в неравноправности этих их состояний и проявляется в ряде различий между состояниями покоя и равномерного прямолинейного движения. У тела, покоящегося в данной системе отсчета по отношению ко всем другим телам, покоящимся и движущимся в этой же системе отсчета, скорость будет равна нулю, а у тела движущегося скорость по отношению ко всем покоящимся и движущимся телам в данной системе отсчета будет иметь определенное значение и только в частном случае равна нулю. Отсюда далеко не полная эквивалентность состояний В практике эта асимметрия проявляется весьма резко - ведь далеко не безразлично, движется ли поезд из Москвы к Ленинграду или Ленинград движется навстречу поезду. Очевидно, что энергия передается для передвижения поезда, а не расходуется на передвижение Ленинграда. Операция приближения поезда к Ленинграду и операция приближения Ленинграда к поезду не эквивалентны и не взаимозаменяемы.

Весьма общими примерами асимметрии являются асимметрия между фермионами и бозонами, асимметрия между реакциями порождения поглощения нейтрино, асимметрия спинов электронов, асимметрия в прямых и обратных превращениях энергии.

Уже из определений симметрии и асимметрии следует их неразрывное единство. Это обстоятельство в какой-то мере подчеркнуто А.В. Шубниковым: «Какой бы трактовки симметрии мы ни придерживались, одно остается обязательным: нельзя рассматривать симметрию без ее антипода - дисимметрии» (29, 162).

По нашему мнению, более точным является название не «принцип симметрии», а принцип единства симметрии и асимметрии. Во всех реальных явлениях симметрия и асимметрия сочетаются друг с другом. И надо думать, что во всех правильных, т.е. соответствующих действительности, научных обобщениях имеют место не просто те или иные симметрии или асимметрии, а определенные формы их единства.

Так, в группах преобразования Галилея и Лоренца наряду с чертами симметрии существуют и черты асимметрии. Например, в преобразованиях Галилея и Лоренца симметричны все состояния покоя и равномерного прямолинейного движения, но асимметричны состояния покоя и ускоренного движения.

Задача нахождения единства симметрии и асимметрии каких-либо явлений сводится к нахождению таких групп операций, в которых раскрывается как тождественное в различном, так и различное в тождественном. Поэтому прежде чем поставить задачу нахождения симметрии в данном явлении или совокупности явлений по отношению к каким-то группам операций, необходимо установить различия между сторонами данного явления или между явлениями в их совокупности, так как симметрия представляет собой наличие тождества не вообще, а только в различном. Если же мы имеем совокупность абсолютно тождественных явлений, то никакой симметрии в этой совокупности по отношению к любой группе операции быть не может.

Значит, прежде чем искать симметрию, нужно найти асимметрию. Прежде чем была установлена симметрия протонов и нейтронов по отношению к сильным взаимодействиям, было установлено различие между ними, их определенная асимметричность по отношению к электромагнитным взаимодействиям. Частицы и античастицы асимметричны потому, что в противоположности между ними имеются тождественные моменты, в силу чего они и являются зеркальными отражениями друг друга. Единство симметрии и асимметрии заключается и в том, что они предшествуют одна другой.

Диалектическое единство, присущее объективным процессам симметрии и асимметрии, позволяет выдвинуть в качестве одного из принципов познания принцип диалектического единства симметрии и асимметрии, согласно которому всякому объекту присуща та или иная форма единства симметрии и асимметрии. Причем рассмотрение данного объекта в генезисе выражается в переходе от симметрии к асимметрии (или наоборот). Заметим, что данный процесс тождествен смене конкретных форм единства симметрии и асимметрии.

Как известно, в объективной действительности не может иметь места абсолютное единство противоположностей. Именно поэтому отношение конкретного тождества, т.е. тождества, ограниченного различиями, и является объективным аналогом гносеологического единства симметрии и асимметрии.

Всякий принцип познания воплощается в конкретный метод, орудие и средство познающей деятельности. Таким методом может быть метод перехода от симметрии к асимметрии (или наоборот). Он позволяет осуществлять объясняющую и предсказывающую функции в развивающемся знании, а также в определенной мере оптимизировать поисковую деятельность. Этот метод оказывается тесно связанным с методами сходства и различия, предвидения и гипотезы, аналогии, экстраполяции.

Если принять за симметрию теоретической системы ее непротиворечивость, тождественность и инвариантность по отношению к описываемым объектам и явлениям, то развитие научного знания можно определить как переход к симметрии (т.е. асимметрия - симметрия). В этом случае симметрия выступает как идеализированная цель познания. Поиск симметрии - это поиск единого и тождественного в том, что первоначально виделось различным, разобщенным.

Всякая более высокая симметрия реализует возможность переноса научной теории для решения новых познавательных задач.

Упрощая в некоторых случаях теоретические системы, симметрия совсем не обязательно выступает аналогом простоты научного знания. Поиск новых форм симметрии интуитивно связан со стремлением к порядку, гармонии. Однако нет достаточных оснований для возведения антропоморфных понятий простоты и красоты теории в ранг методологических закономерностей (31. 1979. 12, 49 - 60).

Простота и красота - особые варианты симметрии, связанные с рациональным и эмоциональным (образным) способами постижения человеком объективного мира. Абсолютизация роли этих понятий в развивающемся знании представляется нам необоснованной, поскольку связана с отрывом симметрии от своей диалектической противоположности - асимметрии.

Асимметрия в познании проявляется как несоответствие теории и эксперимента, как взаимная противоречивость нескольких независимых теорий, либо как их внутренняя противоречивость. Асимметрия служит исходным пунктом в познании, на каждом из этапов его развития; именно с ней связан процесс научного поиска истины.

Асимметрия неоднократно играла эвристическую роль в познании. Примерами являются; эпикурейское представление об отклонении атомов от прямолинейного движения, несогласие Кеплера с симметрией движения планет по Копернику и др. История науки свидетельствует о том, что именно асимметрия обусловливает появление в познании новой формы симметрии, которая и выступает в качестве относительной истины.

Во взаимосвязи с принципом единства симметрии и асимметрии находится принцип симметрии, согласно которому всякая научная теория должна быть непротиворечивой и инвариантной относительно группы описываемых объектов и явлений. Симметрия теории выражает также адекватность научного познания объективной действительности. Многие видные ученые (П. Дирак, П. Кюри, Л. Пастер, А. Пуанкаре, А. Салам) интуитивно использовали принцип симметрии при получении важных теоретических результатов. Однако принцип симметрии не учитывает того обстоятельства, что всякой научной теории присущи внутренние (не логические, а диалектические) противоречия, а также недостатки, не говоря уже о действительном или возможном существовании объектов, которые она описать не в состоянии. Отрицая, по сути дела, роль асимметрии (признается только нарушение симметрии), данный принцип не учитывает особенностей научного познания как процесса развития и становления. К ограниченности принципа симметрии следует отнести и то, что он связан только с выявлением тождественных отношений среди различных объектов. Между тем в познании не менее широко используется и противоположная процедура - нахождение различного и противоположного среди тождественных объектов и явлений. Несомненный интерес представляет статья немецкого философа Герберта Герца, в которой он рассматривает роль симметрии и асимметрии в теории элементарных частиц. Он справедливо утверждает, что «ни одна будущая теория не может обойти проблему асимметрии». (элементарных частиц. - В.Г.) Из философских соображений все процессы в мире следует рассматривать как единство симметрии и асимметрии» (183. 1963. 10; 227; 289). Автор считает, что применение категорий симметрии и асимметрии, очевидно, приведет к возникновению новых воззрений в диалектике природы.

симметрия сечение золотой деление

Кстати говоря, у умерших людей лица симметричные. Впрочем, наши лица меняются в течение всей жизни.

Симметрия и асимметрия лиц. В чем же их секрет? Почему нас так привлекают симметричные лица? Известно, что В XV веке Леонардо да Винчи создал чертежи, отображающие эталонные пропорции человеческого лица и тела. Но в живой природе абсолютно симметричных объектов не существует. Однако тем, кому повезло иметь лицо очень близкое к симметричному, вероятно заметили, что пользуются успехом у противоположного пола. Более того, факт наличия симметричного лица может также свидетельствует и об отменном здоровье его обладателя. Даже обычная простуда и та почти всегда отступает перед людьми, у которых левая сторона тела точно повторяет очертания правой стороны.

Симметрия связана с воздействием тестостерона и эстрогена на человека. Мужчины с симметричными лицами кажутся более мужественными, а женщины – более женственными. Такие лица говорят о том, что человек порожден большим числом генов. Исследования симметрии лица показали, что очень асимметричное лицо отталкивает людей. А симметричное лицо служит возбуждающим фактором. Это объясняется тем, что на протяжении эволюции люди стремились воспроизводить потомство с теми, кого воспринимали как более здоровых особей. Симметричное лицо указывает на здоровые гены.

Кстати говоря, у умерших людей лица симметричные. Впрочем, наши лица меняются в течение всей жизни. Асимметрия лица является синонимом жизни. Человек рождается с асимметричным лицом. Его левая и правая стороны совершенно разные. Чем больше разница между ними, тем совершеннее человек в психическом, духовном и творческом плане. Именно благодаря асимметрии молодые лица такие выразительные — с яркими чертами. А с годами лицо как будто сглаживается, расплывается. Смерть человека выражает абсолютную симметрию. При этом, как считают некоторые исследователи, люди умирают вовсе не от болезней или несчастных случаев. Приходит срок, асимметрия лица выравнивается, и человек уходит из этого мира.

А если вернуться к вопросу о симметрии лица, то стоит отметить, что мы смотрим на лица целиком, а не на симметрию отдельных частей. Человек разглядывает лица слева направо. Наш мозг одновременно может оценить только одну половину лица. Поэтому различия между правой и левой сторонами мы часто не замечаем. Конечно значительные нарушения симметрии мы можем заметить, а незначительные отклонения от симметрии не вносят дисгармонию, а лишь выгодно оттеняют индивидуальность человека перед нами.

Как уже указывалось ранее, негласный лозунг физиков-теоретиков «правильная теория должна быть красивой» находит свое место в построении новых теоретических моделей и связан зачастую с симметрийными представлениями, а эстетический фактор играет при этом не последнее значение.

Интуитивно симметрия в своих простых формах понятна любому человеку и часто мы выделяем ее как элемент прекрасного и совершенного. В известной мере симметрия отражает степень упорядоченности системы. Например, окружность, ограничивающая каплю на плоскости, более упорядочена, чем размытое пятно на этой же площади, и следовательно, более симметрична. Поэтому можно связать изменение энтропии как характеристики упорядочения с симметрией: чем более организовано вещество, тем выше симметрия и тем меньше энтропия.

Одно из определений понятий симметрии и асимметрии дал В. Готт : симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. если хотите, некий элемент гармонии. Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы. Таким образом и из соображений симметрии-асимметрии мы приходим к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур нетрудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида.

Однако в общем смысле понятие симметрии гораздо шире и ее можно понимать как неизменность (инвариантность) каких-либо свойств объекта по отношению к преобразованиям, операциям, выполняемым над этим объектом. Причем это может быть не только материальный объект, но и закон, математическая формула или уравнения, в том числе и нелинейные, которые, как мы уже знаем из разд. 1.7, играют большую роль в самоорганизующихся процессах.

Дать более конкретное определение симметрии, чем у Готта, в общем случае затруднительно еще и потому, что она принимает свою форму в каждой сфере человеческой деятельности. Как мы обсуждали только что в предыдущем разделе, в искусстве симметрия может проявиться в соразмерности и взаимосвязанности, гармонизации отдельных частей в целом произведении. Что касается математических построений, то там также имеют место симметричные многочлены, которые можно использовать для существенного упрощения решения алгебраических и дифференциальных уравнений . Особенно полезным оказалось использование симметрийных представлений в теории групп с введением инварианта, т.е. такого преобразования, когда соотношения между переменными не изменяются. Отражением связи пространства, симметрии и законов сохранения может служить мысль великого французского математика А. Пуанкаре: «Пространство - это группа».

Наиболее наглядное и непосредственное применение идей симметрии имеет место в кристаллографии и физике твердого тела, изучающих физические свойства кристаллов в зависимости от их строения. Даже непосвященному человеку хорошо видна здесь ассоциация с неким совершенством, порядком и гармонией. Симметрия является для мира кристаллов естественной базой их физической сущности. Один из создателей современной физики твердого тела Дж. Займен вообще считал, что вся теория твердых тел основана на трансляционной симметрии. Здесь симметрия проявляется при совмещении геометрических тел, например правильных многогранников при повороте их в пространстве на определенные углы, а также при перемещениях в атомной решетке на определенные величины векторов трансляции, кратных периоду решетки:

(1.8.1)
где - вектор обратной решетки реального кристалла, = 1/a (a - период решетки), - волновой вектор.

Более глубокое понимание и применение симметрии связано, как мы уже рассматривали в главе 1.2, с изучением и обоснованием законов сохранения, отражающих фундаментальные свойства пространства-времени. Напомним, что симметрия относительно произвольного сдвига во времени приводит к закону сохранения энергии для консервативных (замкнутых) систем

E = const. (1.8.2)
Неизменность характеристик физической системы при произвольном перемещении ее как целого в пространстве на произвольный вектор приводит к закону сохранения импульса

P = mv = const, (1.8.3)
И, наконец, симметрия относительно произвольных пространственных поворотов (изотропность пространства) связана с законом сохранения момента импульса

(1.8.4)
Так как категория симметрии относится к любому объекту или понятию, то она в полной мере применяется, например, к физическому закону. А поскольку суть физического закона - нахождение и вычисление идентичного в явлениях, то для инерциальных систем, согласно принципу относительности Галилея, эти физические законы будут во всех системах одинаковы. Следовательно, они инвариантны относительно описания явлений как в одной инерциальной системе, так и другой и тем самым сохраняют симметрию, В 1918 г. были доказаны теоремы Нетер, смысл одной из которых состоит в том, что различным симметриям физических законов соответствуют определенные законы сохранения. Эта связь является настолько всеобщей, что ее можно считать наиболее полным отображением понятия сохранения субстанций и законов, их описывающих, в природе. Как сказал Р. Фейнман: «Среди мудрейших и удивительных вещей в физике эта связь - одна из самых красивых и удивительных».

Различие видов симметрии связано с разными способами пространственно-временного преобразования одной инерциальной системы в другую инерциальную систему. Остановимся на этом несколько подробнее. Каждому такому пространственно-временному преобразованию соответствует определенный вид симметрии. Так, перенос начала координат в произвольную точку пространства при неизменности физических свойств связан с симметрий таких преобразований (это как раз и есть трансляционная симметрия) и означает физическую эквивалентность всех точек пространства, т.е. его однородность.

Поворот координатных осей в пространстве связан с физической эквивалентностью разных направлений в пространстве и означает изотропность пространства. Симметрия относительно переноса во времени связана с физической эквивалентностью различных моментов времени, что должно также отражать идею независимости хода времени от его начала (время протекает одинаково). Откуда, кстати, следует, что однородность времени проявляется в его равномерном течении. Такое заключение позволяет полагать, что относительная скорость всех процессов, протекающих в природе, одинакова. Этот факт равномерности течения времени был установлен экспериментально с точностью до 10-14 с за период ~10 миллионов лет. В качестве примера можно привести тот факт, что спектральный состав излучения атомов звезд, испущенного миллионы лет тому назад и воспринимаемого нами только сейчас, такой же, как спектральный состав таких же атомов на Земле.

В классической релятивистской механике симметрия выражается в принципе относительности. Равномерное и прямолинейное движение системы отсчета, в принципе любого тела, с произвольной скоростью, но меньшей, чем скорость света, связано с симметрией и физической эквивалентностью такого движения и покоя. Это подтверждается уже рассмотренным экспериментальным примером неразличимости параметров движения объекта в движущемся равномерно и прямолинейно поезде и поезде, стоящем неподвижно на путях. Как мы знаем, при скоростях используются упомянутые ранее принцип относительности и преобразования Галилея, при v ~ c (релятивистские скорости) - принцип относительности Эйнштейна и преобразования Лоренца. Такого рода симметрию (неразличимость покоя и равномерно-прямолинейного движения) можно условно определить как изотропию пространства-времени. Эти виды симметрии объединяются в СТО в единую симметрию четырехмерного пространства-времени.

Заметим также, что проблемы симметрии-асимметрии оказываются связанными между собой глубже, чем это кажется исходя из бинарной структуры этих понятий (да-нет). В качестве примера можно привести состояние человека во вращающейся центрифуге. Есть симметрия вращения (поворота), но относительность покоя и вращательного движения нарушается и человек в такой центрифуге по своему состоянию (вестибулярные ощущения) может определить, что его вращающаяся закрытая (герметизированная) камера на центрифуге вращается. Таким образом, возникает ситуация, при которой физические законы не инвариантны относительно вращения, т.е. налицо асимметрия.

То же можно сказать и о так называемых преобразованиях подобия, связанных с изменением масштабов физических систем. Асимметрия относительно масштабных преобразований связана с тем, что порядок размеров атомов имеет одинаковое для всей Вселенной значение (~10-10 м). И если мы будем уменьшать размеры, например изделий микроэлектроники, в том числе и пленочных, то характер поведения электронов в них изменится (возникают размерные эффекты), т.е. опять-таки может возникнуть асимметричность процессов при таких размерах. Другой пример несимметрии относительно масштабов в биологии приводит Б. Свистунов : несмотря на похожесть окраски, нельзя, например, раскормить осу до размеров тигра, так как при массе 10-100 кг она потеряет способность летать - возникает другое качество.

В связи с этими примерами имеет смысл рассмотреть другие виды симметрии. Упомянутые выше пространственно-временные симметрии условно объединяет одно общее свойство - они являются как бы «внешними» симметриями в том смысле, что отражают глубокие свойства структуры пространства-времени, представляющей собой форму существования любого вида материи, и поэтому справедливой для любых мыслимых взаимодействий и физических процессов. Весь физический опыт познания мира показывает отсутствие нарушений инвариантности законов природы относительно указанных пространственно-временных преобразований. В этом уже не только физический, но и философский смысл познания и установления объективности законов природы.

Однако во «внешних» симметриях не затрагивается «внутренний мир» физического объекта и он никак не связан с внешними свойствами. В природе кроме рассмотренных законов сохранения энергии, импульса и момента импульса существуют и другие законы сохранения, которые выполняются с той или иной степенью общности, в частности закон сохранения электрического заряда. В физике элементарных частиц, как мы видели, имеются и другие сохраняющиеся (или по крайней мере введенные так) величины, подобные электрическому заряду, - барионное число, четность, изоспин, ароматы (странность, очарование, красота и т.д.). Эти по сути квантовые числа обусловлены фазовыми преобразованиями волновой функции ψ и в целом не связаны со свойствами пространства-времени. Симметрия играет важную роль в исследовании физики микромира. Наш физик-теоретик А. Мигдал считал, что главными направлениями физики XX века были поиски симметрии и единства картины мира .

Сохранение подобных величин, непосредственно не связанных со свойствами пространства-времени, относится к понятию «внутренней» симметрии. Остановимся на законе сохранения электрического заряда. Смысл его в том, что сохраняется во времени алгебраическая сумма зарядов любой электрической изолированной системы. Математическом смыслом закона сохранения заряда является уравнение непрерывности

(1.8.5)
где j - плотность тока, ρ - объемная плотность заряда. Физический смысл этого уравнения состоит в том, что div j - расходимость тока (его движение) - связана с изменением во времени, т.е. перемещением электрического заряда. Электрический ток - направленное движение свободных электрических частиц. Физический смысл (1.8.5) отражает факт несотворимости и неуничтожимости электрического заряда.

Нужно подчеркнуть, что сохранение электрического заряда в изолированных (замкнутых) системах не сводится к сохранению числа заряженных частиц. Так при β-распаде нейтрона, не имеющего заряда, возникают ρ (с зарядом e+), электрон (заряд e-) и антинейтрино, также не имеющее заряда. В этой реакции появились две электрически заряженные частицы, но их суммарный заряд равен нулю, как и у породившего их нейтрона. Отметим, что важным следствием закона сохранения заряда является устойчивость электрона. Электрон является самой легкой электрически заряженной частицей. Поэтому ему просто не на что распадаться так как в этом случае нарушился бы закон сохранения электрического заряда. По современным представлениям время жизни электрона не менее 1019 лет, что говорит в пользу этого закона.

Прежде чем перейти к другим «внутренним» симметриям, остановимся еще на двух видах дискретной симметрии, которые отличаются от рассмотренных «непрерывных» симметрий сдвига и поворота. Это хорошо известная всем нам уже давно зеркальная симметрия, которая описывается пространственной инверсией, т.е. отражением системы координатных осей. Инверсия пространства осуществляется «сразу» (в зеркале), а ее повторное применение возвращает систему в исходное состояние. Это отражение называется операцией изменения «четности» (пример с теннисистом в зеркале). Другой дискретной симметрией является симметрия относительного обращения времени, приводящая к тому, что в симметричной Вселенной законы природы не изменяются при замене направления течения времени на обратное (t = -t и наоборот). Применение данной симметрии показывает, что направление возрастания времени (движение в одну сторону) не играет существенной роли. С равной вероятностью возможен и обратный процесс. Другими словами, установить путем наблюдения направление развития событий, в будущее или в прошлое, для равновесной симметричной системы невозможно. Если вы помните, мы приходили к такому же результату для детерминированной механики Галилея - Ньютона в замкнутых системах. Но одновременно мы уже знаем и о существовании «стрелы времени» для открытых неравновесных систем. И это еще раз показывает неумолимо, что время все-таки «течет» от прошлого к будущему и наша Вселенная неравновесна и асимметрична. Заметим однако, что понятие энтропии не однозначно применимо к микромиру, и, следовательно, изучая его, нельзя установить направление времени.

Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия. Она основана на принципиальной неразличимости одинаковых микрочастиц, которые, как мы знаем из главы 1.5, движутся не по определенным траекториям, а их положения оцениваются по вероятностным характеристикам, связанным с квадратом модуля волновой функции |ψ|2. Перестановочная симметрия и заключается в том, что при «перестановке» квантовых частиц не изменяются вероятностные характеристики, квадрат модуля волновой функции - величина постоянная |ψ|2 = const.

Исследование реакций с участием элементарных частиц и античастиц, а также процессов их распада привело к открытию некоторых новых свойств симметрии, а именно зарядовой симметрии, или, более точно, зарядовой симметрии частиц и античастиц. При изучении ядерных взаимодействий нуклонов (сильные взаимодействия) было обнаружено, что эти ядерные силы почти не зависят от типа нуклонов, т.е. при этих взаимодействиях нет различия между нейтроном и протоном, оба они есть два состояния одной частицы - нуклона. Аналогично, μ-мезон может находиться в трех состояниях, соответствующих трем различным частицам. Такие состояния называются изотопическими и они характеризуются изотопическим спином или изоспином. Симметрия, связанная с этими процессами, и получила название изотопической симметрии.

С теорией элементарных частиц, типами взаимодействия полей и попыткой введения единого поля связаны еще два вида симметрии: кварк-лептонной и калибровочной. Кварк-лептонная симметрия проявляется в единой теории поля. Считается, что по существу кварки и лептоны не различимы в области очень больших энергий. Но в случае спонтанного нарушения симметрии и в области низких энергий они приобретают совершенно различные свойства. Тем самым установлено, что между кварками и лептонами возможны переходы. Этот факт может служить еще одним убедительным доказательством единства природы.

Калибровочная симметрия связана с масштабными преобразованиями, представляющими сдвиги нулевых уровней скалярного и векторного потенциалов полей. Сам термин «калибровочное поле» (преобразование, инвариантность) выдвинул немецкий математик Г. Вейль. Смысл идеи состоит в том, что физические законы не должны зависеть от масштаба длины, выбранного в пространстве, и не должны изменять свой вид при замене этого масштаба на любой другой. С обычной логикой это вроде бы самоочевидно: почему действительно законы Ньютона будут другими, если мы будем измерять путь в метрах, сантиметрах или в мегапарсеках. Однако значение изменения масштаба состоит в том, что оно имеет принципиально не физический характер, так как не вызвано какими-либо физическими воздействиями, а геометрический, в частности, изменение длины обусловлено лишь особенностями структуры пространства-времени. Тем самым пространство-время перестает быть лишь пассивным резервуаром вещества и поля, где происходят физические процессы, оно само начинает активно влиять на эти процессы. Геометрия приобретает динамический характер.

Особое значение приобретает принцип калибровочной инвариантности, если преобразования приходят локально в каждой точке пространства-времени и неоднородно, т.е. с изменяющимся соотношением от точки к точке. Вот это преобразование Г. Вейль и назвал масштабным или калибровочным. Его формулировка звучит так: все физические законы инвариантны относительно произвольных (однородных и неоднородных) локальных калибровочных преобразований. В таком виде принцип Вейля является по существу развитием общего принципа относительности Эйнштейна, что все физические законы в любой системе отсчета (инерциальной и неинерциальной) должны иметь одинаковый вид. Уместно в связи с этим заметить, что теория Эйнштейна была первой теорией, в которой геометрический фактор (искривление пространства-времени) напрямую связывался с физической характеристикой (гравитационной массой), что послужило в настоящее время дальнейшему развитию идей геометродинамики . Эти преобразования масштаба оставляют силовые характеристики поля (например Е и В для электромагнитного поля) неизменными. На основе калибровочной симметрии построены теории электрослабого и электросильного взаимодействий. Из этой симметрии следует, что частицы, обладающие определенными свойствами, которые объединяются понятиями «заряда» (электрический, барионный, лептонный), «цвета» кварков, являются источниками полей, если хотите, материальными носителями этих полей.

Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрий имеют, естественно, определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии в физике можно ввести некую структуру, учитывающую четыре фактора.

1. Объект или явление, которое исследуется.
2. Преобразование, по отношению к которому рассматривается симметрия.

3. Инвариантность каких-либо свойств объекта или явления, выражающая рассматриваемую симметрию. Связь симметрии физических законов с законами сохранения.

4. Границы применимости различных видов симметрии.
Заметим также, что изучение симметричных свойств физических систем или законов требует привлечения специального математического анализа, в первую очередь, представлений теории групп, наиболее развитой в настоящее время в физике твердого тела и кристаллографии.

В целом же из законов сохранения, которые, как мы уже поняли, являются следствием пространственно-временной симметрии законов самой природы, следует условность разделения физики на механику, термодинамику, электродинамику и т.д. и, следовательно, налицо неразрывность единства всей природы.

Не останавливаясь здесь более подробно на понятиях физики живого, чему будет посвящена специально вторая часть данного курса, рассмотрим идеи симметрии-асимметрии применительно к проблемам объектов живой и неживой природы. По существу это философский, если хотите, но с естественнонаучной точки зрения вопрос о возникновении, развитии и сущности жизни. Чем отличаются молекулы живых веществ от неживых? В какой-то мере это связано с симметрией, точнее зеркальной симметрией. Если рассмотреть пример зеркального изображения двух молекул неорганического вещества воды и органического, но «неживого» вещества - бутилового спирта (рис.), то принципиальное различие проявляется в том, что молекула Н2О зеркально симметрична, а молекула спирта зеркально асимметрична.

«Левая» и «правая» молекулы, не совпадают как левая и правая рука человека. Асимметричные молекулы в химии называют стереоизомерами, а само свойство зеркальной асимметрии носит название киральности или хиральности (от греческого слова «кир» - рука). Так вот, выяснилось, что в природе хиральностью обладают и «живые», и «неживые» молекулы, но «живые» всегда только хиральны, причем «неживые» хиральные молекулы равновероятно встречаем и в левом, и в правом варианте, а «живые» - только или в левом, или в правом. В этом смысле молекулы живых организмов хирально чисты. Так, ориентация ДНК-спирали всегда правая. В свое время Л. Пастер, а затем и В.И. Вернадский предлагали на этом принципиальном различии провести раздел между живой и неживой природой. Предполагают, что основополагающим признаком возникновения и развития жизни и является способность живых организмов извлекать и конструировать из симметричных и хирально нечистых молекул окружающей среды хирально чистые молекулы, необходимые для живого организма. Примером может служить извлечение растениями из симметричных молекул воды и углекислого газа в процессе фотосинтеза асимметричных молекул крахмала и сахара. Наряду с другими питательными веществами эти молекулы поступают в пище живых организмов и из них образуются уже хирально чистые молекулы. Если хиральность молекул веществ пищи изменится на противоположную, то эти вещества окажутся для живого организма биологическим ядом, они отторгаются организмом, ведут его к гибели. Это достаточно характерный пример того, как исходя из симметрийных представлений физики мы можем объяснить, если хотите, происхождение живой материи и даже дать рекомендации практической медицине.

В общем смысле мы можем считать, что и возникновение жизни в целом связано со спонтанным нарушением имевшейся до того в природе зеркальной симметрии. Предполагается, что асимметрия возникла скачком в результате Большого Биологического взрыва, по аналогии с БВ, в результате которого образовалась Вселенная, под действием радиации, температуры, полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс по существу также является процессом самоорганизации, который мы рассматривали в подразд. 1.7. В какой-то точке бифуркации произошел и самоорганизующий акт возникновения уже живой материи.

Уместно теперь связать симметрию с энтропией живых организмов. Переход вещества на более высокую степень организации, упорядоченности, как мы уже отмечали, снижает энтропию как меру хаотичности. Но наибольшей симметрией обладает как раз равновесное хаотическое состояние. Значит, уменьшение энтропии неизбежно приводит к уменьшению симметрии, т.е. увеличению асимметрии живых организмов. Чем выше уровень организации материи, тем меньше энтропия и симметрия. Но для снижения энтропии живых организмов как открытых систем, обменивающихся энергией и материей (пища и отправления) с окружающей средой, необходима энергия, причем значительная, которая, как мы увидим далее, вырабатывается в соответствующих частях клеток (митохондриях) живых организмов за счет пищи, т.е. поглощения энергии внешней среды (Солнца и биосферы).

Можно образно сказать, что мы забираем от природы более организованную структурированную материю, обладающую меньшей энтропией, т.е. подпитываем себя негэнтропией (отрицательной энтропией), а отдаем ей неструктурированную материю, обладающую большей энтропией. «Питаемся» так сказать, с энергетической физической точки зрения, отрицательной энтропией, а отдаем положительную энтропию. И когда в естественных условиях этот баланс нарушается, то наступает некоторое динамическое равновесие - обмен энтропией между человеком и окружающей средой стабилизируется, энтропия системы человек - окружающая среда возрастает, и живой организм гибнет (энтропия его возросла). Поэтому биологическая смерть организма - это рост энтропии до ее уровня в окружающей среде. Повышение же энергетического потенциала в живом организме при «нормальном» обмене энтропией его с окружающей средой увеличивает химическую активность клеток и дает возможность самовоспроизведения и развития.

Можно сказать, что по мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует на симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия - разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Можно задаться вопросом, есть ли другие виды симметрии и связанные с ними законы сохранения. В чем состоит глубокое значение законов сохранения электрического заряда, лептонного и барионного чисел, странностей, изотопического спина и т.д.? Как это связано со свойствами абстрактного пространства? В чем смысл наличия «черных дыр» как неких «пропускных пунктов» из нашего пространства, мира, в другой антимир? К сожалению, пока на эти вопросы мы ответа не имеем, хотя и хорошо, что современная наука дает возможность их задавать.

Правда, по поводу задаваемых вопросов существует следующий физический анекдот. Паули очень любил задавать вопросы, на которые не всегда можно найти правильные ответы (их вообще могло и не быть!). Когда он умер, то продолжал свое любимое занятие на том свете. И там никто не мог ответить на его вопросы. Тогда он решил обратиться к Богу. Господь терпеливо и внимательно выслушал его и ответил: «Вся трудность, Паули, в том, что Вы задаете не те вопросы».

С теми или иными проявлениями симметрии мы встречаемся буквально на каждом шагу. Взгляните на порхающую бабочку, загадочную снежинку, мозаику в храме, морскую звезду, кристалл граната – все это примеры симметрии.

Несмотря на всеобщий характер симметрии окружающего нас мира, в природе мы не встречаем примеров математически безукоризненной симметрии. Например, нетрудно указать плоскость, относительно которой человеческое тело можно считать симметричным. Но столь же легко всегда указать и отклонение от полной симметрии. Именно эти небольшие отклонения от нее – родинка, волосы, расчесанные на косой пробор, или какая-нибудь деталь в одежде, нарушающая симметрию – и придают каждому человеку характерные только для него черты.

На симметрии держится мир, так как общие законы природы, характеризующие движение материи, связаны с симметрией пространства и времени. Когда мы видим проявление симметрии в форме тел живой и неживой природы, невольно испытываем чувство удовлетворения тем всеобщим порядком, который царит в природе.

Мир существует благодаря единству симметрии и ассиметрии. Симметрия и асимметрия должны рассматриваться совокупно в едином подходе.

Несмотря на то, что с данным явлениям посвящено много различных описаний, я предлагаю провести конкретное исследование, чтобы доказать влияние симметрии и асимметрии на жизнь и здоровье людей.

Понятие симметрии берет свое начало в глубокой древности. По мнению ученых, во времена развития коллективной охоты перед племенами встал вопрос о равном разделении добычи. При разделении туши животного поперек одно племя получало переднюю часть, а второе – заднюю. Это вызывало недовольство тех или иных, так как разделение было неравным по количеству и качеству мяса. И когда люди разделили тушу вдоль линии позвоночника (по оси симметрии), разделение получилось равным.

В более позднее время с ростом интеллектуального и культурного развития человечества симметрия нашла свое применение и в других видах деятельности.

Понятие симметрии. Виды симметрии

Понятие симметрии

Слово «симметрия» имеет греческое происхождение и буквально означает «symmetria» - соразмерность.

Под симметрией в широком смысле этого слова понимают всякую правильность во внутреннем строении тела или фигуры. Учение о различных видах симметрии представляет большую и важную ветвь геометрии, тесно связанную со многими отраслями естествознания и техники, начиная с текстильного производства (разрисовка тканей) и кончая тонкими вопросами строения вещества.

Виды симметрии

Зеркальная симметрия. Она хорошо знакома каждому из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает некоторый предмет и его изображение в плоском зеркале.

Говорят, что фигура (или тело) зеркально симметрична если существует плоскость, которая делит фигуру (или тело) на две симметричные части. На рисунке линия АВС симметрична линии АВС; правая рука симметрична левой.

Важно отметить, что два симметричных друг другу тела, вообще говоря, не могут быть «вложены друг в друга»; иначе, одно из таких тел не может занять место другого. Так, перчатка с одной руки не годится для другой.

«Что может быть больше похоже на мою руку или мое ухо, чем их собственное отражение в зеркале? И все же руку, которую я вижу в зеркале «нельзя поставить на место настоящей руки» (Иммануил Квант).

Симметричные фигуры при всем их сходстве существенно отличаются друг от друга.

Симметричные предметы нельзя назвать равными в узком смысле слова. Их называют зеркально равными. Вообще зеркально равными телами (или фигурами) называются тела (или фигура) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела (или фигуры).

Центральная симметрия. Фигура (или тело) называется симметричной относительно центра С, если каждой точке Е этой фигуры (или тела) соответствует такая же принадлежащая той же фигуре (телу) точка А, что отрезок ЕА проходит через точку С и делится в ней пополам.

Симметрия вращения. Тело (или фигура) обладает симметрией вращения, если при повороте на угол 360 /n (n – целое число) вокруг некоторой прямой АВ (ось симметрии) оно полностью совмещается со своим исходным положением. Если число равно 2, 3, 4 и т. д. , то ось симметрии называется осью второго, третьего, четвертого и т. д. порядков.

Примеры перечисленных видов симметрии

Шар – обладает и центральной, и зеркальной, и осевой симметрией. Центром симметрии является центр шара, плоскостью симметрии – плоскость любого большого круга, осью – любой диаметр шара. Порядок оси – любое целое число.

Круглый конус имеет осевую симметрию (любого порядка); ось симметрии – ось конуса.

Правильная пятиугольная призма имеет плоскость симметрии, идущую параллельно основанию на равном от них расстоянии, и ось симметрии пятого порядка, совпадающую с осью призмы. Плоскостью симметрии может также служить плоскость, делящая пополам один из двугранных углов, образуемых боковыми гранями.

Симметрия в природе

Симметрия в растительном мире

Совершенно иной характер носит связь математики с красотой в природе, где с помощью математики красота не создается, как в технике и в искусстве, а лишь фиксируя, выражается.

Материал на любом уровне своей организации, будь то минералы, растительный ли животный мир, подчиняется строгим законам развития. В основе строения любой живой формы лежит принцип симметрии. Из прямого наблюдения мы можем вывести законы геометрии и почувствовать их несравненное совершенство.

Когда мы хотим нарисовать лист растения или бабочку, то нам приходится учитывать их осевую симметрию. Средняя жилка для листа и туловище бабочки служит осью симметрии. Центральная симметрия характерна для кристаллов, низших животных и цветов.

В своей книге «Этот правый. Левый мир» М, Гарднер пишет: «На Земле жизнь зародилась в сферически симметричных формах, а потом стала развиваться по двум главным линиям: образовался мир растений, обладающих симметрией конуса, и мир животных с билатеральной симметрией». Термин «Билатеральная симметрия» часто применяется в биологии. При этом имеется в виду зеркальная симметрия.

Характерная для растений симметрия конуса хорошо видна на примере фактически любого дерева.

Дерево при помощи коревой системы поглощает влагу и питательные вещества из почвы, то есть снизу, а остальные жизненно важные функции выполняются кроной, то есть наверху.

В то же время направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы; по всем этим направлениям к дереву в равной мере поступает воздух, свет, влага. Дерево имеет вертикальную поворотную ось (ось конуса) и вертикальные плоскости симметрии. Отметим, что вертикальная ориентация оси конуса, характеризующего симметрию дерева, определяется направлением силы тяжести.

Ярко выраженной симметрией обладают листья, ветви, цветы, плоды.

Зеркальная симметрия характерна для листьев, но встречается и у цветов.

Для цветов характерна поворотная симметрия.

Часто поворотная симметрия сочетается с зеркальной или переносной.

В многообразном мире цветов встречаются поворотные оси разных порядков. Однако наиболее распространена поворотная симметрия 5-го порядка.

Эта симметрия встречается у многих полевых цветов (колокольчик, незабудка, герань, гвоздика, зверобой, лапчатка), у цветов плодовых деревьев (вишня, яблоня, груша, мандарин и др.), у цветов плодово-ягодных растений (земляника, малина, калина, черемуха, рябина, боярышник).

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса (буквально «устроение листа»).

Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Симметрия в мире животных

Поворотная симметрия 5-го порядка встречается и в животном мире. Примерами могут служить морская звезда и панцирь морского ежа.

Однако в отличие от мира растений поворотная симметрия в животном мире наблюдается редко.

Для насекомых, рыб, птиц, зверей характерно несовместимое с поворотной симметрией различие между направлениями «вперед» и «назад».

Направление движения является принципиально выделенным направлением, относительно которого нет симметрии у любого насекомого, любой птицы или рыбы, любого зверя. В этом направлении животное устремляется за пищей, в этом же направлении оно спасается от преследователей.

Кроме направления движения симметрию живых существ определяет еще одно направление – направление силы тяжести. Оба направления существенны; они задают плоскость симметрии животного существа.

Билатеральная (зеркальная) симметрия – характерная симметрия всех представителей животного мира.

Симметрия и асимметрия

Мир существует благодаря единству симметрии и ассиметрии. «Симметрия и ассиметрия есть одна из форм проявления общего закона диалектики – единства и борьбы противоположностей. Чем больше мы постигаем симметрию природы, тем шире проявляется ассиметрия».

Сведение красоты только к симметрии ограничивало богатство её внутреннего содержания, лишало красоту жизни. Истинную красоту можно постичь только в единстве противоположностей. Вот почему единство симметрии и асимметрии определяет сегодня внутреннее содержание прекрасного в искусстве. Симметрия воспринимается нами как покой, скованность, закономерность, тогда как асимметрия означает движение, свободу, случайность.

Примером удивительного сочетания симметрии и асимметрии является Покровский собор (храм Василия Блаженного) на Красной площади в Москве.

Эта причудливая композиция из десяти храмов, каждый из которых обладает центральной симметрией, в целом не имеет ни зеркальной, ни поворотной симметрии. Симметричные архитектурные детали собора «кружатся» в своём асимметричном «танце», создавая впечатление радости и праздника.

Сохранение темы и ее изменение (разработка, развитие) – это и есть единство симметрии и ассиметрии. Чем удачнее решает архитектор, композитор, поэт проблему между симметрией и ассиметрией, тем выше художественная ценность создаваемого произведения искусства.

В своем исследовании я хочу показать роль асимметрии в природе.

Проведение исследования

Определение степени асимметричности организма

Возникновение билатеральной симметрии (зеркальной, симметрии левого и правого) является важным эволюционным достижением, раскрывающим большие возможности для дифференцировки организма (Беклемешев, 1964). Поскольку в природе строение живых тел не бывает совершенным, естественно, встречаются и самые различные, как направленные, так и случайные, отклонения от билатеральной симметрии (асимметрия).

Флуктуирующая асимметрия является результатом неспособности организмов развиваться по точно определенным путям. Такое положение является вполне естественным, т. к. значительные различия между сторонами могут иметь место в природе лишь в том случае, если они носят приспособительный характер.

Флуктуирующая асимметрия отмечается и в тех случаях, когда в проявлении признака имеет место и направленная асимметрия, при которой как различие между сторонами, так и его направление генетически детерминировано. В этих случаях флуктуирующая асимметрия является отклонением от определенной средней асимметрии.

Факт возрастания асимметрии во всех живых организмах при ухудшении качества окружающей среды зафиксирован в многочисленных научных публикациях ученых всего мира, многие из которых приведены в обзорах: (Захаров, 1987; Palmer, Strobeck, 2001).

Явлениями флуктуирующей асимметрии охвачены практически все билатеральные структуры у самых разных видов живых организмов. Все исследованные (Захаров, 1987) признаки обнаружили флуктуирующую асимметрию. Даже для тех структур, которые при общем поверхностном анализе могут быть оценены как полностью симметричные, при более тщательном рассмотрении выявляется та или иная степень выраженности флуктуирующей асимметрии.

При анализе флуктуирующей асимметрии оценивается величина математической дисперсии различий между сторонами от некоторого среднего различия между сторонами, имеющего место в рассматриваемой выборке. Величина дисперсии асимметрии не зависит от абсолютных размеров признака. При этом получается точная количественная оценка величины флуктуирующей асимметрии даже при наличии направленной асимметрии. Метод строг с математической точки зрения, что позволяет проводить анализ полученных результатов с использованием обычных статистических подходов.

Высокий показатель асимметрии указывает на неоптимальность среды обитания исследуемых объектов. Показатель реагирует на изменение любого фактора (откликается повышением на изменение фактора) и стабилен при адаптации к изменившимся условиям (на стадии привыкания показатель постепенно снижается). Таким образом, на основании периодического вычисления этого показателя можно проследить изменения условий обитания объекта окружающей среды.

Описание участка сбора листьев берёзы

Мною был выбран участок берёзовой рощи, расположенный вдоль края дороги перед МОУ СОШ № 6.

Этот участок расположен в 150 – 200 метрах от шоссейной дороги, которая идёт вдоль него с запада на всем протяжении. С запада также располагается шоссейная дорога.

К описанию участка сбора листьев прилагается карта данной местности, где красным кружком обозначено место сбора.

Методика сбора материала для исследования (берёзовых листьев)

На выбранном участке березовой рощи выбираем десять берез, расположенных недалеко друг от друга (расстояние между ними не более 5-10 метров). Все эти берёзы должны находиться в генеративном, зрелом возрасте, то есть на ветвях должны быть соцветия – серёжки, с помощью которых они размножаются.

С каждой берёзы собирается по десять листьев со всех сторон дерева на высоте 2-2,2 метра (примерно на вытянутую руку). Собирают не все листья, а только листья с укороченных генеративных побегов. Листья кладут в прономерованные десять конвертов, в каждый по десять листьев с каждой березы. После чего делают их замеры сразу, до того как листья еще не совсем высохли, и не стали ломкими.

Данные листья собирают, потому что они самыми первыми реагируют на изменения в окружающей среде. Они являются индикаторами загрязнения атмосферы и почвы различными вредными веществами, особенно мутагенами, которые ускоряют процессы мутации, заставляя видоизменяться листья. В загрязненных районах листья с укороченных побегов имеют несимметричную неправильную форму, что свидетельствует о загрязнении атмосферы и почвы мутагенами. Поэтому собираем листья только с укороченных побегов, чтобы определить насколько велико и масштабно загрязнение.

Методика замеров листьев березы

Каждый собранный лист березы достают из конверта и с помощью линейки и транспортира делают следующие измерения:

Ширину половинок листа в миллиметрах с обеих сторон от центральной жилки. Для этого складывают лист поперек вдоль центральной жилки, так чтобы кончик листа доходил до конца листовой пластинки, где прикрепляется черешок.

Длину второй жилки в миллиметрах (левую и правую). Для этого прикладывают линейку к основанию второй жилки от центральной и измеряют её длину до края листовой пластинки с обеих сторон.

Расстояние между основаниями первой и второй жилки в миллиметрах (с обеих сторон). Расстояние между концами первой и второй жилки в миллиметрах. Для этого прикладывают линейку к концу первой жилки и измеряют расстояние до второй.

Угол между центральной и второй жилкой в градусах (с обеих сторон). Для этого прикладывают транспортир вдоль центральной жилки к основанию второй жилки и измеряют величину угла, под которым она расположена к центральной жилке.

Все полученные данные записывают в таблице. Дальше полученные результаты подвергаются исследованиям на основе математических подсчётов. После чего получается конкретные данные о загрязнении местности.

Обработка данных

После получения всех промеров, необходимо все данные занести в таблицу. Данные о загрязнении местности можно получить, выполнив пошаговые инструкции.

1. Получить среднее относительное различие на признак, равное среднему арифметическому отношению разности к сумме промеров листа слева и справа, отнесенное к числу признаков.

2. Если принять значение промера за Х, то ширина половинок листа будет соответственно Х л и Х п. Х = Х л - Х п. / Х л + Х п

Находим значение среднего относительного различия между сторонами листа на признак для каждого листа. Для этого сумму относительных различий нужно разделить на число признаков, в нашем случае: Z = Х 1 + Х 2 + Х 3 + Х 4 + Х 5 / 5

3. Для 10 берез среднее относительное различие на признак для 10 выборок:

А = ∑ Z/ n, где n – количество берез

4. Полученные данные характеризуют степень асимметричности организма – шкала Захарова В. М. - отклонения от нормы.

По результатам этой методики в целом можно сказать, что чистота воздуха соответствует условной норме, но есть тенденция критического состояния и среднего загрязнения для тех берез, которые расположены в максимальной близи от Малодубенского шоссе, это дает нам возможность говорить о дальнейшем загрязнении окружающей среды и, как мера предосторожности следующий этап моей исследовательской работы разработка фитодизайна.

Данная клумба выполнена в программе «Цветочная фантазия» и является завершением моей работы. Эта клумба «оживает» по мере роста растений начиная с апреля месяца и по октябрь.

Существуют три последовательные ступени в нашем знании о мире. На низшей ступени находятся явления; на следующей ступени – законы природы; на третьей ступени – это принципы симметрии. Законы природы управляют явлениями, а принципы симметрии – управляют законами природы. Если законы природы позволяют предсказывать явления, то принципы симметрии позволяют предсказывать законы природы.

Обобщая все написанное, нужно отметить, что симметрия многолика.