Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.

Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.

Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех - на 3 см (длина пружины будет 8 см).

Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.

Если обозначить удлинение пружины в результате ее растяжения как x или как ∆l (l 1 – l 0 , где l 0 - начальная длина, l 1 - длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:

F упр = kx или F упр = k∆l, (∆l = l 1 – l 0 = x)

В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как F упр = 0,5x, для второй - F упр = x, для третьей - F упр = 2x.

Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (F упр) при равных удлинения (x) разных пружин.

Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.

Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.

Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние - в метрах. Чтобы уровнять по единицам измерения левую и правую части уравнения F упр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).

Соотношение между силой упругости и деформацией упругого тела, описываемое формулой F упр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука .

Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.

Формула F упр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.

Продолжаем обзор некоторых теми из раздела «Механика». Наша сегодняшняя встреча посвящена силе упругости.

Именно эта сила лежит в основе работы механических часов, её воздействию подвергаются буксирные канаты и тросы подъемных кранов, амортизаторы автомобилей и железнодорожных составов. Её испытывает мяч и теннисный шарик, ракетка и другой спортивный инвентарь. Как возникает эта сила, и каким закономерностям подчиняется?

Как рождается сила упругости

Метеорит под действием земного тяготения падает на землю и… замирает. Почему? Разве земное тяготение исчезает? Нет. Сила не может исчезнуть просто так. В момент соприкосновения с землей уравновешивается другой силой равной ей по величине и противоположной по направлению. И метеорит, как и другие тела на поверхности земли, остается в покое.

Этой уравновешивающей силой является сила упругости.

Такие же упругие силы появляются в теле при всех видах деформации:

  • растяжения;
  • сжатия;
  • сдвига;
  • изгиба;
  • кручения.

Силы, возникающие в результате деформации, называются упругими.

Природа силы упругости

Механизм возникновение сил упругости удалось объяснить лишь в XX веке, когда была установлена природа сил межмолекулярного взаимодействия. Физики назвали их «гигантом с короткими руками». Каков смысл этого остроумного сравнения?

Между молекулами и атомами вещества действуют силы притяжения и отталкивания. Такое взаимодействие обусловлено, входящими в их состав мельчайших частиц, несущих положительные и отрицательные заряды. Силы эти достаточно велики (отсюда слово гигант), но проявляются лишь на очень малых расстояниях (с короткими руками). При расстояниях равных утроенному диаметру молекулы, эти частицы притягиваются, «радостно» устремляясь, друг к другу.

Но, соприкоснувшись, начинают активно отталкиваться друг от друга.

При деформации растяжения расстояние между молекулами возрастает. Межмолекулярные силы стремятся его сократить. При сжатии молекулы сближаются, что порождает отталкивание молекул.

А, поскольку все виды деформаций можно свести к сжатию и растяжению, то появление упругих сил при любых деформациях объяснимо этими рассуждениями.

Закон, установленный Гуком

Изучением сил упругости и их взаимосвязью с другими физическими величинами занимался соотечественник и современник . Его считают основоположником экспериментальной физики.

Учёный продолжал свои эксперименты около 20 лет. Он проводил опыты по деформации растяжения пружин, подвешивая к ним различные грузы. Подвешиваемый груз вызывал растяжение пружины до тех пор, пока возникшая в ней сила упругости не уравновешивала вес груза.

В результате многочисленных экспериментов ученый делает вывод: приложенная внешняя сила вызывает возникновение равной ей по величине силе упругости, действующей в противоположном направлении.

Сформулированный им закон (закон Гука) звучит так:

Сила упругости, возникающая при деформации тела, прямо пропорциональна величине деформации и направлена в сторону, противоположную перемещению частиц.

Формула закона Гука имеет вид:

  • F - модуль, т. е. численное значение силы упругости;
  • х - изменение длины тела;
  • k - коэффициент жесткости, зависящий от формы, размеров и материала тела.

Знак минус указывает то, что сила упругости направлена в сторону противоположную смещению частиц.

Каждый физический закон имеет свои границы применения. Закон, установленный Гуком можно применять только к упругим деформациям, когда после снятия нагрузки форма и размеры тела полностью восстанавливаются.

У пластичных тел (пластилин, влажная глина) такого восстановления не происходит.

Упругостью в той или иной степени обладают все твёрдые тела. Первое место по упругости занимает резина, второе - . Даже очень упругие материалы при определенных нагрузках могут проявлять пластичные свойства. Это используют для изготовления проволоки, вырезания специальными штампами деталей сложной формы.

Если у вас есть ручные кухонные весы (безмен), то на них наверняка написан максимальный вес, на который они рассчитаны. Скажем 2 кг. При подвешивании более тяжелого груза, находящаяся в них стальная пружина уже никогда не восстановит свою форму.

Работа силы упругости

Как и любая сила, сила упругости, способна совершать работу. Причем очень полезную. Она предохраняет деформируемое тело от разрушения. Если она с этим не справляется, наступает разрушение тела. Например, разрывается трос подъёмного крана, струна на гитаре, резинка на рогатке, пружина на весах. Эта работа всегда имеет знак минус, поскольку сама сила упругости тоже отрицательна.

Вместо послесловия

Вооружившись некоторыми сведениями о силах упругости и деформациях, мы легко ответим на некоторые вопросы. Скажем, почему крупные кости у человека имеют трубчатое строение?

Изогните металлическую или деревянную линейку. Её выпуклая часть испытает деформацию растяжения, а вогнутая - сжатия. Средняя же часть нагрузки не несет. Природа и воспользовалась этим обстоятельством, снабдив человека и животных трубчатыми костями. В процессе движения кости, мышцы и сухожилья испытывают все виды деформаций. Трубчатое строение костей значительно облегчает их вес, абсолютно не влияя на их прочность.

Стебли злаковых культур имеют такое же строение. Порывы ветра пригибают их до земли, а силы упругости помогают выпрямиться. Кстати, рама у велосипеда тоже изготавливается из трубок, а не из стержней: вес намного меньше и металл экономится.

Закон, установленный Робертом Гуком, послужил основой для создания теории упругости. Расчёты, выполненные по формулам этой теории, позволяют обеспечить долговечность высотных сооружений и других конструкций .

Если это сообщение тебе пригодилось, буда рада видеть тебя

Если на середину доски, лежащей горизонтально на двух опорах поставить груз, то под действием силы тяжести некоторое время груз будет двигаться вниз, прогибая доску, а затем остановится.

Эту остановку можно объяснить тем, что кроме силы тяжести, направленной вниз, на доску подействовала другая сила, направленная вверх. При движении вниз доска деформируется, при этом возникает сила, с которой опора действует на тело, лежащее на ней, эта сила направленна вверх, то есть в сторону, противоположную силе тяжести. Такую силу называют силой упругости . Когда сила упругости становится равной силе тяжести, действующей на тело, опора и тело останавливаются.

Сила упругости — это сила, возникающая при деформации тела (то есть при изменении его формы, размеров) и всегда направлена в сторону, противоположную деформирующей силы.

Причина возникновения силы упругости

Причиной возникновения сил упругости является взаимодействие молекул тела . На малых расстояниях молекулы отталкиваются, а на больших – притягиваются. Конечно речь идёт о расстояниях сравнимых с размерами самих молекул.

В недеформированном теле молекулы находятся на таком расстоянии, при котором силы притяжения и отталкивания уравновешиваются. При деформации тела (при растяжении или сжатии) расстояния между молекулами изменяются – начинают преобладать либо силы притяжения, либо – отталкивания. В результате и возникает сила упругости, которая всегда направлена так, чтобы уменьшить величину деформации тела .

Закон Гука

Если к пружине повесить одну гирьку, то мы увидим, что пружина деформировалась — удлинилась на некоторую величину х . Если к пружине подвесить две одинаковые гирьки, то увидим, что удлинение стало в два раза больше. Удлинение пружины пропорционально силе упругости.

Сила упругости, возникающая при деформации тела, по модулю пропорциональна удлинению тела и направлена так, что стремится уменьшить величину деформации тела.

Закон Гука справедлив только для упругих деформаций, то есть таких видов деформации, которые исчезают, когда деформирующая сила перестаёт действовать!!!

Закон Гука можно записать в виде формулы:

где k — жёсткость пружины;
х — удлинение пружины (равно разнице конечной и начальной длине пружины);
знак «–» показывает, что сила упругости всегда направлена в противоположную сторону деформирующей силы.

«Разновидности» силы упругости

Силу упругости, которая действует со стороны опоры, называют силой нормальной реакции опоры . Нормальная от слова «нормаль», то есть реакция опоры всегда перпендикулярна поверхности.

Силу упругости, которая действует со стороны подвеса, называют силой натяжения нити (подвеса) .

Закон Гука был открыт в XVII веке англичанином Робертом Гуком. Это открытие о растяжении пружины является одним из законов теории упругости и выполняет важную роль в науке и технике.

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Математическая запись закона выглядит так:

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Сила упругости

Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.

Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.

Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.

Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?

Для начала определим основные термины , которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация - это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д.), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

где F - сила упругости, x - расстояние, на которое изменилась длина тела в результате растяжения, k - необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ - на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ - Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости . В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k - общая жесткость системы, k1, k2, …, ki - отдельные жесткости каждого элемента, i - общее количество всех пружин, задействованных в системе.

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно , величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем — в этом видео.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука . Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, - это сила тяжести тела. Формула для ее расчета - F = mg, где m - это масса используемого в эксперименте груза (переводится в кг), а g - величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14-10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.