Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера . Ее обозначения: . Сила Ампера векторная величина. Ее направление определяет правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее. Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на большой палец укажет направление силы Ампера (рис.1).

Закон Ампера

Элементарная сила Ампера определена законом (или формулой) Ампера:

где I – сила тока, – малый элемент длины проводника – это вектор, равный по модулю длине проводника, направленный в таком же направлении как вектор плотности тока, – индукция магнитного поля, в которое помещен проводник с током.

Иначе эту формулу для силы Ампера записывают как:

где – вектор плотности тока, dV – элемент объема проводника.

Модуль силы Ампера находят в соответствии с выражением:

где – угол между векторами магнитной индукции и направление течения тока. Из выражения (3) очевидно, что сила Ампера максимальна в случае перпендикулярности линий магнитной индукции поля по отношению к проводнику с током.

Силы, действующие на проводники с током в магнитном поле

Из закона Ампера следует, что на проводник с током, равным I, действует сила равная:

где магнитная индукция, рассматриваемая в пределах малого кусочка проводника dl. Интегрирование в формуле (4) проводят по всей длине проводника (l). Из выражения (4) следует, что на замкнутый контур с током I, в однородном магнитном поле действует сила Ампера равная

Сила Ампера, которая действует на элемент (dl) прямого проводника с током I 1 , помещённый в магнитное поле, которое создает другой прямой проводник, параллельный первому с током I 2 , равна по модулю:

где d – расстояние между проводниками, Гн/м(или Н/А 2) – магнитная постоянная. Проводники с токами одного направления притягиваются. Если направления токов в проводниках различны, то они отталкиваются. Для рассмотренных выше параллельных проводников бесконечной длины сила Амперана единицу длины может быть вычислена по формуле:

Формулу (6) в системе СИ применяют для получения количественного значения магнитной постоянной.

Единицы измерения силы Ампера

Основной единицей измерения силы Ампер (как и любой другой силы) в системе СИ является: =H

В СГС: =дин

Примеры решения задач

Пример

Задание. Прямой проводник длины l с током I находится в однородном магнитном поле B. На проводник действует сила F. Каков угол между направлением течения тока и вектором магнитной индукции?

Решение. На проводник с током, находящийся в магнитном поле действует сила Ампера, модуль которой для прямолинейного проводника с током расположенном в однородном поле можно представить как:

где – искомый угол. Следовательно:

Ответ.

Пример

Задание. Два тонких, длинных проводника с токами лежат в одной плоскости на расстоянии d друг от друга. Ширина правого проводника равна a. По проводникам текут токи I 1 и I 2 (рис.1). Какова, сила Ампера, действующая на проводники в расчете на единицу длины?

Решение. За основу решения задачи примем формулу элементарной силы Ампера:

Будем считать, что проводник с током I 1 создает магнитное поле, а другой проводник в нем находится.Станем искать силу Ампера, действующую на проводник с током I 2 . Выделим в проводнике (2) маленький элемент dx (рис.1), который находится на расстоянии x от первого проводника. Магнитное поле, которое создает проводник 1 (магнитное поле бесконечного прямолинейного проводника с током) в точке нахождения элементаdxпо теореме о циркуляции можно найти как.

Знания о том, что такое сила Ампера, как она относится и чем может быть полезна для людей, необходимы для тех, кто работает с током. Как для собственной безопасности, так и для работы с различной радиоэлектроникой (при конструировании рельсетронов, что довольно популярно). Но хватит ходить вокруг, приступим к выяснению того, что такое сила Ампера, особенности этой силы и где она используется. Также можно будет прочитать потенциал использования в будущем и пользу от использования сейчас.

Закон Ампера

Сила Ампера является главной составляющей закона Ампера - закона о взаимодействии электрических токов. В нём говорится, что в параллельных проводниках, в которых электрические токи текут в одном направлении, возникает сила притягивания. А в тех проводниках, в которых электрические токи текут в противоположных направлениях, возникает сила отталкивания.

Также законом Ампера называют закон, который определяет силу действия магнитного поля не небольшую часть проводника, по которой протекает ток. В данном случае она определяется как результат умножения плотности тока, который идёт по проводнику, на индукцию магнитного поля, в котором проводник находится.

Из самого закона Ампера сделаны выводы, что сила Ампера равняется нулю, если величина угла, расположенного между током и линией магнитной индукции, тоже будет равняться нулю. Другими словами, проводник для достижения нулевого значения должен быть расположен вдоль линии магнитной индукции.

А что же такое сила Ампера?

Это сила, с которой магнитное поле влияет на часть проводника, по которому течёт ток. Сам проводник находится в магнитном поле. Сила Ампера прямо зависит от силы тока в проводнике и векторного произведения длины части проводника, множимого на магнитную индукцию.

В формульном виде всё будет выглядеть так: са=ст*дчп*ми . Здесь:

  • са - сила Ампера,
  • ст - сила тока,
  • дчп - длина части проводника,
  • ми - магнитная индукция.

История открытия

Впервые его сформулировал Андре Ампер, который применил закон к постоянному току. Открыт он был в 1820 году. Этот закон в будущем имел далеко идущие последствия, ведь без него представить работу целого ряда электрических приборов просто невозможно.

Правило левой руки

Это правило помогает запомнить направление силы Ампера. Само правило звучит так: если рука занимает такое положение, что линии самой магнитной индукции внешнего поля заходят в ладонь, а пальцы с мизинца по указательный указывают направление в сторону движения тока в проводнике, то отторгнутый по углом в 90 градусов большой палец ладони и будет указывать, куда направлена сила Ампера, действующая на элемент проводника. Могут возникнуть некоторые затруднения при использовании этого правила, но только если угол между током и индукцией поля слишком маленький. Для простоты применения этого правила ладонь часто располагают так, чтобы в неё входил не вектор, а модуль магнитной индукции (как изображено на картинке).

Сила Ампера (при использовании двух параллельных проводников)

Представьте два бесконечных проводника, которые расположены на определённом расстоянии. По ним протекают токи. Если токи текут в одном направлении, то проводники притягиваются. В противоположном случае они будут отталкиваться один от одного. Поля, которые создают параллельные проводники, направлены встречно друг другу. И чтобы понять, почему они реагируют именно так, вам достаточно вспомнить о том, что одноименные полюса магнитов или одноименные заряды всегда отталкиваются. Для определения стороны направления поля, созданного проводником, следует использовать правило правого винта.

Применение знаний о силе Ампера

Встретиться с областью применения знания о силе Ампера можно практически на каждом шагу цивилизации. Применение силы Ампера настолько обширно, что среднестатистическому гражданину даже сложно представить себе, что можно делать, зная закон Ампера и особенности применения силы. Так, под действием силы Ампера вращается ротор, на обмотку которого оказывает влияние магнитное поле статора, и ротор приходит в движение. Любое транспортное средство, которое использует электротягу для вращения валов (которые соединяют колеса транспорта), использует силу Ампера (это можно увидеть на трамваях, электровозах, электрических машинах и многих других интересных видах транспорта). Также именно магнитное поле влияет на механизмы, которые являются электрическими приборами, что должны открывать/закрывать что-то (двери лифта, открывающиеся ворота, электрические двери и много других). Другими словами, все устройства, что не могут работать без электричества и имеют движимые узлы, работают благодаря знанию о законе Ампера. Для примера:

  1. Любые узлы в электротехнике. Самый популярный - элементарный электродвигатель.
  2. Различные виды электротехники, которая формирует различные звуковые колебания с использованием постоянного магнита. Механизм действия таков, что на магнит действует электромагнитное поле, что создает расположенный рядом проводник с током, и изменение напряжения приводит к смене звуковой частоты.
  3. На силе Ампера построена работа электромеханических машин, в которых движение обмотки ротора происходит относительно обмотки статора.
  4. С помощью силы Ампера происходит электродинамический процесс сжатия плазмы, что нашло применение в токамаках и потенциально открывает огромные пути развития термоядерной энергии.
  5. Также с помощью электродинамического сжатия применяется электродинамический метод прессования.

Потенциал

Несмотря на уже сейчас существующее практическое применение, потенциал использования силы Ампера настолько огромен, что с трудом поддаётся описанию. Она может использоваться в сложных механизмах, которые призваны облегчить существование человека, автоматизировать его деятельность, а также усовершенствовать природные жизненные процессы.

Эксперимент

Для того чтобы иметь возможность своими глазами увидеть действие силы Ампера, можно провести дома небольшой эксперимент. Для начала необходимо взять магнит-подкову, в котором между полюсами поместить проводник. Всё желательно воспроизвести так, как на картинке. Если замкнуть ключ, то можно увидеть, что проводник начнёт двигаться, смещаясь от начальной точки равновесия. Можно поэкспериментировать с направлениями пропускания тока и увидеть, что зависимо от направления движения меняется направление отклонения проводника. Из самого эксперимента можно вынести несколько наблюдений, которые подтверждают вышесказанное:

  • Магнитное поле действует исключительно на проводник с током.
  • На проводник с током в магнитном поле действует сила, которая является следствием их взаимодействия. Именно под воздействием этой силы проводник движется в пространстве в границах магнитного поля.
  • Характер взаимодействия прямо зависит от напряжения электрического тока и силовых линий магнитного поля.
  • Поле не действует на проводник с током, если ток в проводнике течёт параллельно направлению линий поля.

Безопасность при работе с током

При работе с электрическим током необходимо придерживаться нескольких простых правил техники безопасности, которые позволят вам избежать негативных последствий:

  • Работать с источниками питания не больше 12 Вольт.
  • Не работать на воспламеняемых материалах.
  • Не работать с мокрыми руками.
  • Не браться за части прибора, которые находятся под напряжением.

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Формула 2 — Сила Ампера для двух параллельных проводников.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.

На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Рисунок 2 — Параллельные проводники с током

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

Данное видео рассказывает о том, как постоянное магнитное поле, созданное подковообразным магнитом, воздействует на проводник с током. Роль проводника с током в данном случае выполняет алюминиевый цилиндр. Этот цилиндр лежит на медных шинах, по которым к нему подводится электрический ток. Сила, воздействующая на проводник с током, находящемся в магнитном поле, называется силой Ампера. Направление действия силы Ампера определяется с помощью правила левой руки.

Силы, действующие на проводник.

В электрическом поле на поверхность проводника, а именно здесь расположены электрические заряды, действуют со стороны поля определённые силы. Поскольку напряжённость электростатического поля на поверхности проводника имеет только нормальную составляющую, сила, действующая на элемент площади поверхности проводника, является перпендикулярной этому элементу поверхности. Выражение для рассматриваемой силы, отнесённой к величине площади элемента поверхности проводника, имеет вид:

(1)

где - внешняя нормаль к поверхности проводника, - поверхностная плотность электрического заряда на поверхности проводника. Для заряженной тонкой сферической оболочки растягивающие усилия могут вызвать напряжения в материале оболочки, превышающие предел прочности.

Интересно, что подобные соотношения были предметом исследований таких классиков науки как Пуассон и Лаплас в самом начале XIX века. В соотношении (1) недоумение вызывает множитель 2 в знаменателе. Действительно, а почему правильный результат получается делением пополам выражения ? Рассмотрим один частный случай (рис.1): пусть проводящий шар радиуса содержит на своей боковой поверхности электрический заряд . Поверхностную плотность электрического заряда рассчитать легко: Введём сферическую систему координат (), элемент боковой поверхности шара определим как . Заряд элемента поверхности можно вычислить по зависимости: . Суммарный электрический заряд кольца радиуса и шириной определяется выражением: . Расстояние от плоскости рассматриваемого кольца до полюса сферы (боковая поверхность шара) равно . Известно решение задачи об определении составляющей вектора напряжённости электростатического поля на оси кольца (принцип суперпозиции) в точке наблюдения, отстоящей от плоскости кольца на расстояние :

Вычислим суммарное значение напряжённости электростатического поля, создаваемого поверхностными зарядами, исключая элементарный заряд в окрестности полюса сферы:

Вспомним, что около заряженной проводящей сферы напряжённость внешнего электростатического поля равна

Оказывается, сила, действующая на заряд элемента поверхности заряженного проводящего шара, в 2 раза меньше, чем сила, действующая на такой же заряд, расположенный вблизи боковой поверхности шара, но вне его.

Суммарная сила, действующая на проводник, равна

(5)

Помимо силы со стороны электростатического поля, проводник подвергается действию момента сил

(6)

где - радиус-вектор элемента поверхности dS проводника.

На практике часто оказывается более удобным силовое воздействие электростатического поля на проводник рассчитывать путем дифференцирования электрической энергии системы W. Сила, действующая на проводник, в соответствии с определением потенциальной энергии, равна

а величина проекции вектора момента сил на некоторую ось равна

где - угол поворота тела как целого вокруг рассматриваемой оси. Заметим, что приведенные выше формулы справедливы, если электрическая энергия W выражена через заряды проводников (источники поля!), а вычисление производных производится при постоянных значениях электрических зарядов.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника - в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) - разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп - магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.