Преподаватель математики Щелковского филиала ГБПОУ МО "Красногорский колледж" Артемьев Василий Ильич.

Изучение темы «Решение задач на построение сечений» начинается в 10 классе или на первом курсе учреждений НПО. В случае, если кабинет математики оснащен средствами мультимедиа, то решение проблемы изучения облегчается с помощью различных программ. Одной из таких программ является программное обеспечение динамической математики GeoGebra 4.0.12. Она подходит для изучения и обучения на любом из этапов образования, облегчает создание математических построений и моделей обучающимися, которые позволяют проводить интерактивные исследования при перемещении объектов и изменение параметров.

Рассмотрим применение этого программного продукта на конкретном примере.

Задача. Построить сечение пирамиды плоскостью PQR, если точка P лежит на прямой SA, точка Q лежит на прямой SB, точка R лежит на прямой SC.

Решение. Рассмотрим два случая. Случай 1. Пусть точка P принадлежит ребру SA.

1. Отметим с помощью инструмента «Точка» произвольные точки A, B, C, D. Щелкнем правой клавишей на точку D, выберем «Переименовать». Переименуем D на S и установим положение этой точки, как показано на рисунке 1.

2. С помощью инструмента «Отрезок по двум точкам» построим отрезки SA, SB, SC, AB, AC, BC.

3. Щелкнем правой клавишей мыши по отрезку AB и выбираем «Свойства» - «Стиль». Устанавливаем пунктирную линию.

4. Отметим на отрезках SA, SB, CS точки P, Q, R.

5. Инструментом «Прямая по двум точкам» построим прямую PQ.

6. Рассмотрим прямую PQ и точку R. Вопрос учащимся: Сколько плоскостей проходит через прямую PQ и точку R? Ответ обоснуйте. (Ответ. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна).

7. Строим прямые PR и QR.

8. Выбираем инструмент «Многоугольник» и по очереди щелкнем по точкам PQRP.

9. Инструментом « Перемещать» меняем положение точек и наблюдаем за изменениями сечения.

Рисунок 1.

10. Щелкнем по многоугольнику правой клавишей и выбираем «Свойства» - «Цвет». Заливаем многоугольник каким-нибудь нежным цветом.

11. На панели объектов щелкнем по маркерам и скроем прямые.

12. В качестве дополнительного задания можно измерить площадь сечения.

Для этого выберем инструмент «Площадь» и щелкнем левой клавишей мыши по многоугольнику.

Случай 2. Точка P лежит на прямой SA. Для рассмотрения решения задачи для этого случая можно пользоваться чертежом прежней задачи. Скроем лишь многоугольник и точку Р.

1. Инструментом «Прямая по двум точкам» построим прямую SA.

2. Отметим на прямой SA точку P1, как показано на рисунке 2.

3. Проведем прямую P1Q.

4. Выбираем инструмент «Пересечение двух объектов» , и щелкнем левой клавишей мыши по прямым АВ и P1Q. Найдем точку их пересечения К.

5. Проведем прямую P1R. Найдем точку пересечения М этой прямой с прямой АС.

Вопрос учащимся: сколько плоскостей можно провести через прямые P1Q и P1R? Ответ обоснуйте. (Ответ. Через две пересекающиеся прямые проходит плоскость, и притом только одна).

6. Проведем прямые КМ и QR. Вопрос учащимся. Каким плоскостям одновременно принадлежат точки К, М? Пересечением каких плоскостей является прямая КМ?

7. Построим многоугольник QRKMQ. Зальем нежным цветом и скроем вспомогательные прямые.

Рисунок 2.

С помощью инструмента «Перемещение» двигаем точку вдоль прямой AS.Рассматриваем различные положения плоскости сечения.

Задания для построения сечений:

1. Построить сечение, определяемое параллельными прямыми АА1 и СС1. Сколько плоскостей проходит через параллельные прямые?

2. Построить сечение проходящее через пересекающиеся прямые. Сколько плоскостей проходит через пересекающиеся прямые?

3. Построение сечений с использованием свойств параллельных плоскостей:

а) Построить сечение параллелепипеда плоскостью, проходящей через точку М и прямую АС.

б) Построить сечение призмы плоскостью, проходящей через ребро АВ и середину ребра В1С1.

в) Построить сечение пирамиды плоскостью, проходящей через точку К и параллельно плоскости основаниям пирамиды.

4. Построение сечений методом следов:

а) Дана пирамида SABCD. Построить сечение пирамиды плоскостью, проходящей через точки P, Q и R.

5) Проведем прямую QF и найдем точку Н пересечения с ребром SB.

6) Проведем прямые HR и PG.

7) Выделим инструментом «Многоугольник» полученное сечение и изменим цвет заливки.

б) Самостоятельно постройте сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки P, K и M. Список источников.

1. Электронный ресурс http://www.geogebra.com/indexcf.php

2. Электронный ресурс http://geogebra.ru/www/index.php (Сайт Сибирского института GeoGebra)

3. Электронный ресурс http://cdn.scipeople.com/materials/16093/projective_geometry_geogebra.PDF

4. Электронный ресурс. http://nesmel.jimdo.com/geogebra-rus/

5. Электронный ресурс http://forum.sosna24k.ru/viewforum.php?f=35&sid=(Форум GeoGebra для учителей и школьников).

6. Электронный ресурс www.geogebratube.org (Интерактивные материалы по работе с программой)

А вы знаете, что называется сечением многогранников плоскостью? Если вы пока сомневаетесь в правильности своего ответа на этот вопрос, то можете довольно просто себя проверить. Предлагаем пройти небольшой тест, представленный ниже.

Вопрос. Назовите номер рисунка, на котором изображено сечение параллелепипеда плоскостью?

Итак, правильный ответ – на рисунке 3.

Если вы ответите правильно, это подтверждает то, что вы понимаете, с чем имеете дело. Но, к сожалению, даже правильный ответ на вопрос-тест не гарантирует вам наивысших отметок на уроках по теме «Сечения многогранников». Ведь самым сложным является не распознавание сечений на готовых чертежах, хотя это тоже очень важно, а их построении.

Для начала сформулируем определение сечения многогранника. Итак, сечением многогранника называют многоугольник, вершины которого лежат на ребрах многогранника, а стороны – на его гранях.

Теперь потренируемся быстро и безошибочно строить точки пересечения данной прямой с заданной плоскостью. Для этого решим следующую задачу.

Построить точки пересечения прямой MN с плоскостями нижнего и верхнего оснований треугольной призмы ABCA 1 B 1 C 1 , при условии, что точка M принадлежит боковому ребру CC 1 , а точка N – ребру BB 1 .

Начнем с того, что продлим на чертеже прямую MN в обе стороны (рис. 1). Затем, чтобы получить необходимые по уловию задачи точки пересечения, продлеваем и прямые, лежащие в верхнем и нижнем основаниях. И вот наступает самый сложный момент в решении задачи: какие именно прямые в обоих основаниях необходимо продлить, так как в каждом из них имеется по три прямые.

Чтобы правильно сделать заключительный шаг построения, необходимо определить, какие из прямых оснований находятся в той же плоскости, что и интересующая нас прямая MN. В нашем случае – это прямая CB в нижнем и C 1 B 1 в верхнем основаниях. И именно их и продлеваем до пересечения с прямой NM (рис. 2).

Полученные точки P и P 1 и есть точки пересечения прямой MN с плоскостями верхнего и нижнего оснований треугольной призмы ABCA 1 B 1 C 1 .

После разбора представленной задачи можно перейти непосредственно к построению сечений многогранников. Ключевым моментом здесь будут рассуждения, которые и помогут прийти к нужному результату. В итоге постараемся в итоге составить шаблон, который будет отражать последовательность действий при решении задач данного типа.

Итак, рассмотрим следующую задачу. Построить сечение треугольной призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки X, Y, Z, принадлежащие ребрам AA 1 , AC и BB 1 соответственно.

Решение: Выполним чертеж и определим, какие пары точек лежат в одной плоскости.

Пары точек X и Y, X и Z можно соединить, т.к. они лежат в одной плоскости.

Построим дополнительную точку, которая будет лежать в той же грани, что и точка Z. Для этого продлим прямые XY и СС 1 , т.к. они лежат в плоскости грани AA 1 C 1 C. Назовем полученную точку P.

Точки P и Z лежат в одной плоскости – в плоскости грани CC 1 B 1 B. Поэтому можем их соединить. Прямая PZ пересекает ребро CB в некоторой точке, назовем ее T. Точки Y и T лежат в нижней плоскости призмы, соединяем их. Таким образом, образовался четырехугольник YXZT, а это и есть искомое сечение.

Подведем итог. Чтобы построить сечение многогранника плоскостью, необходимо:

1) провести прямые через пары точек, лежащих в одной плоскости.

2) найти прямые, по которым пересекаются плоскости сечения и грани многогранника. Для этого нужно найти точки пересечения прямой, принадлежащей плоскости сечения, с прямой, лежащей в одной из граней.

Процесс построения сечений многогранников сложен тем, что в каждом конкретном случае он различен. И никакая теория не описывает его от начала и до конца. На самом деле есть только один верный способ научиться быстро и безошибочно строить сечения любых многогранников – это постоянная практика. Чем больше сечений вы построите, тем легче в дальнейшем вам будет это делать.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Определение

Сечение - это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.
Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве” .

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.

4. Две плоскости параллельны, если они не имеют общих точек.

5. Две прямые в пространстве называются перпендикулярными, если угол между ними равен \(90^\circ\) .

6. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

7. Две плоскости называются перпендикулярными, если угол между ними равен \(90^\circ\) .

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Важные теоремы

1. Если прямая \(a\) , не лежащая в плоскости \(\pi\) , параллельна некоторой прямой \(p\) , лежащей в плоскости \(\pi\) , то она параллельна данной плоскости.

2. Пусть прямая \(p\) параллельна плоскости \(\mu\) . Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\) , то линия пересечения плоскостей \(\pi\) и \(\mu\) - прямая \(m\) - параллельна прямой \(p\) .


3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\) , то линии пересечения плоскостей также параллельны:

\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]


5. Пусть прямая \(l\) лежит в плоскости \(\lambda\) . Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\) , не лежащей на прямой \(l\) , то прямые \(l\) и \(s\) скрещиваются.


6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

7. Теорема о трех перпендикулярах.

Пусть \(AH\) – перпендикуляр к плоскости \(\beta\) . Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\) . Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.


8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.


Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA"\) и \(BB"\) (точки \(A", B"\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A"B"\) – проекция прямой \(a\) на плоскость \(\mu\) . Точка \(M=a\cap A"B"\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\) .

Причем заметим, что все точки \(A, B, A", B", M\) лежат в одной плоскости.

Пример 1.

Дан куб \(ABCDA"B"C"D"\) . \(A"P=\dfrac 14AA", \ KC=\dfrac15 CC"\) . Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\) .

Решение

1) Т.к. ребра куба \(AA", CC"\) перпендикулярны \((ABC)\) , то точки \(A\) и \(C\) - проекции точек \(P\) и \(K\) . Тогда прямая \(AC\) – проекция прямой \(PK\) на плоскость \(ABC\) . Продлим отрезки \(PK\) и \(AC\) за точки \(K\) и \(C\) соответственно и получим точку пересечения прямых – точку \(E\) .


2) Найдем отношение \(AC:EC\) . \(\triangle PAE\sim \triangle KCE\) по двум углам (\(\angle A=\angle C=90^\circ, \angle E\) – общий), значит, \[\dfrac{PA}{KC}=\dfrac{EA}{EC}\]

Если обозначить ребро куба за \(a\) , то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\) . Тогда:

\[\dfrac{\frac34a}{\frac15a}=\dfrac{a\sqrt2+EC}{EC} \Rightarrow EC=\dfrac{4\sqrt2}{11}a \Rightarrow AC:EC=4:11\]

Пример 2.

Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\) , высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\) , считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\) , считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\) .

Решение

1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\) . Т.к. \(DO\perp (ABC)\) , то и \(NO\perp (ABC)\) . Значит, \(O\) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\) . Точка \(Q\) будет лежать на медиане \(AK\) .
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\) , то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\) , то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\) , следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\) .


Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\) . \(L\) – точка пересечения этих прямых.

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\) , хотя она могла бы лежать и внутри него; а как правильно?).

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\) . Тогда медиана \(AK=\dfrac{\sqrt3}2a\) . Значит, \(OK=\dfrac13AK=\dfrac 1{2\sqrt3}a\) . Найдем длину отрезка \(OL\) (тогда мы сможем понять, внутри или вне отрезка \(OK\) находится точка \(L\) : если \(OL>OK\) – то вне, иначе – внутри).

а) \(\triangle AMQ\sim \triangle ADO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle A\) – общий). Значит,

\[\dfrac{MQ}{DO}=\dfrac{AQ}{AO}=\dfrac{MA}{DA}=\dfrac 45 \Rightarrow MQ=\dfrac 45a, \ AQ=\dfrac 45\cdot \dfrac 1{\sqrt3}a\]

Значит, \(QK=\dfrac{\sqrt3}2a-\dfrac 45\cdot \dfrac 1{\sqrt3}a=\dfrac7{10\sqrt3}a\) .

б) Обозначим \(KL=x\) .
\(\triangle LMQ\sim \triangle LNO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle L\) – общий). Значит,

\[\dfrac{MQ}{NO}=\dfrac{QL}{OL} \Rightarrow \dfrac{\frac45 a}{\frac 23a} =\dfrac{\frac{7}{10\sqrt3}a+x}{\frac1{2\sqrt3}a+x} \Rightarrow x=\dfrac a{2\sqrt3} \Rightarrow OL=\dfrac a{\sqrt3}\]

Следовательно, \(OL>OK\) , значит, точка \(L\) действительно лежит вне отрезка \(AK\) .

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\) ).

Пример 3

Дана правильная четырехугольная пирамида \(SABCD\) . Найдите сечение пирамиды плоскостью \(\alpha\) , проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\) .

Решение

1) Обозначим середину ребра \(SA\) за \(M\) . Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\) . Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\) .


Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\) , она должна содержать некоторую прямую, параллельную \(BD\) . Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\) . Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) (\(K\in SB, P\in SD\) ). Тогда, соединив точки \(C, P, M, K\) , получим сечение пирамиды плоскостью \(\alpha\) .

2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\) . Таким образом мы полностью определим построенное сечение.

Заметим, что так как \(KP\parallel BD\) , то по теореме Фалеса \(\dfrac{SB}{SK}=\dfrac{SD}{SP}\) . Но \(SB=SD\) , значит и \(SK=SP\) . Таким образом, можно найти только \(SP:PD\) .

Рассмотрим \(\triangle ASC\) . \(CM, SH\) – медианы в этом треугольнике, следовательно, точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то есть \(SO:OH=2:1\) .


Теперь по теореме Фалеса из \(\triangle BSD\) : \(\dfrac{SP}{PD}=\dfrac{SO}{OH}=\dfrac21\) .

3) Заметим, что по теореме о трех перпендикулярах \(CO\perp BD\) как наклонная (\(OH\) – перпендикуляр на плоскость \(ABC\) , \(CH\perp BD\) – проекция). Значит, \(CO\perp KP\) . Таким образом, сечением является четырехугольник \(CPMK\) , диагонали которого взаимно перпендикулярны.

Пример 4

Дана прямоугольная пирамида \(DABC\) с ребром \(DB\) , перпендикулярным плоскости \(ABC\) . В основании лежит прямоугольный треугольник с \(\angle B=90^\circ\) , причем \(AB=DB=CB\) . Проведите через прямую \(AB\) плоскость, перпендикулярную грани \(DAC\) , и найдите сечение пирамиды этой плоскостью.

Решение

1) Плоскость \(\alpha\) будет перпендикулярна грани \(DAC\) , если она будет содержать прямую, перпендикулярную \(DAC\) . Проведем из точки \(B\) перпендикуляр на плоскость \(DAC\) - \(BH\) , \(H\in DAC\) .

Проведем вспомогательные \(BK\) – медиану в \(\triangle ABC\) и \(DK\) – медиану в \(\triangle DAC\) .
Т.к. \(AB=BC\) , то \(\triangle ABC\) – равнобедренный, значит, \(BK\) – высота, то есть \(BK\perp AC\) .
Т.к. \(AB=DB=CB\) и \(\angle ABD=\angle CBD=90^\circ\) , то \(\triangle ABD=\triangle CBD\) , следовательно, \(AD=CD\) , следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\) .

Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\) ; наклонная \(BK\perp AC\) , значит и проекция \(HK\perp AC\) . Но мы уже определили, что \(DK\perp AC\) . Таким образом, точка \(H\) лежит на отрезке \(DK\) .


Соединив точки \(A\) и \(H\) , получим отрезок \(AN\) , по которому плоскость \(\alpha\) пересекается с гранью \(DAC\) . Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\) .

2) Определим точное положение точки \(N\) на ребре \(DC\) .

Обозначим \(AB=CB=DB=x\) . Тогда \(BK\) , как медиана, опущенная из вершины прямого угла в \(\triangle ABC\) , равна \(\frac12 AC\) , следовательно, \(BK=\frac12 \cdot \sqrt2 x\) .

Рассмотрим \(\triangle BKD\) . Найдем отношение \(DH:HK\) .


Заметим, что т.к. \(BH\perp (DAC)\) , то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\) . Тогда \(\triangle DBH\sim \triangle DBK\) , следовательно

\[\dfrac{DH}{DB}=\dfrac{DB}{DK} \Rightarrow DH=\dfrac{\sqrt6}3x \Rightarrow HK=\dfrac{\sqrt6}6x \Rightarrow DH:HK=2:1\]


Рассмотрим теперь \(\triangle ADC\) . Медианы треугольника точной пересечения делятся в отношении \(2:1\) , считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\) .

Вся история геометрии и некоторых других разделов математики тесно связана с развитием теории геометрических построений. Важнейшие аксиомы геометрии, сформированные Евклидом около 300 года до нашей эры, ясно показывают, какую роль сыграли геометрические построения в формировании геометрии.

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Многогранники и построение их сечений”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

На уроках геометрии в этом году мы прошли тему “Построение сечений многогранников”. В рамках программы мы изучили один метод построения сечений, но мне стало интересно, а какие методы ещё существуют.

Цель моей работы : Изучить все методы построения сечений многогранников.

Ни одни геометрические тела не обладают таким совершенством и красотой, как многогранники. "Многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

В настоящее время теория геометрических построений представляет обширную и глубоко развитую область математики, связанную с решением разнообразных принципиальных вопросов, уходящих в другие ветви математики.

  1. История начертательной геометрии

Еще в глубокой древности человек чертил и рисовал на скалах, камнях, стенах и предметах домашнего обихода изображения вещей, деревьев, животных и людей. Он делал это для удовлетворения своих потребностей, в том числе эстетических. При этом основное требование к таким изображениям заключалось в том, чтобы изображение вызывало правильное зрительное представление о форме изображаемого предмета.

С ростом практических и технических применений изображений (в строительстве зданий и других гражданских и военных сооружений и т. п.) к ним стали предъявлять и такие требования, чтобы по изображению можно было судить о геометрических свойствах, размерах и взаиморасположении отдельных элементов определенного предмета. О таких требованиях можно судить по многим памятникам древности, уцелевшим до наших дней. Однако строгие геометрические обоснованные правила и методы изображения пространственных фигур (с соблюдением перспективы) стали систематически разрабатывать художники, архитекторы и скульпторы лишь в эпоху Возрождения: Леонардо да Винчи, Дюрер, Рафаэль, Микеланджело, Тициан и др.

Начертательная геометрия как наука была создана в конце XVIII века великим французским геометром и инженером Гаспаром Монжем (1746 – 1818). В 1637 г. французский геометр и философ Рене Декарт (1596 – 1650) создал метод координат и заложил основы аналитической геометрии, а его соотечественник, инженер и математик Жирар Дезаг (1593 – 1662), использовал этот метод координат для построения перспективных проекций и обосновал теорию аксонометрических проекций.

В XVII веке в России успешно развивались технические чертежи, выполненные в виде планов и профилей в масштабе. Здесь в первую очередь следует назвать чертежи выдающегося русского механика и изобретателя И.П. Кулибина (1735 – 1818). В его проекте деревянного арочного моста впервые были использованы ортогональные проекции (1773). (Ортогональное проектирование плоскости на лежащую в ней прямую или пространства на плоскость – это частный случай параллельного проектирования, в котором направление проекции перпендикулярно прямой или плоскости, на которую проектируют.)

Большой вклад в развитие ортогональных проекций внес французский инженер А. Фрезье (1682 –1773), который впервые рассмотрел проецирование объекта на две плоскости – горизонтальную и фронтальную.

Величайшей заслугой Г. Монжа явилось обобщение всех научных трудов его предшественников, всей теории о методах изображения пространственных фигур и создание единой математической науки об ортогональном проецировании – начертательной геометрии.

Рождение этой новой науки почти совпало с основанием в Петербурге первого в России высшего транспортного учебного заведения – Института Корпуса инженеров путей сообщения (2 декабря 1809 г.)

Выпускники этого института, его профессора и ученые внесли существенный вклад в развитие геометрических методов изображения, в теорию и практику начертательной геометрии.

  1. Определения многогранников

В стереометрии изучаются фигуры в пространстве, называемые телами . Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник - это такое тело, поверхность которого состоит из нескольких плоских многоугольников. Многогранник называется выпуклым , если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью . Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника , а вершины - вершинами многогранника.

Сечением многогранника плоскостью называется геометрическая фигура, представляющая собой множество всех точек пространства, принадлежащих одновременно данным многограннику и плоскости; плоскость при этом называется секущей плоскостью.

Поверхность многогранника состоит из ребер, отрезков и граней плоских многоугольников. Так как прямая и плоскость пересекаются в точке, а две плоскости - по прямой, то сечением многогранника плоскостью является плоский многоугольник ; вершинами этого многоугольника служат точки пересечения секущей плоскости с ребрами многогранника, а сторонами - отрезки, по которым секущая плоскость пересекает его грани. Это означает, что для построения искомого сечения данного многогранника плоскостью α достаточно построить точки ее пересечения с ребрами многогранника. Затем последовательно соединить отрезками эти точки, при этом выделить сплошными линиями, видимые и штриховыми невидимые стороны полученного многоугольника сечения.

III. Методы построения сечений многогранников

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

  • Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  • В задачах используются в основном простейшие многогранники.
  • Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  • Что значит построить сечение многогранника плоскостью;
  • Как могут располагаться относительно друг друга многогранник и плоскость;
  • Как задается плоскость;
  • Когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

  • Тремя точками;
  • Прямой и точкой;
  • Двумя параллельными прямыми;
  • Двумя пересекающимися прямыми,

Построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

3.1 Построение сечений многогранников на основе системы аксиом стереометрии

Задача 1 . Постройте сечение пирамиды РАВС плоскостью α = (МКH), где М, К и Н- внутренние точки соответственно ребер РС, РВ и АВ (рис. 1, а).

Решение .

1-й шаг . Точки М и K лежат в каждой из двух плоскостей α и РВС. Поэтому по аксиоме пересечения двух плоскостей плоскость α пересекает плоскость РВС по прямой МК. Следовательно, отрезок МК - одна из сторон искомого сечения (рис. 1, б).

2-й шаг . Аналогично, отрезок КН - другая сторона искомого сечения (рис. 1, в).

3-й шаг . Точки М и Н не лежат одновременно ни в одной из граней пирамиды РАВС, поэтому отрезок МН не является стороной сечения этой пирамиды. Прямые КН и РА лежат в плоскости грани АВР и пересекаются. Построим точку T= КН ∩АР (рис. 1, г).

Поскольку прямая КН лежит в плоскости α, то и точка T лежит в плоскости α. Теперь мы видим, что плоскости α и АРС имеют общие точки М и T. Следовательно, по аксиоме пересечения двух плоскостей плоскость α и плоскость АРС пересекаются по прямой МТ, которая, в свою очередь, пересекает ребро АС в точке R (рис. 1, д).

4-й шаг . Теперь так же, как в шаге 1, устанавливаем, что плоскость α пересекает грани АСР и АВС по отрезкам MR и HR соответственно. Следовательно, искомое сечение - четырехугольник MKHR (рис. 1, е).

Рис. 2

Задача 2. Постройте сечение пирамиды MABCD плоскостью α = (КНР), где K, H и P - внутренние точки ребер соответственно МА, МВ и MD (рис. 2, а).

Решение. Первые два шага аналогичны шагам 1 и 2 предыдущей задачи. В результате получим стороны КР и КН (рис. 2, б) искомого сечения. Построим остальные вершины и стороны многоугольника - сечения.

3-й шаг . Продолжим отрезок КР до пересечения с прямой AD в точке F (рис. 2, в). Так как прямая КР лежит в секущей плоскости α, то точка F= КР ∩ AD = КР ∩ (АВС) является общей для плоскостей α и АВС.

4-й шаг . Продолжим отрезок КН до пересечения с прямой АВ в точке L (рис. 2, г). Так как прямая КН лежит в секущей плоскости α, то точка L = КН ∩ АВ = КН ∩ (АВС) является общей для плоскостей α и АВС.

Таким образом , точки F и L являются общими для плоскостей α и АВС. Это означает, что плоскость α пересекает плоскость АВС основания пирамиды по прямой FL.

5-й шаг . Проведем прямую FL. Эта прямая пересекает ребра ВС и DС соответственно в точках R и T (рис. 2, д), которые служат вершинами искомого сечения. Значит, плоскость α пересекает грань основания ABCD по отрезку RT - стороне искомого сечения.

6-й шаг . Теперь проводим отрезки RH и РТ (рис. 2, е), по которым плоскость α пересекает грани ВМС и MCD данной пирамиды. Получаем пятиугольник РКНRТ - искомое сечение пирамиды MABCD (рис. 2, е).

Рассмотрим более сложную задачу.

Задача 3 . Постройте сечение пятиугольной пирамиды PABCDE плоскостью α = (KQR), где K, Q - внутренние точки ребер соответственно РА и РС, а точка R лежит внутри грани DPE (рис. 3, а).

Решение . Прямые (QK и АС лежат в одной плоскости АСР (по аксиоме прямой и плоскости) и пересекаются в некоторой точке T1, (рис. 3 б), при этом T1 є α, так как QК є α.

Прямая РR пересекает DE в некоторой точке F (рис. 3, в), которая является точкой пересечения плоскости АРR и стороны DE основания пирамиды. Тогда прямые КR и АF лежат в одной плоскости АРR и пересекаются в некоторой точке Т2 (рис. 3, г), при этом Т2 є α, как точка прямой KR є α (по аксиоме прямой и плоскости).

Получили: прямая Т1 Т2 лежит в секущей плоскости α и в плоскости основания пирамиды (по аксиоме прямой и плоскости), при этом прямая пересекает стороны DE и АЕ основания ABCDE пирамиды соответственно в точках М и N (рис. 3, д), которые являются точками пересечения плоскости α с ребрами DE и АЕ пирамиды и служат вершинами искомого сечения.

Далее , прямая MR лежит в плоскости грани DPE и в секущей плоскости α (по аксиоме прямой и плоскости), пересекая при этом ребро PD в некоторой точке Н - еще одной вершине искомого сечения (рис. 3, е).

Далее, построим точку Т3 - Т1Т2 ∩ АВ (рис. 3, ж), которая, как точка прямой Т1Т2 є α, лежит в плоскости а (по аксиоме прямой и плоскости). Теперь плоскости грани РАВ принадлежат две точки Т3 и К секущей плоскости α, значит, прямая Т3К - прямая пересечения этих плоскостей. Прямая Т3К пересекает ребро РВ в точке L (рис. 3, з), которая служит очередной вершиной искомого сечения.

Рис. 3

Таким образом, «цепочка» последовательности построения искомого сечения такова:

1 . Т1 = QK ∩АС;

2 . F = PR ∩ DE;

3. Т2 = KR ∩ AF;

4 . М = Т1Т2 ∩ DE;

5 . N = Т1Т2 ∩ АЕ;

6 . Н = MR ∩ PD;

7. T3 = Т1Т2 ∩ АВ;

8 . L = T3K ∩ PB.

Шестиугольник MNKLQH - искомое сечение.

Сечение пирамиды на рис. 1 и сечение куба на рис. 2 построены на основании лишь аксиом стереометрии.

Вместе с тем сечение многогранника, имеющего параллельные грани (призма, параллелепипед, куб), можно строить, используя свойства параллельных плоскостей.

3.2 Метод следов в построении плоских сечений многогранников

Прямая, по которой секущая плоскость α пересекает плоскость основания многогранника, называется следом плоскости α в плоскости этого основания.

Из определения следа получаем: в каждой его точке пересекаются прямые, одна из которых лежит в секущей плоскости, другая - в плоскости основания. Именно это свойство следа используют при построении плоских сечений многогранников методом следов. Причем в секущей плоскости, удобно использовать такие прямые, которые пересекают ребра многогранника.

Сначала секущую плоскость зададим ее следом в плоскости основания призмы (пирамиды) и точкой, принадлежащей поверхности призмы (пирамиды).

Задача 1 . Построить сечение призмы АВСВЕА1В1С1D1Е1 плоскостью α, которая задана следом l в плоскости АВС основания призмы и точкой М, принадлежащей ребру DD1.

Решение. Анализ . Предположим, что пятиугольник MNPQR - искомое сечение (рис. 4). Для построения этого плоского пятиугольника достаточно построить его вершины N, P, Q, R (точка М дана) - точки пересечения секущей плоскости α с ребрами соответственно СС1, ВB1, АА1, ЕЕ1 данной призмы.

Е1 D1

Для построения точки N =α ∩ СС1 достаточно построить прямую пересечения секущей плоскости α с плоскостью грани СDD1C1. Для этого, в свою очередь, достаточно построить в плоскости этой грани еще одну точку, принадлежащую секущей плоскости α. Как построить такую точку?

Так как прямая l лежит в плоскости основания призмы, то она может пересекать плоскость грани СDD1C1 лишь в точке, которая принадлежит прямой CD = (CDD1) ∩ (АВС), т.е. точка X = l ∩ СD = l ∩ (CDD1) принадлежит секущей плоскости α. Таким образом, для построения точки N = α ∩ СС1 достаточно построить точку X = l ∩ СD.

Аналогично, для построения точек Р= α ∩ ВВ1, Q = α ∩ АА1 и R = α ∩ ЕЕ1 достаточно построить соответственно точки: У = l ∩ ВС, Z = 1 ∩ АВ и Т =1 ∩ АЕ.

Построение . Строим (рис. 5):

1. X = l ∩ СD (рис. 5, б);

2. N = МХ ∩ СС1 (рис. 5, в);

3. У = l ∩ ВС (рис. 5, г);

4. Р = NY ∩ ВВ1 (рис. 5, д);

5. Z = 1 ∩ АВ (рис. 5, е);

6. Q= РZ ∩ АА1 (рис. 5, ж);

7. T= l ∩ АЕ (рис. 5, з);

8. R= QT ∩ ЕЕ1 (рис. 5, и).

Пятиугольник MNPQR - искомое сечение (рис. 5, к).

Доказательство. Так как прямая l - след секущей плоскости α, то точки X = l ∩ СD, Y = l ∩ ВС, Z = 1 ∩ АВ и T= l ∩ АЕ принадлежат этой плоскости.

Поэтому имеем :

М Є α, X Є α => МХ є α, тогда МХ ∩ СС1 = N є α , значит, N = α ∩ СС1;

N Є α, Y Є α => NY Є α, тогда NY ∩ ВВ1= Р Є α, значит, Р = α ∩ ВВ1;

Р Є α, Z Є α => РZ Є α, тогда PZ ∩ AА1 = Q Є α, значит, Q = α ∩ АA1;

Q Є α, T Є α => QТ Є α, тогда QТ ∩ EЕ1 =R Є α, значит, R = α ∩ ЕЕ1.

Следовательно, MNPQR - искомое сечение.

Исследование. След l секущей плоскости α не пересекает основание призмы, а точка М секущей плоскости принадлежит боковому ребру DD1 призмы. Поэтому секущая плоскость α не параллельна боковым ребрам. Следовательно, точки N, Р, Q и R пересечения этой плоскости с боковыми ребрами призмы (или продолжениями этих ребер) всегда существуют. А поскольку, кроме того, точка М не принадлежит следу l, то определяемая ими плоскость α единственна. Это означает, что задача имеет (всегда) единственное решение.

3.3 Метод внутреннего проектирования в построении плоских сечений многогранников

В некоторых учебных пособиях метод построения сечений много-гранников, ко¬торый мы сейчас будем рассматривать, называют методом внутреннего проекти¬рования или методом соответствий, или методом диа-гональных сечений.

Задача 1 . Постройте сечение пирамиды PABCDE плоскостью α = (МFR), если точки М, F и R являются внутренними точками ребер соответ-ственно РА, РС и РЕ. (Рис. 6)

Решение . Плоскость основания пирамиды обозначим β. Для построе-ния искомого сечения построим точки пересечения секущей плоскости α с ребрами пирамиды.

Построим точку пересечения секущей плоскости с ребром РD данной пирамиды.

Плоскости APD и CPE пересекают плоскость β по прямым соответ-ственно АD и СЕ, которые пересекаются в некоторой точке К. Прямая РК=(АРD) ∩(СРЕ) пересекает прямую FR є α в некоторой точке К1: К1 = РК ∩ FR, при этом К1 є α. Тогда: М є α, К1 є α => прямая МK є а. Поэтому точка Q = МК1 ∩ РD есть точка пересечения ребра РD и секущей плоскости: Q =α ∩ PD. Точка Q- вершина искомого сечения. Аналогично строим точку пересечения плоскости α и ребра РВ. Плоскости ВРЕ и АРD пересекают плоскость β по прямым соответственно ВЕ и АD, которые пересекаются в точке Н. Прямая РН = (ВРЕ) ∩ (АРD) пересекает прямую МQ в точке Н1.Тогда прямая RН1 пересекает ребро РВ в точке N = α ∩ РВ - вершине сечения.

Таким образом , последовательность шагов построения искомого сечения такова:

1 . К = АD ∩ ЕС; 2 . К1 = РК ∩ RF;

3 . Q = МК1 ∩ РD; 4. H = BE ∩ АD;

5 . Н1 = РН ∩ МQ; 6 . N = RН1 ∩ РВ.

Пятиугольник MNFQR - искомое сечение.

3.4 Комбинированный метод в построении плоских сечений многогранников

Сущность комбинированного метода по¬строения сечений многогранников состоит в следующем. На некоторых этапах по¬строения сечения применяется или метод следов, или метод внутреннего проектирования, а на других этапах построения этого же сечения используются изученные теоремы о параллельности, перпендикулярности прямых и плоскостей.

Для иллюстрации применения этого метода рассмотрим следующую задачу.

Задача1 .

Постройте сечение параллелепипеда АВСDА1В1С1D1 плоскостью α, заданной точками Р, Q и R, если точка Р лежит на диагонали А1C1, точка Q на ребре ВВ1 и точка R на ребре DD1. (Рис. 7)

Решение

Решим эту задачу с применением метода следов и теорем о параллельности прямых и плоскостей.

Прежде всего, построим след секущей плоскости α = (РQR) на плоско-сти АВС Для этого строим точки Т1 = РQ ∩ Р1В (где PP1 ║AA1,P1є AC) и T2 = RQ ∩ ВD. Построив след Т1Т2, замечаем, что точка Р лежит в плоскости А1B1C1, которая параллельна плоскости АВС. Это означает, что плоскость α пересекает плоскость А1B1C1 по прямой, проходящей через точку Р и парал-лельной прямой Т1Т2. Проведем эту прямую и обозначим через М и Е точки ее пересечения с ребрами соответственно А1B1 и А1D1 Получаем: М = α ∩ А1B1, Е =α∩ А1D1. Тогда отрезки ЕR и QМ являются сторонами искомого сечения.

Далее, так как плоскость ВСС1 параллельна плоскости грани ADD1A1, то плоскость α пересекает грань ВСC1B1 по от резку QF (F= α ∩ СС1), параллельному прямой ЕR. Таким образом, пятиугольник ERFQM - искомое сечение. (Точку F можно получить, проведя RF║ MQ)

Решим эту задачу, применяя метод внутреннего проектирования и теоремы о параллельности прямых и плоскостей. (Рис. 8)

Рис. 8

Пусть Н=АС ∩ ВD. Проведя прямую НН1 параллельно ребру ВВ1 (Н1 є RQ), построим точку F: F=РН1 ∩ CC1.Tочка F является точкой пересечения плоскости α с ребром СС1, так как РН1 є α. Тогда отрезки RF и QF, по которым плоскость α пересекает соответственно грани CС1D1D и ВСС1В1 данного параллелепипеда, являются сторонами его искомого сечения.

Так как плоскость АВВ1 параллельна плоскости CDD1, то пересечением плоскости α и грани АВВ1А1 является отрезок QМ (М Є А1В1), параллельный отрезку FR; отрезок QМ - сторона сечения. Далее точка Е = МР ∩ А1D1 является точкой пересечения плоскости α и ребра А1D1, так как МР є α. Поэтому точка Е - еще одна вершина искомого сечения. Таким образом, пятиугольник ERFQM - искомое сечение. (Точку Е можно построить, проведя прямую RЕ ║ FQ. Тогда М = РЕ ∩ А1B1).

IV. Заключение

Благодаря этой работе я обобщила и систематизировала знания, полученные за курс геометрии этого года, ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике.

Мне бы хотелось чаще использовать свои новые полученные знания на практике.

К сожалению, я рассмотрела не все методы построения сечений многогранников. Существует ещё множество частных случаев:

  • построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой и др.

В будущем я планирую расширить своё исследование и дополнить свою работу разбором выше перечисленных частных случаев.

Я считаю, что моя работа актуальна, так как она может быть использована учащимися средних и старших классов для самостоятельной подготовки к ЕГЭ по математике, для углубленного изучения материала на факультативах и для самообразования молодых учителей. Выпускники средних школ должны не только овладеть материалом школьных программ, но и уметь творчески применять его, находить решение любой проблемы.

V. Литература

  1. Потоскуев Е.В., Звавич Л.И. Геометрия. 10 кл.: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики. - М.: Дрофа, 2008.
  2. Потоскуев Е.В., Звавич Л.И. Геометрия. 10 кл.: Задачник для общеобразовательных учреждений с углубленным и профильным изучением математики. - М.: Дрофа, 2008.
  3. Потоскуев Е.В. Изображение пространственных фигур на плоскости. Построение сечений многогранников. Учебное пособие для студентов физико-математического факультета педвуза. - Тольятти: ТГУ, 2004.
  4. Научно-практический журнал для старшеклассников «Математика для школьников»,2009,№2/№3,1-64.
  5. Геометрия в таблицах - Учебное пособие для учащихся старших классов - Нелин Е.П.
  6. Геометрия, 7-11 класс, Справочные материалы, Безрукова Г.К., Литвиненко В.Н., 2008.
  7. Математика, Справочное пособие, Для школьников старших классов и поступающих в ВУЗы, Рывкин А.А., Рывкин А.З., 2003.
  8. Алгебра и геометрия в таблицах и схемах, Роганин А.Н., Дергачёв В.А., 2006.

В этом методе мы первым действием (после нахождения вторичных проекций данных точек) строим след секущей плоскости на плоскости верхнего или нижнего основания призмы или усечённой пирамиды или на основании пирамиды

Зад 2. Дано изображение треугольной призмы ABCA 1 B 1 C 1 и трёх точек M , N , P , которые лежат соответственно на ребре СС 1 и гранях ABB 1 A 1 , BCC 1 B 1 . Построить сечение призмы плоскостью , проходящей через M , N , P .

Решение. Мы уже имеем одну точку на верхнем основании призмы, поэтому и след мы будем строить на верхнем основании. Строим вторичные проекции точек N и P на верхнее основание.Затем: 1 .N P N 3 P 3 =X ; 2 .M X =p –след; 3 .p B 1 C 1 =D .

Дальнейшие действия уже были показаны выше на чертеже.

Зад 3. Реш. Мы будем строить след секущей плоскости на нижнем основании призмы.

Строим:1. M N E D =X , M P EP 3 =Y ;

2. p =XY – след;3. p B C =G , p D C =H .

Нам нужно найти точку на ребре BB 1 или на ребре AA 1 .

ВграниABB 1 A 1 мы уже имеем одну точку P . Поэтому нижнее ребро этой грани, т.е. AB , мы продолжаем до пересечения со следом.

4. A B p =Z .

5. P Z AA 1 =F ; P Z BB 1 =K .Дальнейшие действия уже показаны выше.

Если окажется, что линия AB не пересекается со следом, то искомая FK тоже будет параллельна следу. Зад 4. Реш. 1. P N P o N o =X ;

2. M N CN o =Y ;3. p =XY – след;

3. C B p =Z ;4. Z M S B =E ;

5. E N S A =G 6. GEMF – иск сечение.

17. Построение сечения цилиндра.

Если секущая плоскость задана тремя точками, то мы всегда можем найти её след на плоскости основания цилиндра или конуса и точку (P , O ) на его оси. Поэтому считаем, что секущая плоскость задана именно этими элементами.

Сначала рас-им случай, когда плоскость пересекает только боковую поверхность цилиндра. Тогда сечением цилиндра будет эллипс (;¯ и его изображение – тоже эллипс. Мы знаем способ построения эллипса, если известны два его сопряжённых диаметра. Мы сейчас покажем, как можно найти изображение главных диаметров эллипса (;¯.

Пусть  и  1 – эллипсы, изображающие нижнее и верхнее основания цилиндра, O и O 1 – их центры. Проведём диаметр A 3 B 3 нижнего основания, параллельный следу и сопряжённый ему диаметр C 3 D 3 . Для построения C 3 D 3 мы используем хорду K 3 L 3 , один конец которой принадлежит контурной образующей. Напомним, что A 3 B 3 и C 3 D 3 изображают перпендикулярные диаметры. Продолжим C 3 D 3 до пересечения со следом. Получим точ X . Прям.PX наз-ём осью сечения.

Поднимем точки C 3 и D 3 до оси сечения. Получим C и D . Отрезок CD является изображением большогодиаметра сечения. Поднимем отрезок A 3 B 3 на высоту OP . Получим отрезок AB , который является изображением малого диаметра сечения. Отр-и AB и CD –сопряж-ые диам. эллипса .

Найти ещё точки, в которых эллипс переходит с видимой стороны цилиндра на невидимую, а значит, сплошная линия переходит в пунктир. Это точки пересечения секущей плоскости с контурными образующими. ПустьY 3 =K 3 L 3 C 3 D 3 . Поднимем Y 3 до оси сечения. Получим точку Y . Поднимем хорду K 3 L 3 на высоту YY 3 . Получим отрезок KL . Мы нашли требуемую точку K , а попутно, ещё одну дополнительную точку L . Точка M , изобр-щая пересечение секущей плоск-и со второй контурной образующей симметрична точкеK относительно точкиP .Допол-но построим точN , симметричнуюL относ-нточки P

Покажем способ, как можно найти любое кол-во точек на сечении без испол-ия этих диаметров.

выбираем люб. точкуV 3 на эллипсе . Проводим диаметрV 3 T 3 и продолжаем его до пересечения со следом.Получим точкуU . Поднимаем точки V 3 и T 3 до прямой UP . Получаем две точки V и T на сечении. Выбирая вместо V 3 другую точку, получим др. 2 точки на сеч.Если выбрать точку K 3 , лежащую на контурно образующей, мы найдём точки K и M , в которых сплошная линия на сечении должна перейти в пунктирную.