Робототехник (Чешск. robot, от robota - подневольный труд и rob - раб) — специалист по разработке роботов и их обслуживанию. Профессия подходит тем, кого интересует физика, математика, черчение и информатика (см. выбор профессии по интересу к школьным предметам).

Особенности профессии

Робототехника (роботехника) - это прикладная научная отрасль, посвященная созданию роботов и автоматизированных технических систем. Такие системы также называют робототехническими системами (РТС). Ещё одно название - роботостроение. Так называют процесс создания роботов, по аналогии с машиностроением. Роботы особенно нужны там, где человеку работать слишком тяжело или опасно, и там, где каждое действие должно выполняться с нечеловеческой точностью. Например, робот может взять пробы грунта на Марсе, обезвредить взрывное устройство или провести точную сборку прибора.

Конечно, для каждого вида работы нужен специальный робот. Роботов-универсалов пока не существует. Всю робототехнику можно разделить на промышленную, строительную, авиационную, космическую, подводную, военную. Кроме этого существуют роботы-помощники, роботы для игр и т.д.

Робот может работать по заранее разработанной программе либо под управлением оператора. Роботов с самостоятельным мышлением и мотивацией, со своим эмоциональным миром и мировоззрением пока тоже нет. Оно и к лучшему.

Робототехника находится в родстве с мехатроникой.

Мехатроника - это дисциплина, посвящённая созданию и эксплуатации машин и систем с программным управлением. Часто мехатроникой называют электромеханику и наоборот.

К мехатронике относятся заводские станки с программным управлением, беспилотные транспортные средства, современная офисная техника и пр. Иными словами, приборы и системы, предназначенные для выполнения какой-то конкретной задачи. Например, задача офисного принтера - печать документов.

А что такое робот по своей сути?

Как видно из самого названия, робот изначально представлялся как подобие человека. Но прагматизм берёт верх. И чаще всего роботу отводится роль технического приспособления, для которого внешность не имеет большого значения. По крайней мере, промышленные роботы на людей совсем не похожи.

Однако у роботов есть признак, который объединяет их со всеми живыми существами - движение. И способ движения порой довольно чётко копирует то, что встречается в природе. Например, робот может летать, подобно стрекозе, бегать по стене, словно ящерица, ходить по земле, словно человек и пр.

(См. ролик внизу страницы.)

С другой стороны, некоторые роботы специально рассчитаны на душевный отклик людей. Например, роботы-собаки скрашивают жизнь людям, у которых нет времени на настоящую собаку. А плюшевые «младенцы» облегчают депрессию.

Не за горами то время, когда среди прочей бытовой техники у нас появятся роботы, помогающие по хозяйству. Лично я предпочла бы слугу в виде улыбчивого пластикового кокона на колёсах. Но кому-то наверняка захочется, чтобы их роботы-мажордомы были как настоящие люди. В этом направлении уже сделаны потрясающие успехи.

Создание робота - это то, чем занимается робототехник . Точнее, инженер-робототехник . Он исходит из того, какие задачи робот будет решать, продумывает механику, электронную часть, программирует его действия. Такая работа - не для одиночки-изобретателя, инженеры-робототехники работают в команде.

Но робота нужно не только изобрести и разработать. Его нужно обслуживать: управлять работой, следить за «самочувствием» и ремонтировать. Этим также занимается робототехник, но специализирующийся на обслуживании.

В основе современной робототехники находятся механика, электроника и программирование. Но, как подсказывают фантасты, со временем для изготовления роботов будут широко использовать био- и нанотехнологи. В результате получится киборг, т.е. кибернетический организм - что-то среднее между живым человеком и роботом. Чтобы не слишком радоваться по этому поводу, можно посмотреть фильм «Терминатор», любую его часть.

Начало истории роботов

Слово «робот» придумал Карел Чапек в 1920 г. и использовал его в своей пьесе «R.U.R.» («Россумские Универсальные Роботы»). Позже, в 1941 г., Айзек Азимов использовал слово «робототехника» в научно-фантастическом рассказе «Лжец».

Но видимо, одним из первых робототехников в истории человечества можно считать арабского изобретателя Аль-Джазари, жившего в XII веке. Остались свидетельства, что он создал механических музыкантов, которые развлекали публику, играя на арфе, флейте и бубнах. Леонардо да Винчи, живший в XV-XVI веках, оставил после себя чертежи механического рыцаря, способного двигать руками и ногами, открывать забрало своего шлема. Но эти выдающиеся изобретатели вряд ли могли представить, каких вершин достигнут технологии через несколько столетий.

Обучение на Робототехника

Чтобы стать робототехником, нужно получить высшее образование по направлению «мехатроника и робототехника». В частности, к этому направлению относится специальность «роботы и робототехнические системы». Высшее образование даёт квалификацию «инженер».

На этом курсе можно получить профессию специалиста по мехатронике и робототехнике за 3 месяца и 10 000 руб.
— Одна из самых доступных цен в России;
— Диплом о профессиональной переподготовке установленного образца;
— Обучение в полностью дистанционном формате;
— Сертификат соответствия профстандарту стоимостью 10 000 руб. в подарок!;
— Крупнейшее образовательное учреждение дополнительного проф. образования в России.

Рабочее место

Робототехники работают в конструкторских бюро авиации и космонавтики. Например, в НПО им. С.А.Лавочкина. В научно-исследовательских центрах разной направленности (космос, медицина, нефтедобыча и пр.). В компаниях, специализирующихся на роботостроении.

Оплата труда

Важные качества

Профессия робототехник предполагает интерес к точным наукам и инженерному делу, аналитический склад ума, хорошо структурированное мышление в сочетании с богатым воображением.

Знания и навыки

По существу, робототехник - это универсальный специалист: инженер, программист, кибернетик в одном лице. Ему необходимо знание механики, программирования, теории автоматического управления, теории проектирования автоматических систем. Очень важны навыки конструирования, умение работать руками, например, пользоваться паяльником.

Робототехника - одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Кроме того, роботостроение может показаться занимательней прочего: сконструировать робота значит почти что создать новое существо, пусть и электронное, что, конечно же, привлекает. Впрочем, и в этой отрасли все может оказаться непросто, особенно на первых порах. Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Робототехника — одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Роботостроение — увлекательнейшая штука: сконструировать робота значит почти что создать новое существо, пусть и электронное.

С 60-х годов прошлого века автоматизированные и самоуправляющиеся устройства, делающие какую-либо работу за человека, стали использоваться для исследований и в производстве, затем в сфере услуг и с тех с каждым годом прочнее занимают свое место в жизни людей. Конечно, нельзя сказать, что в России все сплошь выполняется самостоятельными механизмами, однако определенный вектор в эту сторону точно намечается. Вот уже и Сбербанк планирует заменить три тысячи юристов умными машинами.

Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Чем отличается робототехника для детей от профессиональной?

Если коротко, то робототехника для детей направлена на изучение предмета, тогда как профессиональная - на решение конкретных задач. Если специалисты создают промышленные манипуляторы, выполняющие разные технологические задачи, или специализированные колесные платформы, то любители и дети, конечно же, занимаются вещами попроще.

Татьяна Волкова, сотрудник Центра интеллектуальной робототехники: «Как правило, с чего все начинают: разбираются с моторами и заставляют робота элементарно ехать вперед, потом - делать повороты. Когда робот выполняет команды движения, можно уже подключить датчик и сделать так, чтобы робот ехал на свет или, наоборот, «убегал» от него. А дальше идет любимая задача всех новичков: робот, который ездит по линии. Устраиваются даже различные гонки роботов».

Как понять, есть ли у ребенка склонность к робототехнике?

Для начала нужно купить конструктор и посмотреть, нравится ли ребенку собирать его. А дальше и в кружок можно отдать. Занятия помогут ему развить мелкую моторику, фантазию, пространственное восприятие, логику, концентрацию и терпеливость.

Чем быстрее получится определиться с направлением роботехники — конструирование, электроника, программирование — тем лучше. Все три области обширны и требуют отдельного изучения.

Александр Колотов, ведущий специалист STEM-программ в Университете Иннополис: «Если ребенку нравится собирать конструктор, то ему подойдёт конструирование. Если ему интересно изучать, как устроена вещь, то ему понравится заниматься электроникой. Если у ребенка тяга к математике, то его заинтересует программирование».

Когда начинать обучение робототехнике?

Начинать изучение и записываться в кружки лучше всего с детства, впрочем, не слишком рано — в 8-12 лет , говорят специалисты. Раньше ребенку сложнее уловить понятные абстракция, а позднее, в подростковом возрасте, у него могут появиться другие интересы, и он станет отвлекаться. Также ребенка необходимо мотивировать на изучение математики, чтобы ему было интересно и легко в будущем проектировать механизмы и схемы, составлять алгоритмы.

С 8-9 лет ребята уже могут понимать и запоминать, что такое резистор, светодиод, конденсатор, а позже и понятия из школьной физики осваивать с опережением школьной программы. Не важно, станут они специалистами в этой области или нет, полученные знания и навыки точно даром не пропадут.

В 14-15 лет нужно продолжать заниматься математикой, отодвинуть занятия в кружке по робототехнике на второй план и начать изучение программирования более серьезно - разбираться не только в сложных алгоритмах, но и в структурах хранения данных. Далее идут математический базис и знания в алгоритмизации, погружение в теорию механизмов и машин, проектирование электромеханической оснастки робототехнического устройства, реализацию алгоритмов автоматической навигации, алгоритмы компьютерного зрения и машинное обучение.

Александр Колотов: «Если в этот момент познакомить будущего специалиста с основами линейной алгебры, комплексным счислением, теорией вероятности и статистики, то к поступлению в вуз он уже будет хорошо представлять, зачем ему стоит обращать дополнительное внимание на эти предметы при получении высшего образования».

Какие конструкторы выбрать?

Для каждого возраста существуют свои образовательные программы, конструкторы и платформы, различающиеся степенью сложности. Можно найти как зарубежные, так и отечественные продукты. Есть дорогие наборы для робототехники (в районе 30 тыс. руб. и выше), есть и подешевле, совсем простые (в пределах 1-3 тыс. руб.).

Если ребенку 8-11 лет , можно купить конструкторы Lego или Fischertechnik (хотя, конечно, производители имеют предложения как для более младшего, так и для старшего возрастов). Конструктор Lego для робототехники обладает интересными деталями, яркими фигурками, он легок в сборке и снабжен подробной инструкцией. Серия конструкторов Fischertechnik для робототехники приближает к настоящему процессу разработки, здесь вам и провода, и штекеры, и визуальная среда программирования.

В 13-14 лет можно начать работать с ТРИК или модулями Arduino, которые, по словам Татьяны Волковой, является практически стандартом в области образовательной робототехники, а также Raspberry. ТРИК сложнее Lego, но легче Arduino и Raspberry Ri. Последние две уже требуют базовых навыков программирования.

Что еще потребуется изучить?

Программирование . Избежать его возможно только на первоначальном этапе, потом же без него никуда. Начать можно с Lego Mindstorms, Python, ROS (Robot Operating System).

Базовую механику. Начинать можно с поделок из бумаги, картона, бутылок, что важно и для мелкой моторики, и для общего развития. Самого простого робота можно сделать вообще из отдельных деталей (моторчики, провода, фотодатчик и одна несложная микросхема). Познакомиться с базовой механикой поможет «Мастерилка с папашей Шперхом».

Основы электроники. Для начала научиться собирать простые схемы. Для детей до восьми лет эксперты советуют конструктор «Знаток», дальше можно перейти к набору «Основы электроники. Начало».

Где заниматься робототехникой детям?

Если видите у ребенка интерес, можно отдать его в кружки и на курсы, хотя можно заниматься и самостоятельно. На курсах ребенок будет под руководством специалистов, сможет найти единомышленников, займется робототехникой на регулярной основе.

Также желательно сразу понять, чего хочется от занятий: участвовать в соревнованиях и бороться за призовые места, участвовать в проектной деятельности или просто заниматься для себя.

Алексей Колотов: «Для серьезных занятий, проектов, участия в соревнованиях нужно выбирать кружки, с небольшими группами по 6—8 человек и тренером, который приводит учеников к призовым местам на соревнованиях, который постоянно сам развивается и дает интересные задачи. Для занятий в виде хобби можно пойти в группы до 20 человек».

Как выбирать курсы для занятий робототехникой?

При записи на курсы обратите внимание на педагога , рекомендует коммерческий директор компании Promobot Олег Кивокурцев. «Бывают прецеденты, когда педагог просто отдает ребятам оборудование, а дальше занимайтесь кто чем хочет», — согласна с Олегом Татьяна Волкова. От таких занятий толку будет мало.

При выборе курсов также стоит обратить внимание и на имеющуюся материально-техническую базу . Есть ли там конструкторские наборы (не только Lego), имеется ли возможность писать программы, изучать механику и электронику, самому делать проекты. На каждую пару учащихся должен быть свой робототехнический комплект. Желательно с дополнительными деталями (колесами, шестернями, элементами каркаса), если хочется участвовать в соревнованиях. Если с одним набором работает сразу несколько команд то, скорее всего, никаких серьезных соревнования не предполагается.

Поинтересуйтесь, в каких соревнованиях участвует клуб робототехники . Помогают ли эти конкурсы закрепить полученные навыки и дают ли возможность для дальнейшего развития.

Соревнование Robocup 2014

Как изучать робототехнику самостоятельно?

Курсы требуют денег и времени. Если первого не хватает и регулярно ходить куда-либо не получится, можно заняться с ребенком самостоятельным изучением. Важно, чтобы родители обладали необходимой компетенцией в этой сфере: без помощи родителя, ребенку освоить робототехнику будет достаточно сложно, предостерегает Олег Кивокурцев.

Найдите материал для изучения. Их можно брать в Интернете, из заказываемых книг, на посещаемых конференциях, из журнала «Занимательная робототехника». Для самостоятельного изучения есть бесплатные онлайн-курсы, например, «Строим роботов и другие устройства на Arduino: от светофора до 3D-принтера».

Нужно ли изучать роботехнику взрослым?

Если Вы уже вышли из детского возраста, это не значит, что двери робототехники для Вас закрыты. Можно так же записаться на курсы или изучать ее самостоятельно.

Если человек решил заниматься этим как хобби, то путь его будет таким же, как у ребенка. Однако понятно, что дальше любительского уровня без профессионального образования (инженера-конструктора, программиста и электронщика) продвигаться вряд ли получится, хотя, конечно, устраиваться на стажировки в компании и упорно грызть гранит нового для вас направления никто не запрещает.

Олег Кивокурцев: «Взрослому будет проще освоить робототехнику, но важным фактором является время».

Для тех, у кого близкая специальность, но хочется переучиться, также есть разные курсы в помошь. Например, для специалистов по машинному обучению одойдет бесплатный онлайн-курс по вероятностной робототехнике «Искусственный интеллект в робототехнике». Также существуют образовательная программа Intel, просветительский проект «Лекториум», дистанционные курсы ИТМО. Не забудьте и про книги, например, есть много литературы для начинающих («Основы робототехники», «Введение в робототехнику», «Настольная книга робототехника»). Подберите то, что больше всего понятно и подходит вам.

Следует помнить, что серьезная работа отличается от любительского увлечения как минимум стоимостью затрат на оборудование и перечнем поставленных перед работником задач. Одно дело - своими руками собирать самого простого робота, совсем другое - заниматься, например, машинным зрением. Поэтому изучать основы конструирования, программирования и аппаратной инженерии все-таки лучше с ранних лет и впоследствии, если понравилось, поступать в профильный университет.

В какие вузы идти учиться?


Направления, связанные с робототехникой, можно найти в следующих вузах:

— Московский технологический университет (МИРЭА, МГУПИ, МИТХТ);

— Московский государственный технический университет им. Н. Э. Баумана;

— Московский государственный технологический университет «Станкин»;

— Национальный исследовательский университет «МЭИ» (Москва);

— Сколковский институт науки и технологий (Москва);

— Московский государственный университет путей сообщения Императора Николая II;

— Московский государственный университет пищевых производств;

— Московский государственный университет леса;

— Санкт-Петербургский государственный университет аэрокосмического приборостроения (СГУАП);

— Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (ИТМО);

— Магнитогорский государственный технический университет;

— Омский Государственный технический университет;

— Саратовский государственный технический университет;

— Университет Иннополис (Республика Татарстан);

— Южно-Российский федеральный университет (Новочеркасский ГТУ).

Самое главное

Знать азы робототехники в скором времени может оказаться полезно и обывателям, а возможность стать специалистом в этой сфере выглядит очень перспективно, так что хотя бы попробовать себя в «роботостроительстве» определенно стоит.

Робототехника завоевывает сегодня все большие отрасли промышленности и все плотнее внедряется в различные сферы человеческой жизни. И если раньше роботы могли выполнять роль человека, замещая его на заводах, где часто требуются однообразные действия при конвейерном производстве, например при производстве автомобилей, то теперь наступили времена, когда роботы способны оказаться и в каждом доме, чтобы помогать человеку решать насущные задачи, и способствовать экономии наших времени и сил.

Бытовые роботы, предназначенные для помощи человеку в его повседневной жизни, набирают все большую популярность, что вовсе не удивительно, ведь разнообразие роботов растет с каждым годом. Уже сегодня это и пылесосы, и газонокосилки, и мойщики окон, и чистильщики бассейнов, и даже снегоуборочные роботы.

Кстати, еще в 2007 году Билл Гейтс обратил внимание на значительный потенциал данного технологического направления, опубликовав статью «Робот в каждом доме», где он отразил перспективы, которые откроются обществу, благодаря внедрению бытовых роботов.

Предметом данной статьи будет краткий обзор набирающих популярность типов бытовых роботов. Мы рассмотрим несколько роботов, предназначенных для различных бытовых применений, посмотрим как они работают, что могут, как их нужно использовать, и насколько легко с ними обращаться.


Поскольку робот-пылесос является устройством автономным, то он обязательно оснащен не только аккумулятором, но и камерой, помогающей ему ориентироваться в помещении, чтобы два раза не убирать одно и то же место.

Робот просто предварительно выстраивает оптимальную карту уборки, опираясь на данные с камеры, затем приступает непосредственно к уборке, по окончании которой возвращается на место старта, связанное с зарядным устройством.

На борту пылесоса имеются все необходимые датчики (включая гироскоп), позволяющие прибору измерять расстояние до препятствия, оценивать высоту основания мебели над полом (сможет ли он под нее заехать), фиксировать столкновение, определять наличие на месте пылесборника и т.д. Интеллектуальная электроника позволяет роботу нормально ориентироваться среди мебели и стен в процессе работы.

Пылесборник компактен, и располагается недалеко от щеток. Для движения робот использует два колеса, при помощи которых он может поворачивать. Две направляющие щетки заметают мусор в направлении турбощетки, которая в свою очередь направляет мусор в пылесборник, где всасывающее устройство окончательно захватывает мусор. Питается все это оборудование от емкостью в несколько ампер-часов.

Благодаря наличию гироскопа, робот-пылесос всегда «знает» угол своего наклона, и поэтому вероятность того, что он застрянет исключается. Единственный недостаток таких роботов-пылесосов — малая сила всасывания. Они подойдут для уборки гладких напольных покрытий, таких как линолеум или ламинат, но с уборкой сильно загрязненного коврового покрытия справятся вряд ли.

В любом случае, робот-пылесос способен сильно облегчить нашу жизнь. Человеку уже не придется каждый раз, когда он увидит на полу пыль, бежать за веником, чтобы подмести. Достаточно запрограммировать робота на регулярную уборку, и он будет самостоятельно осуществлять профилактику по всей квартире, по дому или даже офису.


Есть два типа роботов для мойки окон. Первый тип — робот из двух частей, в одной из которых находится управляющая электроника, а в другой — чистящий механизм. Две части крепятся к оконному стеклу с разных сторон, и держатся на нем за счет постоянных магнитов.

Сначала робот задает себе карту для работы, предварительно доезжая до каждого из краев стекла, измеряя таким образом размер поверхности которая должна быть вымыта, затем начинает мыть ее, двигаясь зигзагом.

В качестве инструментов для мытья служат четыре подушечки из микрофибры, а перемещение достигается благодаря взаимодействию постоянных магнитов и управляющего модуля.

В центре между подушечками расположено отверстие, из которого подается моющее средство. Питается устройство от встроенного литиевого аккумулятора. Человеку достаточно запустить аппарат, и он сам все сделает, используя предварительно заправленное в специальный резервуар моющее средство.

Второй тип робота-мойщика окон — робот с креплением вакуумными присосками. Такой робот имеет только один и только рабочий модуль для одной стороны окна.

Робот по сути протирает стекло, перемещаясь влево и вправо по его поверхности, без использования вращающихся подушечек. Здесь используется сменная салфетка, которую необходимо предварительно смочить моющим средством вручную.

Робот питается от сети, хотя и выполняет работу автономно, стоит его включить и установить на стекло. Есть резервный аккумулятор на случай отключения электричества в доме. Пользователю остается установить робота на стекло и включить его.


Принцип работы данных роботов заключается в следующем. Первым делом прокладывают кабель-ограничитель, по которому течет постоянный ток, и который определяет собой границу рабочей зоны робота-газонокосилки. Такая автономная газонокосилка оснащена всеми необходимыми датчиками, включая датчики препятствий, как и у роботов-пылесосов, чтобы газонокосилка могла бы объехать дерево, бордюр или клумбу.

Кабель-ограничитель необходим для того, чтобы газонокосилка не упала в водоем или не стала бы пытаться косить камни садовой дорожки, тем самым нанося себе вред. Кабелем ограждают периметр, клумбы, каменные дорожки, водоемы.

В процессе работы газонокосилка хаотично движется по площади в пределах периметра, срезая ножами траву. Некоторые модели двигаются не хаотично, а по спирали или зигзагом, это зависит от производителя.

Параметры роботов-газонокосилок отличаются. В первую очередь — шириной захвата. Согласитесь, при ширине захвата в 56 см, по сравнению с 24 см, дело пойдет и будет завершено быстрее. Мощность также имеет значение.

Газонокосилка мощностью 500 ватт и с шириной захвата в 56 см гораздо быстрее пройдет ту же площадь, что 100 ваттная модель. Аккумулятор здесь, безусловно определяет площадь, которую сможет обслужить робот на одной подзарядке. Есть роботы-газонокосилки, рассчитанные на 4 сотки, а есть — на все 30 соток.

Имеется ли в комплекте база для подзарядки, чтобы газонокосилка могла самостоятельно подъехать, подзарядиться и продолжить работу? На это потребителю необходимо обратить внимание при выборе модели, иначе придется самостоятельно носить робота на подзарядку, что не всегда удобно.

Если есть зарядная базовая станция, то человек сможет запрограммировать газонокосилку на весь сезон и не беспокоиться о графике выполнения работ по стрижке газона.


Робот имеет шнур питания и пару колес для перемещения по дну и по стенкам бассейна. В зависимости от длины провода нормируется размер бассейна, с которым сможет справиться робот. Щетки робота вращаются независимо от колес, и легко удаляют слизь и грязь, направляя ее через фильтр.

Вода вместе с грязью всасывается в фильтрующий отсек робота, затем вода выбрасывается обратно в бассейн, а грязь оседает на фильтре. Фильтр потом нужно будет просто вытащить и промыть под водой.

Робот для чистки бассейна сначала очищает дно, затем движется по стенкам, присасываясь к ним. Так, 70% времени уходит на чистку дна, а 30% - на чистку стен бассейна. Типичный бассейн площадью дна 28 кв.м. средний робот очистит за 2-3 часа.

Несмотря на то, что вода проходит через фильтр робота, всасываясь его насосом, хозяину бассейна необходимо будет как всегда использовать систему очистки воды бассейна, робот не заменит ее собой, он только очистит поверхности, но не саму воду. Тем не менее, робот избавит своего хозяина не только от необходимости чистить бассейн вручную, но и от надобности наблюдать за процессом чистки.


Наконец, робот-снегоуборщик, - актуальнейшее для наших широт решение. Вместо того, чтобы размахивать лопатой там, где не может проехать габаритная снегоуборочная техника, поможет снегоуборочный робот. Управление роботом осуществляется со смартфона по wi-fi, и выглядит это как интерактивная игра.

Поднимать и опускать ковш, перемещаться на гусеницах назад и вперед, разворачиваться, - все это может делать робот, которым оператор управляет удаленно, даже находясь дома в тепле за компьютером.

Глазами робота является видеокамера, через которую пользователь может оценивать обстановку, чтобы затем направлять робота для выполнения снегоуборочных работ.

Емкий аккумулятор, заряженный от розетки, позволит осуществлять уборку снега в течение нескольких часов без необходимости таскать снег вручную, особенно если речь идет об уборке больших территорий, вблизи строений, куда снегоуборочная техника проехать просто не может.

Как видите, ассортимент бытовых роботов сегодня довольно широк, и каждый человек наверняка найдет среди доступных сегодня на рынке именно то, что облегчит быт именно ему. Кому-то нужно регулярно чистить летний приусадебный бассейн, а кто-то замучился зимой чистить снег.

Каждый имеющий в доме животных задумается о приобретении робота-пылесоса, некоторые из которых с животными отлично ладят. Живете в районе с сильно загрязненным воздухом и окна часто становятся пыльными — робот поможет вам вымыть окна. Что уж говорить о роботе-газонокосилке, который позволит своему хозяину заниматься другими более важными делами или просто отдыхать, пока газоном занимается робот.

Андрей Повный

Робот - это программируемое механической устройство, способное выполнять задачи и взаимодействовать с внешней средой без помощи со стороны человека. Робототехника - это научная и техническая база для проектирования, производства и применения роботов.

Слово «робот» было впервые использовано чешским драматургом Карлом Чапеком в 1921. В его произведении «Универсальные роботы Россума» речь шла о классе рабов, искусственно созданных человекоподобных слуг, сражающихся за свою свободу. Чешское слово «robota» означает «принудительное рабство». Слово «робототехника» было впервые применено известным автором научной фантастики Айзеком Азимовым в 1941 году.

Базовые компоненты робота

Компоненты робота: тело/рама, система управления, манипуляторы, и ходовая часть.

Тело/рама: Тело, или рама, робота может иметь любую форму и размер. Изначально, тело/рама обеспечивает конструкцию робота. Большинство людей знакомы с человекоподобными роботами, используемыми для съемок кинофильмов, но в действительность большинство роботов не имеют ничего общего с человеческим обликом. (Робонафт НАСА, представленный в предыдущем разделе, является исключением). Как правило, в проекте робота внимание уделяется функциональности, а не внешности.

Система управления: Система управления робота является эквивалентом центральной нервной системы человека. Она предназначена для координирования управления всеми элементами робота. Датчики реагируют на взаимодействие робота с внешней средой. Ответы датчиков отправляются в центральный процессор (ЦП). ЦП обрабатывает данные с помощью программного обеспечения и принимает решения на базе логики. То же самое происходит при вводе пользовательской команды.

Манипуляторы: Для выполнения задачи большинство роботов взаимодействует с внешней средой, а также окружающим миром. Иногда требуется перемещение объектов внешней среды без непосредственного участия со стороны операторов. Манипуляторы не являются элементом базовой конструкции робота, как его тело/рама или система управления, то есть робот может работать и без манипулятора. В настоящем учебном курсе акцент делается на тему манипуляторов, особенно блок 6.

Ходовая часть: Хотя некоторые роботы могут выполнять поставленные задачи, не изменяя свое местоположение, зачастую от роботов требуется способность перемещаться из одного места в другое. Для выполнения данной задачи роботу необходима ходовая часть. Ходовая часть представляет собой приводное средство перемещения. Роботы-гуманоиды оснащены ногами, тогда как ходовая часть практически всех остальных роботов реализована с помощью колес.

Возможности применения и примеры роботов

На сегодняшний день, роботы имеют массу применений. Области применения делятся на три основные категории:

  • промышленные роботы;
  • исследовательские роботы;
  • образовательные роботы.

Промышленные роботы

В промышленности, для выполнения огромного количества работ необходимы высокая скорость и точность. В течение многих лет ответственность за выполнение подобных работ несли люди. С развитием технологий, использование роботов позволило ускорить и повысить точность многих производственных процессов. Это и упаковка, сборка, окраска и укладка на поддоны. Изначально, роботы выполняли только особые виды повторяющихся работ, где требовалось соблюдение простого заданного набора правил. Тем не менее, с развитием технологий промышленные роботы стали гораздо более подвижны, и теперь они способны принимать решения на основе сложного ответа от датчиков. Сегодня промышленные роботы часто оснащены системами технического зрения. К концу 2014 года международная робототехническая федерация прогнозировала объем применения промышленных роботов по всему миру свыше 1,3 миллиона единиц!

Роботы могут использоваться для выполнения сложных, опасных задач, а также задач, которые человек выполнить не в состоянии. Например, роботы способны обезвреживать бомбы, обслуживать ядерные реакторы, исследовать глубины океана и достигать самых дальних уголков космоса.

Исследовательские роботы

Роботы имеют широкое применение в мире исследований, так как их часто используют для выполнения задач, в решении которых человек беспомощен. Наиболее опасные и сложные среды находятся под поверхностью Земли. В целях изучения космического пространства и планет солнечной системы в НАСА на протяжении использовались космические аппараты, посадочные модули и вездеходы с функциями роботов.

Роботы Pathfinder и Sojourner

Для марсианской миссии Pathfinder была разработана уникальная технология, позволяющая осуществить доставку оборудованного посадочного модуля и роботизированного вездехода, Sojourner, на поверхность Марса. Sojourner был первым вездеходом, отправленным на планету Марс. Масса вездехода Sojourner на поверхности земли составляет 11 кг (24,3 фунта), на поверхности Марса - прибл. 9 фунтов, а его размеры сопоставимы с размерами детской коляски. Вездеход имеет шесть колес и может перемещаться со скоростью до 0,6 метров (1,9 футов) в минуту. Миссия была запущена на поверхности Марса 4 июля 1997 года. Pathfinder не только выполнил свою прямую задачу, но также вернулся на Землю с огромным количеством собранных данных и превысил свой проектный срок эксплуатации.

Вездеходы Spirit и Opportunity

Марсианские исследовательские вездеходы (MER) Spirit и Opportunity были отправлены на Марс летом 2003 года и приземлились в январе 2004 года. Их миссия состояла в исследовании и классификации большого количества камней и почв с целью обнаружения остатков воды на Марсе, в надежде на отправку на планету человеческой миссии. Несмотря на то, что запланированная длительность миссии составляла 90 дней, в действительности она превысила шесть лет. За это время было собрано бесчисленное количество геологических данных о Марсе.

Роботизированная рука космического корабля

Когда проектировщики НАСА впервые приступили к проектированию космического корабля, они столкнулись с задачей, выраженной в необходимости безопасной и эффективной доставки в космическое пространство огромного, но, к счастью, невесомого объема груза и оборудования. Система дистанционного манипулирования (RMS), или Канадарм (канадский дистанционный манипулятор), совершила свой первый выход в космос 13 ноября 1981 года.

Рука имеет шесть подвижных соединений, имитирующих человеческую руку. Два соединения расположены в плече, одно - в локте, и еще три - в кисти. На конце кисти установлено захватное устройство, способное захватывать или зацеплять требуемый груз. В условиях невесомости рука способна поднимать 586 000 фунтов груза и выполнять их размещение с удивительной аккуратностью. Общая масса руки на поверхности Земли составляет 994 фунта.

RMS использовалась для запуска и поиска спутников, а также оказалась бесценным помощником для астронавтов в процессе ремонта космического телескопа Хаббла. Последняя миссия Канадарм в составе космического корабля стартовала в июле 2011 года и стала девяностой миссией этого робота.

Мобильные обслуживающие системы

Мобильная обслуживающая система (MSS) представляет собой систему, аналогичную RMS, и известна также как Канадарм 2. Система была спроектирована для установки на международной космической станции в качестве объектного манипулятора. MSS предназначена для обслуживания оборудования и приборов, установленных на международной космической станции, а также для оказания помощи при транспортировке продовольствия и оборудования в пределах станции.

Dextre

В рамках космической миссии STS-123 в 2008, космический корабль Endeavor осуществлял перевозку последней части гибкого манипулятора специального назначения Dextre.

Dextre - это робот, оснащенный двумя не большими руками. Робот способен выполнять задачи по точной сборке, которые до этого выполняли астронавты во время входа в открытый космос. Dextre может транспортировать объекты, пользоваться инструментами и осуществлять установку или удаление оборудования на космической станции. Dextre также оснащен освещением, видео-оборудованием, инструментальной базой, а также четырьмя держателями для инструментов. Датчики позволяют роботу «чувствовать» объекты, с которыми он имеет дело, и автоматически реагировать на движения или изменения. Команда может наблюдать за работой с помощью четырех установленных камер.

По конструкции робот напоминает человека. Верхняя часть его тела может поворачиваться в талии, а плечи удерживают руки, расположенные с двух сторон.

Роботы в образовании

Робототехника стала увлекательным и доступным инструментом обучения и поддержки STEM, проектирования и подходов к решению задач. В робототехнике, учащиеся получают возможность реализовать себя в роли проектировщиков, артистов и техников одновременно, используя собственные руки и голову. За счет этого открываются огромные возможности применения научных и математических основ.

В современной системе образования, с учетом финансовых ограничений, средние и высшие школы находятся в постоянном поиске экономически выгодных путей преподавания сложных программ, сочетающих технологии с множеством дисциплин, учащимся для их подготовки к профессиональной деятельности. Преподаватели сразу видят преимущества робототехники и данного учебного курса, так как в них реализован межпредметный метод сочетания различных дисциплин. В дополнение, робототехника предлагает наиболее доступное и подходяще для повторного использования оборудование.

Сегодня более чем когда либо, школы применяют робототехнические программы в классе для "оживления" учебных курсов и обеспечения соответствия широкому спектру академических стандартов, необходимых для учащихся. Робототехника не только является уникальной и широкой базой для преподавания разнообразных технических дисциплин, но также областью техники, оказывающей значительное влияние на развитие современного общества.

Почему робототехника важна?

Как видно из раздела «Возможности применения и примеры роботов», робототехника является новой областью техники, применяемой во многих сферах жизни человека. Важным фактором развития общества является образованность всех его членов в части существующих технологий. Но это не единственная причина возрастающей значимости робототехники. Робототехника уникальным образом сочетает в себе основы дисциплин STEM (естественные науки, технологии, инженерия и математика). В процессе обучения в классе учащиеся изучают различные дисциплины и их взаимосвязи, используя современные, технологичные и увлекательные инструменты. Помимо этого, визуальное представление проектов, которое требуется от учащи, стимулирует их к экспериментам и проявлению изобретательности в процессе поиска эстетичных и работоспособных решений. Комбинируя эти аспекты работы, учащиеся поднимают свои знания и возможности на новый уровень.

Фантасты 50-х представляли себе 2000 год с летающими машинами и роботами, живущими бок о бок с человеком.
Как мы видим, этого пока не случилось, тем не менее сфера робототехники постепенно развивались в течение десятилетий, иногда стремительно затем ее развитие приутихло, но в настоящее время вновь возобносила небывалый рост. Каждый месяц производятся тысячи различных промышленных роботов, разрабатываются гуманоиды и андроиды, ученые всего мира работают созданием искусственного интеллекта, и все это -только начало.

Робототехника - это не самостоятельная отрасль, прежде всего это синергия всех последних достижений технических, естественных наук и информационных технологий.

Когда мы говорим "робот", то люди далеки от техники его примерно так и представляют как в советских фантастических фильмах с железными руками и ногами. Конечно, мы вкладываем в это понятие гораздо более широкий смысл.

Выделяют следующие группы роботов:

1. Промышленные - когда говорят "роботизация" имеют ввиду прежде всего развитие этой сферы.

2. Военные - единственный вид, который получил развитие в России, к ним же можно отнести роботов ливидаторов различных аварий и природных катаклизмов.

3. Космические - к ним относятся и спутники, планетоходы и антропоморфные роботы, помогающие космонавтам.

4. Бытовые - уборщики, кухонные роботы, роботы - компаньоны.

5. Андроиды, гуманоиды - различные антропоморфные роботы, чьей целью является усовершенствование "человекообразности" роботов для различных социальных целей.

История робототехники

Автоматизация и роботизация производства в капиталистическом мире началась в 50-е годы XX века. Именно к тому времени можно отнести появление первых промышленных роботов. Они осуществляли сборку оборудования, и простейшие монотонные операции.
Первый такой робот был разработан изобретателем самоучкой Джоржем Деволом в 1954 году. Робот-манипулятор весил две тонны и управлялся программой записанной на магнитном барабане. Система получила название Unimate на новое устройство был оформлен патент и а в 1961 изобретатель основал компанию Unimation.

Первый робот был установлен на заводе Дженерал Моторс (на литейном участке) в 1961 году. Затем новинка была опробована заводами Chrysler и Ford,

Система Unimate применялась для работы с литыми металлическими деталями, которые манипулятор извлекал из форм отливки. Захватиное устройство управлялось гидроприводом.
Робот имел 5 степеней свободы и захватное устройство с двумя "пальцами". Точность работы была весьма высока до 1,25 мм. И был эффективнее человека - работал и быстрее и с меньшим количеством брака.

В 1967 промышленные манипуляторы приходят Европу. Они уже расширяют свой функционал, осваивают профессии сварщика, маляра. У робота появляется "техническое зрение" посредством видеокамер и датчиков, он учится определять габариты изделий и место их расположения.

В 1982 году IBM разрабатывает официальный язык для программирования робототехнических систем. В 1984 - компания Adept представила первый робот Scara с электроприводом .
Новая конструкция сделала роботы более простыми и надежными, сохранив высокую скорость.

В 90-е появился контроллер с интуитивным интерфейсом управления, которому мог управлять оператор, он мог изменять параметры и регулировать режим работы. С тех пор возможности управления роботами и их функиции только развивались, увеличивалась их сложность, скорость, число осей, стали использоваться различные материалы, шире становились возможности разработки и управления, было сделано несколько первых уверенных шагов в сторону искусственного интеллекта.

В то же время в СССР был фактически лидером в робототехнике. Началось все еще в 30-е годы. В 1936 году 16–летний советский школьник Вадим Мацкевич создал робота, который умел поднимать правую руку. Для этого он потратил 2 года работы в токарных мастерских новочеркасского Политеха. Ранее, в 12 лет создал маленький радиоуправляемый броневик, стрелявший фейерверками. На "робота" Мацкевича обратили внимание власти и в 1937 году он представлял его на Всемирной выставке 1937 года в Париже.

На рубеже 30 - 40-х гг. XX в. в СССР также появились автоматические линии для обработки деталей подшипников, а в конце 40-х гг. XX в. впервые в мировой практике было создано комплексное производство поршней для тракторных двигателей с автоматизацией всех процессов - от загрузки сырья до упаковки готовой продукции.

В 1966 в Воронеже был изобретен манипулятор для укладки металлических листов, в 1968 в Ленинграде году разработали подводный робот "Манта" с чувствительным захватным устройством - в дальнейшем он совершенствовался. В 1969 году в ЦНИТИ Миноборонпрома приступили к разработке промышленного робота «Универсал-50». В дальнейшем активно внедрялись автоматизированные системы на крупные производства.

В 1985 году уже использовалось 40 тыс промышленых роботов и в несколько раз превосходило количество, используемых в США. Автоматизированые линии вовсю работали на АвтоВазе в 80-е года и даже подвергались атакам работников-"хакеров".

Были крупные военные и космические разработки. Уникальным достижением по тем временам был беспилотный разведчик ДБР-1, который был принят на вооружение ВВС СССР еще в 1964 году. Такой аппарат мог выполнять разведывательные задачи над всей территорией Западной и Центральной Европы.

Одним из самых заметных достижений отечественной робототехники и науки стало создание в КБ им. Лавочкина «Лунохода-1». Именно советский аппарат стал первым в мире планетоходом, который успешно выполнил свою миссию на поверхности другого небесного тела.

В 1983 году на вооружение ВМФ СССР был принят уникальный противокорабельный комплекс П-700 «Гранит». Его особенностью стало то, что при залповом пуске ракеты могли самостоятельно выстраиваться в боевой порядок и во время полета обмениваться между собой информацией, самостоятельно распределяя цели. При этом одна из ракет комплекса могла играть роль лидера, занимая более высокий эшелон атаки.

Развивались и "роботы-гуманоиды": в 1962 году появился первый робот экскурсовод Рэкс - он проводил экскурсии для детей в Политехническом музее. Говорят, он все еще там "работает".

В Советском Союзе было выпущено более 100 тыс. единиц промышленной робототехники. Они заменили более одного миллиона рабочих, но в 90-е годы эти роботы исчезли.

В дальнейшем развитие робототехники идет ударными темпами, потому что развивается ключевые отрасли - физика, химия, электротехника и главное - электроника. На смену вакуумным лампам пришла силовая электроника, позже микросхемы, затем микроконтроллеры... Появляются новые материалы, новые способы автоматизации и методы программирования.

Но к России и СНГ это не уже не относится. Прежде всего развитие происходит в США, в Юго-Восточной Азии и Западной Европе.

На производствах внедряются управляемые роботизированные линии, роботы манипуляторы используются во всех отраслях промышленности, в сельском хозяйстве, медицине, в космосе и, конечно, в быту.

В некоторых отраслях до 50% работ выполняют промышленные роботы, например в автомобилестроении они могут сварить, покрасить, и переместить детали на другой участок сборки, где ими займутся другие роботы.

Существуют даже 100% автоматизированные фабрики. В Японии есть завод где роботы сами собирают роботов. И даже готовят еду для 2000 человек - офисного центра, обслуживающего этот завод.

В 90-е годы наблюдался некоторый спад. Внедрение роботов, использующих существующие в то время технологии, на производство не принесло ожидаемой прибыли и финансирование некоторых крупномасштабных проектов было приостановлено. По ряду причин - и экономических, и социальных - ожидаемого бума не произошло, они остались как нишевая продукция для автосборочных и ряда других производств.

Резкий скачок произошел только в середине нулевых и это развитие продолжается. Прежде всего из-за того, что в робототехнике заинтересовались военные...

Остановить уже развитие невозможно и все странам, желающим быть в авангарде мировой промышленности приходится это принимать и догонять.

Устройство робота и задачи робототехники

Выделяют шесть общих задач роботехники:

  1. Перемещение - передвижение в любой среде
  2. Ориентация - осознавать свое местоположение
  3. Манипуляция - свободно манипулировать предметами окружающей среды
  4. Взаимодействие - контактировать с себеподобными
  5. Коммуникация - свободно общаться с человеком
  6. Искусственный интеллект - робот должен самостоятельно решать как ему выполнить команду человека

Самое оптимальное перемещение робота на колесах и гусеничной платформе. Именно эти способы обеспечивают наибольшую устойчивость и проходимость.
У колесных платформ с проходимостью сложнее - колесо не может преодолеть препятствие выше, чем его радиус. Колесные схемы постоянно совершенствуются, используются мощные серводвигатели , разрабатывается независимые подвески, применяются покрышки с грунтозацепами.

Устойчивы четырехноние и инсектоморфные роботы (это значит в форме насекомых, несколько "ног", обычно 6) Такие устройства часто используются для военных целей.

Ходить на двух ногах робот учился очень долго. Из всех существующих с этим хорошо справляется только гуманоид ASIMO от Honda он умеет не только устойчиво ходить, но и подниматься по ступеням, компания его разрабатывала более 25 лет
Большинство же человекоподобных роботов пока передвигаются на платформе.

Кроме хождения по земле опреденные модели могут ползать, плавать и летать.

Ориентрируется в пространстве робот с помощью датчиков, сенсоров, видеокамер, имеет способность "видеть" в инфракрасном диапазоне, улаваливать ультразвуковые колебания и воспринимать тепловое излучение.
Управлять может и оператор, он может находиться в той же комнате или за несколько километров.

Все озвученные задачи робототехники в той или иной мере решаются. Робот становится совершеннее, он умеет сотрудничать с другими роботами, учится общаться человеком и лучше его понимать.

Интересная схема обучения космического робота-спутника, вероятно этот же принцип используется для настройки других робототехнических систем. "Эмоциональное обучение", как называют его разработчики. Суть его в том, что в нем закладывается "аппарат эмоций", который сообщает спутнику что для него "хорошо", а что "плохо". Хорошо - если он нацеливается на конкретный заданный обьект - это увеличивает оценку, плохо - если от него отклоняется - оценка будет уменьшена. Ну и так пока устройство не станет стабильным "хорошистом".
Например, это может пригодиться для космических телескопов. Обучение проводится с помощью оператора и занимает около 20 минут, результат отображается в базе знаний.

Конкретно это описанное устройство космонавт может выбросить в открытый космос: остальные действия спутник выполнит сам. В концепте разработана модель нервной системы, которая логически следует из тех условий, в которых работает нервная система всех живых организмов.
Робототехника будущего может самостоятельно собирать новые знания, анализировать их и применять на практике.