Одним из самых распространенных итерационных методов, отличающийся простотой и легкостью программирования, является метод Гаусса Зейделя .

Проиллюстрируем сначала этот метод па примере решения системы

Предположим, что диагональные элементы а 11, а 22, а 33отличны от нуля (в противном случае можно переставить уравнения). Выразим неизвестные х 1, х х 3 соответственно из первого, второго и третьего уравнений системы (2.27):

(2.28)

(2.29)

(2.30)

Зададим некоторые начальные (нулевые) приближения значений неизвестных: Подставляя эти значения в правую часть выражения (2.28), получаем новое (первое) приближение для х 1:

Используя это значение для x 1 и приближение для х3 , находим из (2.29) первое приближение для х2 :

И наконец, используя вычисленные значения находим с помощью выражения (2.30) первое приближение для х 3:

На этом заканчивается первая итерация решения системы (2.28) - (2.30). Теперь с помощью значений х 1(1), х 2(1)и х 3(1)можно таким же способом провести вторую итерацию, в результате которой будут найдены вторые приближения к решению: х 1 = х 1 (2), х 2 = х 2(2)и х 3 = х 3(2)и т.д.

Приближение с номером k можно вычислить, зная приближение с номером k – 1, как

Итерационный процесс продолжается до тех пор, пока значения х 1(k), х 2(k)и х 3(k)не станут близкими с заданной погрешностью к значениям х 1(k-1), х 2(k-1)и х 3(k-1).

Пример. Решить с помощью метода Гаусса – Зейделя следующую систему уравнений:

Легко проверить, что решение данной системы следующее: х 1 = х 2 = х 3 = 1.

Решение . Выразим неизвестные х 1, х х 3соответственно из первого, второго и третьего уравнений:

В качестве начального приближения (как это обычно делается) примем х 1= 0, х 2 = 0, х 3 = 0. Найдем новые приближения неизвестных:

Аналогично вычислим следующие приближения:

Итерационный процесс можно продолжать до получения малой разности между значениями неизвестных в двух последовательных итерациях.

Рассмотрим теперь систему п линейных уравнений с п неизвестными. Запишем ее в виде

Здесь также будем предполагать, что все диагональные элементы отличны от нуля. Тогда в соответствии с методом Гаусса – Зейделя k -e приближение к решению можно представить в виде

Итерационный процесс продолжается до тех пор, пока все значения не станут близкими к , т.е. критерием завершения итераций является одно из условий (2.21) – (2.24).

Для сходимости итерационного процесса (2.31) достаточно, чтобы модули диагональных коэффициентов для каждого уравнения системы были не меньше сумм модулей всех остальных коэффициентов (преобладание диагональных элементов):

(2.32)

При этом хотя бы для одного уравнения неравенство должно выполняться строго. Эти условия являются достаточными для сходимости метода, но они не являются необходимыми, т.е. для некоторых систем итерации сходятся и при нарушении условий (2.32).

Алгоритм решения системы п линейных уравнений методом Гаусса – Зейделя представлен на рис.2.6. В качестве исходных данных вводят п, коэффициенты и правые части уравнений системы, погрешность ε, максимально допустимое число итераций М, а также начальные приближения переменных xi (i =1,2,…,n ).Отметим, что начальные приближения можно не вводить в компьютер, а полагать их равными некоторым значениям (например, нулю). Критерием завершения итераций выбрано условие (2.22), в котором через δ обозначена максимальная абсолютная величина разности и :

Для удобства чтения структурограммы объясним другие обозначения: k - порядковый номер итерации; i – номер уравнения, а также переменного, которое вычисляется в соответствующем цикле; j – номер члена вида или в правой части соотношения (2.31). Итерационный процесс прекращается либо при δ < ε , либо при k = М. В последнем случае итерации не сходятся, о чем выдается сообщение. Для завершения цикла, реализующего итерационный процесс, используется переменная l , которая принимает значения 0, 1 и 2, соответственно, при продолжении итераций, при выполнении условия δ < ε и при выполнении условия k = М .

Рис. 2.6. Алгоритм решения системы n линейных уравнений методом Гаусса–Зейделя

Система линейных алгебраических уравнений

Системой m линейных уравнений с n неизвестными называется система вида:

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы, которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами.

Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

1. Система может иметь единственное решение.

2. Система может иметь бесконечное множество решений. Например,

решением этой системы является любая пара чисел, отличающихся знаком.

3. И третий случай, когда система вообще не имеет решения. Например,

если бы решение существовало, то x 1 + x 2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим один из способов нахождения решений системы.

Метод Зейделя для решения СЛАУ

Приведение системы к виду, удобному для итераций. Для того чтобы применить метод Зейделя к решению системы линейных алгебраических уравнений

с квадратной невырожденной матрицей A, необходимо предварительно преобразовать эту систему к виду

Здесь B – квадратная матрица с элементами b ij (i, j = 1, 2, …, n), c – вектор-столбец с элементами c ij (i = 1, 2, …, n).

В развернутой форме записи система имеет следующий вид:

x 1 = b 11x1 + b 12x2 + b 13x3 + … + b 1nxn + c 1

x 2 = b 21x1 + b 22x2 + b 23x3 + … + b 2nxn + c 2

. . . . . . . . . . . . . . . . .

x n = b n1x1 + b n2x2 + b n3x3 + … + b nnxn + c n

Вообще говоря, операция приведения системы к виду, удобному для итераций, не является простой и требует специальных знаний, а также существенного использования специфики системы.

Самый простой способ приведения системы к виду, удобному для итераций, состоит в следующем. Из первого уравнения системы выразим неизвестное x1:

x 1 =а 11–1 (b 1 – a 12x2 – a 13x3 – … – a 1nxn),

из второго уравнения – неизвестное x2:

x 2 = a21–1 (b 2 – a 22x2 – a 23x3 – … – a 2nxn),

и т. д. В результате получим систему

x 1 = b 12x2 + b 13x3 +… + b 1,n–1xn–1 + b 1nxn + c 1 ,

x 2 = b 21x1 + b 23x3 +… + b 2,n–1xn–1 + b 2nxn + c 2 ,

x 3 = b 31x1 + b 32x2 + … + b 3,n–1xn–1 + b 3nxn + c 3 ,

. . . . . . . . . . . . . . . . . . . . . . .

x n = b n1x1 + b n2x2 +b n3x3 +… + b n,n–1xn–1 + c n ,

в которой на главной диагонали матрицы B находятся нулевые элементы. Остальные элементы выражаются по формулам

b ij = –a ij / a ii , c i = b i / a ii (i, j = 1, 2, …, n, j ≠ i)

Конечно, для возможности выполнения указанного преобразования необходимо, чтобы диагональные элементы матрицы A были ненулевыми.

Описание метода. Введем нижнюю и верхнюю треугольные матрицы

0 0 0 … 0 0 b 12 b 13 … b 1 n

b 21 0 0 … 0 0 0 b 23 … b 2 n

B 1 = b 31 b 32 0 … 0 , B­­ 2 = 0 0 0 … b 3 n

. . . . . . . . . . . . . .

b n 1 b n 2 b n 3 …0 0 0 0 … 0

Заметим, что B = B 1 + B 2 и поэтому решение x исходной системы удовлетворяет равенству

x = B 1x + B 2 x + c .

Выберем начальное приближение x(0) = T . Подставляя его в правую часть равенства при верхней треугольной матрице B 2 и вычисляя полученное выражение, находим первое приближение

x(1) = B 1x (0) + B 2x (1)

Подставляя приближение x(1), получим

x(2) = B 1x (1) + B 2x (2)

x(k+1) = B 1 (k+1) + B 2 (k) + c

или в развернутой форме записи

x 1 (k +1) = b 12 x 2 (k ) + b 13 x 2 (k ) + … + b 1 n x n (k ) + c 1 ,

x 2 (k +1) = b 21 x 1 (k +1) + b 23 x 3 (k ) + … + b 2 n x n (k ) + c 2 ,

x 3 (k +1) = b 31 x 1 (k +1) + b 32 x 2 (k +1) + … + b 3 n x n (k ) + c 3 ,

. . . . . . . . . . . . . . . . . . . . . . . . . .

x n (k +1) = b n 1 x 1 (k +1) + b n 2 x 2 (k +1) + b n 3 x 3 (k +1) + … + c n .

Объединив приведение системы к виду, удобному для итераций и метод Зейделя в одну формулу, получим

xi(k+1) = xi(k) – aii–1(∑j=1i–1 aijxj(k+1) + ∑j=1n aijxi(k) – bi).

Тогда достаточным условием сходимоти метода Зейделя будет

∑j=1, j≠i n | aij | < | aii |

(условие доминированния диагонали).

Метод Зейделя иногда называют также методом Гаусса-Зейделя, процессом Либмана, методом последовательных замещений.

Этот метод является модификацией метода простых итераций и в некоторых случаях приводит к более быстрой сходимости.

Итерации по методу Зейделя отличаются от простых итераций тем, что при нахождении i-й компоненты (k+1)-го приближения сразу используются уже найденные компоненты (к +1) -го приближения с меньшими номерами. При рассмотрении развернутой формы системы итерационный процесс записывается в виде

Теорема о достаточном условии сходимости метода Зейделя . Если для системы какая-либо норма матрицы меньше единицы, т.е. ,то процесс последовательных приближений (10.15) сходится к единственному решению исходной системы при любом начальном приближении .

Записывая (1) в матричной форме, получаем

где являются разложениями матрицы

Преобразуя (2) к виду , получаем матричную форму итерационного процесса метода Зейделя:

Тогда достаточное, а также необходимое и достаточное условия сходимости будут соответственно такими:

Замечания:

1. Для обеспечения сходимости метода Зейделя требуется преобразовать систему к виду с преобладанием диагональных элементов в матрице А (метод простых итераций).

2. Процесс (2) называется последовательным итерированием, так как на каждой итерации полученные из предыдущих уравнений значения подставляются в последующие. Как правило, метод Зейделя обеспечивает лучшую сходимость, чем метод простых итераций (за счет накопления информации, полученной при решении предыдущих уравнений). Метод Зейделя может сходиться, если расходится метод простых итераций, и наоборот.

3. Преимуществом метода Зейделя, как и метода простых итераций, является его "самоисправляемость".

4. Метод Зейделя имеет преимущества перед методом простых итераций, так как он всегда сходится для нормальных систем линейных алгебраических уравнений, т.е. таких систем, в которых матрица А является симметрической и положительно определенной. Систему линейных алгебраических уравнений с невырожденной матрицей А всегда можно преобразовать к нормальной, если ее умножить слева на матрицу . Система является нормальной.

Метод итераций и метод Зейделя

Метод итераций позволяет получить последовательность приближенных значений, сходящуюся к точному решению системы линейных уравнений. В отличие от метода Гаусса, метод итераций не требует контроля промежуточных вычислений, так как отдельные ошибки на каком-либо шаге итерации не искажают окончательных результатов, хотя и удлиняет процесс счета. Иначе говоря, метод итераций решения систем линейных уравнений является самоисправляющимся. Кроме того, метод итераций легко запрограммировать для ЭВМ. Пусть имеем систему

или, короче,

. (3.8)

Предположим, что определитель системы отличен от нуля и что диагональные коэффициенты

Выразим из первого уравнения , из второго , и т. д. Тогда получим эквивалентную систему:

где

Полученную систему запишем так:

(3.9)

и назовем ее системой нормального вида.

Будем решать ее методом последовательных приближений. За нулевое приближение возьмем, например, столбец свободных членов

Подставив в правую часть системы (3.9) значения , получим первое приближение:

.

Затем аналогично второе: и т.д.

Таким образом, зная - e приближение, ()-е приближение вычисляют по формуле:

(3.10)

Если последовательность приближений имеет предел

то является точным решением системы нормального вида, а значит, и исходной системы. В самом деле, переходя к пределу при в (3.10), имеем:

Описанный метод последовательных приближений называется методом итераций. Рабочие формулы метода итераций имеют вид:

(3.11)

Существование предела

гарантирует теорема о достаточном признаке сходимости процесса итераций.

Достаточным условием сходимости итерационных методов является условие

(3.12)

При методе Зейделя итерационный процесс подобен описанному для метода простых итераций, однако уточненные значения сразу подставляются в последующие уравнения. Формула итерационного процесса имеет вид:

Контрольные вопросы

1. К какому виду преобразуют исходную систему для применения метода итераций?

2. В чем преимущество метода итераций перед другими методами?

3. Каковы условия применимости данного метода?

4. Какова скорость сходимости последовательности векторов к решению?

5. Сформулируйте условие окончания вычислений в методе простых итераций?

6. Какова общая постановка задачи решения систем линейных уравнений?

7. Что такое ранг матрицы?

8. Сформулируйте условие существования решения и условие единственности решения.

9. Что такое эквивалентное преобразование системы? Какие они бывают?

10. Почему при добавлении к строке линейной комбинации других строк решение не меняется?

11. С чем связана необходимость переставлять местами уравнения системы при решении?

12. Когда целесообразно применять метод Гаусса?

13. Какова цель прямого хода в методе Гаусса?

14. Как выполняется обратный ход метода Гаусса?

15. На каком ходе, прямом или обратном, необходимо учитывать условия применения метода Гаусса?

16. Объясните алгоритм схемы единственного деления.

17. Объясните алгоритм схемы с частичным выбором ведущего коэффициента по столбцу.

18. Расскажите о достоинствах и недостатках схемы с полным выбором ведущего коэффициента.

19. Объясните зависимость временных затрат от размера системы.

20. Объясните зависимость ошибок от размера системы.

21. Когда система линейных алгебраических уравнений имеет единственное решение?

22. Каковы недостатки решения системы уравнений по правилу Крамера?

23. Охарактеризуйте точные и приближенные численные методы решения систем линейных алгебраических уравнений.

24. Опишите метод Гаусса с выбором главного элемента.

25. Почему метод простой итерации называется самоисправляющимся?

26. Дайте определение сходимости итерационного процесса.

27. Опишите метод Зейделя.

28. Точные методы решения систем линейных уравнений

29. Приближенные методы решения систем линейных уравнений

30. Правило Крамера.


Метод Зейделя представляет модификацию метода простой итерации. Идея состоит в том, что на каждой к-й итерации при вычислении значения переменной используются значения переменных
, . . . . ,
, уже подсчитанных на этой же к-й итерации.

Пример:

Зададимся исходным приближением
и ε = 0,001.

Делаем первую итерацию по методу Зейделя

Занесем результаты расчетов в таблицу

№ итерации (к )

Метод Зейделя, имеет, как правило, лучшую сходимость, чем метод простой итерации. И сходится в ряде случаев даже тогда, когда метод простой итерации не обеспечивает сходимость. Но (значительно реже) бывает и наоборот.

Преимущества и недостатки итерационных методов

Преимущества:

    имеют простую вычислительную процедуру;

    не требуют сложных специальных процедур для экономии памяти ЭВМ под нулевые элементы матрицы коэффициентов, как метод Гаусса;

    самоисправление ошибок.

Недостатки:

    не всегда могут решить систему уравнений (требуется выполнение условий сходимости)

    сходимость итерационных процессов может быть медленной;

    корни системы могут быть определены только приближенно с точностью ε.

Тема 2.2 решение систем нелинейных уравнений Понятие о системах нелинейных уравнений и методах их решения

Для примера приведем нелинейные уравнения балансов мощностей в узлах электрической сети, составленных по методу узловых напряжений (без вывода).

Р г i иQ г i - активная и реактивная мощности, генерируемые вi -м узле;

Р нi иQ н i - активная и реактивная мощности нагрузки вi -м узле;

Р уi иQ у i - активные и реактивные потоки мощности из узлаj к узлуj .

Уравнения балансов активных и реактивных мощностей в узле i

;

,

где
означает, что узелj ‚ принадлежит множеству всех узлов, которые связаны с узломi .

Формулы для потоков активной и реактивной мощностей от узла к узлу j следующие:

Применяются две системы координат, в которых могут проводиться расчеты:

    прямоугольная система координат (в комплексном виде);

    полярная система координат (через тригонометрические функции).

В полярной системе координат выражения для потоков мощности имеют следующий вид:

Y – заданные проходимости схемы замещения системы;

P ,Q ,U ,- параметры режима, часть из них известна (обычно это мощности нагрузок в узлах, напряжение и угол в базисном узле), остальные являются искомыми переменными, которые следует определить в результате расчета.

Подчеркнем, что нелинейность в уравнениях выражается как наличием в них степеней второго порядка, так и наличием тригонометрических функций.

Для решения систем нелинейных уравнений используются только итерационные методы. В том числе для решения систем нелинейных уравнений могут использоваться методы простой итерации и Зейделя при условии их сходимости.

Пример: дана система нелинейных уравнений

;

.

Приведем к виду удобному для итерации

;

Результаты расчетов обоими методами сведем в таблицу (ε=0,001)

Метод простой итерации

Метод Зейделя

№ итерации

№ итерации

Нелинейные уравнения, составленные для расчетов режимов, обычно сложнее чем в приведенном примере и их не всегда можно решить этими методами. Гораздо лучшую сходимость для решения нелинейных уравнений и вследствие этого большее применение имеет метод Ньютона. Но этот метод имеет более сложную вычислительную процедуру.

Метод Ньютона /2/ (называемый также методом линеаризации или методом касательных) применяется для решения системы нелинейных уравнений. Он эффективен, если известно достаточно хорошее приближение к корням системы нелинейных уравнений.

Под методом Зейделя обычно понимается такое видоизменение метода простых итераций (6.3) решения СЛАУ, приведенных к виду (6.2), при котором для подсчета -й компоненты -го приближения к искомому вектору используются уже найденные на этом, т.е. -м шаге, новые значения первых компонент. Это означает, что если система (6.1) тем или иным способом сведена к системе (6.2) с матрицей коэффициентов и вектором свободных членов , то приближения к ее решению по методу Зейделя определяются системой равенств

(6.12)

где , a – компоненты заданного (выбранного) начального вектора .

Остановимся подробнее на случае, когда приведение системы (6.1) к виду (6.2) основано на представлении (6.7), т. е. когда метод Зейделя есть модификация метода Якоби. Запись соответствующих расчетных формул здесь сводится к верхней индексации системы (6.10) по типу (6.12):

(6.13)

где ; задается.

Для анализа сходимости метода Зейделя (6.13) обратимся к его векторно-матричной форме. Легко видеть, что если неявный вид метода Якоби, вытекающий из представления (6.7) системы (6.1), есть

(сравните с (6.9)),

то равнозначный (6.13) неявный вид метода Зейделя в векторно-матричных обозначениях суть

.

Следовательно, тот же вектор ,который фигурирует в левой части совокупности равенств (6.13), может быть получен по формуле

(6.14)

Последнее выражение определяет не что иное, как МПИ (6.3) для системы вида (6.2), где

т. е. результат применения одного шага метода Зейделя (6.13), полученного на основе – разложения матрицы ,можно расценивать, как шаг МПИ для эквивалентной (6.1) задачи о неподвижной точке

(разумеется, если треугольная матрица обратима). Эта связь между методом Зейделя и методом простых итераций позволяет легко переформулировать некоторые утверждения о сходимости МПИ применительно к методу Зейделя (6.13).

Теорема 6.5. Для сходимости метода Зейделя (6.13) необходимо и достаточно, чтобы все корни уравнения

(6.16)

были по модулю меньше единицы.

Прямым следствием теоремы 6.2 для метода Зейделя (6.13) является следующая теорема.

Теорема 6.6. Пусть . Тогда при любом начальном векторе метод Зейделя (6.13) сходится к решению системы (6.1) и справедливы оценки погрешности

Ясно, что для непосредственного использования оценок (6.17) нужно предварительно выполнить обращение треугольной матрицы и перемножить матрицы и . В таком случае частично теряется смысл в поэлементной реализации метода Зейделя (6.13) ;вместо этого можно проводить итерации по формуле (6.14) до тех пор, пока не выполнится условие , где – требуемая точность. В частности, такой подход может быть рекомендован при решении СЛАУ методом Зейделя на компьютерах с векторной обработкой информации.

Более подходящие для использования оценки погрешности метода Зейделя (6.13) можно получить, разлагая матрицу (см. (6.11)) в сумму двух строго треугольных матриц, т.е. полагая

,где

, .

С ними эквивалентное (6.1) уравнение (6.2) приобретает вид ,

т.е. для решения будет точным равенство ,

а метод Зейделя (6.13) – соответственно .

Из двух последних равенств получаем следующее:

Это равенство, записанное в виде (6.18)

можно расценивать как точную связь между погрешностями -го и -го приближений в методе Зейделя (6.13). Отсюда, переходя к нормам, легко вывести априорную оценку погрешности, что можно оформить в виде следующего утверждения.

Теорема 6.7 .Пусть . Тогда метод Зейделя (6.13) определяет сходящуюся последовательность при любом начальном векторе , и имеет место оценка

Как и у предыдущей, у этой теоремы имеются свои недостатки, затрудняющие ее применение: нужно знать меру близости начального приближения к решению . Ценность ее скорее в том, что в ней фигурирует легко вычисляемый коэффициент связи ошибок результатов двух соседних итерационных шагов, характеризующий быстроту сходимости метода Зейделя (6.13). При организации практических вычислений по формулам (6.13) целесообразнее ориентироваться на следующий результат.

Теорема 6.8. Пусть , (где матрица (6.11)). Тогда для определяемой методом Зейделя (6.13) последовательности приближений справедлива апостериорная оценка погрешности

.

Из теоремы 6.8 вытекает следующая, более удобная на практике, формулировка.

Следствие 6.1. Пусть –первое из натуральных чиселk , с которым при заданном для генерируемой процессом Зейделя (6.13) последовательности векторов некоторых согласованных нормах выполняется равенство .