Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода уравнений

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки . При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p - 2&1/8q)


Решить систему уравнений

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;



$$ \left\{ \begin{array}{l} 3x+y=7 \\ -5x+2y=3 \end{array} \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\{ \begin{array}{l} y = 7-3x \\ -5x+2(7-3x)=3 \end{array} \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) - решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными . Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений - способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\{ \begin{array}{l} 2x+3y=-5 \\ x-3y=38 \end{array} \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\{ \begin{array}{l} 3x=33 \\ x-3y=38 \end{array} \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \(x-3y=38 \) получим уравнение с переменной y: \(11-3y=38 \). Решим это уравнение:
\(-3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \(x=11; y=-9 \) или \((11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач Содержание урока

Линейные уравнения с двумя переменными

У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

Обозначим количество пирожных через x , а количество чашек кофе через y . Тогда стоимость пирожных будет обозначаться через выражение 25x , а стоимость чашек кофе через 10y .

25x — стоимость x пирожных
10y — стоимость y чашек кофе

Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

25x + 10y = 200

Сколько корней имеет данное уравнение?

Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

Говорят, что пара значений 6 и 5 являются корнями уравнения 25x + 10y = 200 . Записывается как (6; 5) , при этом первое число является значением переменной x , а второе — значением переменной y .

6 и 5 не единственные корни, которые обращают уравнение 25x + 10y = 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

В этом случае корнями уравнения 25x + 10y = 200 является пара значений (4; 10) .

Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 8 и 0

Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 0 и 20

Попробуем перечислить все возможные корни уравнения 25x + 10y = 200 . Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

x Z, y Z;
x ≥
0, y ≥ 0

Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

Заметим, что при нечетном x невозможно достичь равенства ни при каком y . Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25x + 10y = 200 .Они обращают данное уравнение в тождество.

Уравнение вида ax + by = c называют линейным уравнением с двумя переменными . Решением или корнями этого уравнения называют пару значений (x; y ), которая обращает его в тождество.

Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + b y = c , то говорят, что оно записано в каноническом (нормальном) виде.

Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

Например, уравнение 2(16x + 3y − 4) = 2(12 + 8x y ) можно привести к виду ax + by = c . Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y . Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16x + 6y + 2y = 24 + 8 . Приведём подобные слагаемые в обеих частях, получим уравнение 16x + 8y = 32. Это уравнение приведено к виду ax + by = c и является каноническим.

Рассмотренное ранее уравнение 25x + 10y = 200 также является линейным уравнением с двумя переменными в каноническом виде. В этом уравнении параметры a , b и c равны значениям 25, 10 и 200 соответственно.

На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25x + 10y = 200, мы искали его корни толькона множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25x + 10y = 200 будет иметь бесчисленное множество решений.

Для получения новых пар значений, нужно взять произвольное значение для x , затем выразить y . К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10y = 200 в котором можно выразить y

Пусть x = 15 . Тогда уравнение 25x + 10y = 200 примет вид 25 × 15 + 10y = 200. Отсюда находим, что y = −17,5

Пусть x = −3 . Тогда уравнение 25x + 10y = 200 примет вид 25 × (−3) + 10y = 200. Отсюда находим, что y = −27,5

Система двух линейных уравнений с двумя переменными

Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y . Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными . Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

Вернемся к самому первому уравнению 25x + 10y = 200 . Одной из пар значений для этого уравнения была пара (6; 5) . Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25x + 10y = 200 . Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

Поставим текст задачи следующим образом:

«Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

Первое уравнение у нас уже есть. Это уравнение 25x + 10y = 200 . Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе» .

Количество пирожных это x , а количество чашек кофе это y . Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

x = y + 1 . Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

Получили два уравнения: 25x + 10y = 200 и x = y + 1. Поскольку значения x и y , а именно 6 и 5 входят в каждое из этих уравнений, то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

Метод подстановки

Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению y + 1 . Тогда можно подставить это выражение в первое уравнение вместо переменной x

После подстановки выражения y + 1 в первое уравнение вместо x , получим уравнение 25(y + 1) + 10y = 200 . Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

Мы нашли значение переменной y . Теперь подставим это значение в одно из уравнений и найдём значение x . Для этого удобно использовать второе уравнение x = y + 1 . В него и подставим значение y

Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

Пример 2

Подставим первое уравнение x = 2 + y во второе уравнение 3x − 2y = 9 . В первом уравнении переменная x равна выражению 2 + y . Это выражение и подставим во второе уравнение вместо x

Теперь найдём значение x . Для этого подставим значение y в первое уравнение x = 2 + y

Значит решением системы является пара значение (5; 3)

Пример 3 . Решить методом подстановки следующую систему уравнений:

Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

Чтобы подставить одно уравнение в другое, сначала нужно .

Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x , которая содержится в первом уравнении x + 2y = 11 . Эту переменную и выразим.

После выражения переменной x , наша система примет следующий вид:

Теперь подставим первое уравнение во второе и найдем значение y

Подставим y x

Значит решением системы является пара значений (3; 4)

Конечно, выражать можно и переменную y . Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

Видим, что в данном примере выражать x намного удобнее, чем выражать y .

Пример 4 . Решить методом подстановки следующую систему уравнений:

Выразим в первом уравнении x . Тогда система примет вид:

y

Подставим y в первое уравнение и найдём x . Можно воспользоваться изначальным уравнением 7x + 9y = 8 , либо воспользоваться уравнением , в котором выражена переменная x . Этим уравнением и воспользуемся, поскольку это удобно:

Значит решением системы является пара значений (5; −3)

Метод сложения

Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

Решим следующую систему уравнений:

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

Приведем подобные слагаемые:

В результате получили простейшее уравнение 3x = 27 корень которого равен 9. Зная значение x можно найти значение y . Подставим значение x во второе уравнение x − y = 3 . Получим 9 − y = 3 . Отсюда y = 6 .

Значит решением системы является пара значений (9; 6)

Пример 2

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

В результате получили простейшее уравнение 5x = 20, корень которого равен 4. Зная значение x можно найти значение y . Подставим значение x в первое уравнение 2x + y = 11 . Получим 8 + y = 11 . Отсюда y = 3 .

Значит решением системы является пара значений (4;3)

Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть, к виду ac + by = c .

Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

Например, систему можно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11x = 22 , корень которого равен 2. Затем можно будет определить y равный 5.

А систему уравнений методом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8x + y = 28 , имеющее бесчисленное множество решений.

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

Вернемся к самой первой системе , которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5) .

Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

В результате получили систему
Решением этой системы по-прежнему является пара значений (6; 5)

Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

Вернемся к системе , которую мы не смогли решить методом сложения.

Умножим первое уравнение на 6, а второе на −2

Тогда получим следующую систему:

Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y , а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88 , отсюда y = 4 .

Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

Зная, что значение переменной y равно 4, можно найти значение x . Подставим y в одно из уравнений, например в первое уравнение 2x + 3y = 18 . Тогда получим уравнение с одной переменной 2x + 12 = 18 . Перенесем 12 в правую часть, изменив знак, получим 2x = 6 , отсюда x = 3 .

Пример 4 . Решить следующую систему уравнений методом сложения:

Умножим второе уравнение на −1. Тогда система примет следующий вид:

Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y , а сложение 7 и 1 даст 8. В результате получится уравнение 8y = 8 , корень которого равен 1. Зная, что значение y равно 1, можно найти значение x .

Подставим y в первое уравнение, получим x + 5 = 7 , отсюда x = 2

Пример 5 . Решить следующую систему уравнений методом сложения:

Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

Умножим второе уравнение на 3. Тогда система примет вид:

Теперь сложим оба уравнения. В результате сложения получим уравнение 8y = 16 , корень которого равен 2.

Подставим y в первое уравнение, получим 6x − 14 = 40 . Перенесем слагаемое −14 в правую часть, изменив знак, получим 6x = 54 . Отсюда x = 9.

Пример 6 . Решить следующую систему уравнений методом сложения:

Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

В получившейся системе первое уравнение можно умножить на −5, а второе на 8

Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13y = −156 . Отсюда y = 12 . Подставим y в первое уравнение и найдем x

Пример 7 . Решить следующую систему уравнений методом сложения:

Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как , а правую часть второго уравнения как , то система примет вид:

У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

Первое уравнение умножим на −3, а во втором раскроем скобки:

Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

Получается, что система имеет бесчисленное множество решений.

Но мы не можем просто так взять с неба произвольные значения для x и y . Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть x = 2 . Подставим это значение в систему:

В результате решения одного из уравнений, определится значение для y , которое будет удовлетворять обоим уравнениям:

Получившаяся пара значений (2; −2) будет удовлетворять системе:

Найдём еще одну пару значений. Пусть x = 4. Подставим это значение в систему:

На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

Пример 8 . Решить следующую систему уравнений методом сложения:

Умножим первое уравнение на 6, а второе на 12

Перепишем то, что осталось:

Первое уравнение умножим на −1. Тогда система примет вид:

Теперь сложим оба уравнения. В результате сложения образуется уравнение 6b = 48 , корень которого равен 8. Подставим b в первое уравнение и найдём a

Система линейных уравнений с тремя переменными

В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

ax + by + cz = d

Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z ) которая обращает уравнение в тождество.

Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

Пример 1 . Решить следующую систему уравнений методом подстановки:

Выразим в третьем уравнении x . Тогда система примет вид:

Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z . Подставим это выражение в первое и второе уравнение:

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

Теперь найдём значение y . Для этого удобно воспользоваться уравнением −y + z = 4. Подставим в него значение z

Теперь найдём значение x . Для этого удобно воспользоваться уравнением x = 3 − 2y − 2z . Подставим в него значения y и z

Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Пример 2 . Решить систему методом сложения

Сложим первое уравнение со вторым, умноженным на −2.

Если второе уравнение умножить на −2, то оно примет вид −6x + 6y − 4z = −4 . Теперь сложим его с первым уравнением:

Видим, что в результате элементарных преобразований, определилось значение переменной x . Оно равно единице.

Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1 . Теперь сложим его со вторым уравнением:

Получили уравнение x − 2y = −1 . Подставим в него значение x , которое мы находили ранее. Тогда мы сможем определить значение y

Теперь нам известны значения x и y . Это позволяет определить значение z . Воспользуемся одним из уравнений, входящим в систему:

Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Задачи на составление систем линейных уравнений

Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

Задача 1 . Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

Решение

Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как x + y = 35. Это уравнение описывает сумму длин обеих дорог.

Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как x y = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

Либо второе уравнение можно записать как x = y + 5 . Этим уравнением и воспользуемся.

Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

Подставим второе уравнение в первое и найдём y

Подставим найденное значение y в во второе уравнение x = y + 5 и найдём x

Длина первой дороги была обозначена через переменную x . Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

А длина второй дороги была обозначена через y . Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

Выполним проверку. Для начала убедимся, что система решена правильно:

Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой . Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

Так наша система содержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y , которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.

Задача 2 . На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

Решение

Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300 .

Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46x = 1000 . Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

Тонны были переведены в килограммы, поскольку масса дубовых и сосновых шпал измерена в килограммах.

В результате получаем два уравнения, которые образуют систему

Решим данную систему. Выразим в первом уравнении x . Тогда система примет вид:

Подставим первое уравнение во второе и найдём y

Подставим y в уравнение x = 300 − y и узнаем чему равно x

Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые . Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.

Задача 3 . Взяли три куска сплава меди с никелем в отношениях 2: 1 , 3: 1 и 5: 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4: 1 . Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

5.1. Правило Крамера

Установив основные свойства и способы вычисления определителей матриц любого порядка, возвратимся к основной задаче - решению и исследованию систем уравнений 1-ого порядка. Начнем изучение этого вопроса с разбора того основного случая, когда число уравнений совпадает с числом неизвестных.

Помножим все члены 1-го уравнения системы (1) на А 11 - алгебраическое дополнение элемента а 11 матрицы А, все члены 2-го уравнения системы (1) на А 21 - алгебраическое дополнение элемента а 21 матрицы А, наконец, все члены n-го уравнения системы (1) на А n1 - алгебраическое дополнение элемента а n1 матрицы А. Тогда получим систему

(1")

Прибавим почленно все уравнения системы, получим

(a i1 A i1)x 1 +(a i2 A i1)x 2 +...+(a in A i1)x n =b i A i1

Согласно теоремы про алгебраические дополнения имеем

a i1 A i1 =det A a i2 A i1 =0, ........., a in A i1 =0

Поэтому полученное уравнение можно переписать в виде

Рассмотрим матрицу

,

Полученную из матрицы А заменой элементов 1-го столбца столбцом свободных членов уравнений системы. Раскладывая det B1 по элементам 1-го столбца, получим det B 1 =b i A i1 , а потому

Аналогично, умножив уравнения системы (1) соответственно на Аі2 (и=1, 2, ... n) и добавляя их, получим

,

Поступив таким образом и в дальнейшем, получим систему уравнений

(2),

Где матрица Вk получена из А заменой k-го столбца столбцом свободных членов. Очевидно, любое решение системы (1) является и решением системы (2).

(3)

Напомним, что формулы (3) получены с предположением, что система (1) имеет решение. Непосредственной подстановкой найденных значений Х і в систему (1) можно убедиться в том, что они являются решением системы (1) и, следовательно, в предположении, что
, система (1) имеет решение и к тому же единственное.

^ Теорема (теорема Крамера): если определитель основной матрицы системы п уравнений 1-го порядка с п неизвестными отличный от нуля, тогда система имеет единственное решение. При этом значение каждого из неизвестных равно части от деления определителей двух матриц: в знаменателе стоит определитель основной матрицы системы, а в числителе определитель матрицы, полученной из основной матрицы системы заменой столбца, что отвечает выбранному неизвестному, столбцом свободных членов.

Из этой теоремы выходит, что если система уравнений однородная то есть свободные члены во всех уравнениях системы равны нулю, и если определитель основной матрицы системы отличный от нуля, тогда система имеет только нулевое решение. Действительно, в таком случае, матрицы, определители которых стоят в числителе формул (3), содержат столбец, который включает в себя лишь нули, и, следовательно, все числа Х і равны нулю. Из доказанного вытекает следующая теорема:

^ Если система п однородных уравнений 1-го порядка с п неизвестными имеет хотя бы одно ненулевое решение, тогда определитель основной матрицы системы равен нулю. Действительно, если бы этот определитель был не равен нулю, тогда система имела бы только нулевое решение, что противоречит условию.

В дальнейшем мы докажем, что равенство нулю определителя системы есть не только обязательное, необходимое условие существования ненулевого решения, но и условие, достаточное для существования такого решения. Иначе говоря, если определитель системы однородных уравнений равен нулю, тогда система имеет ненулевое решение (и при этом бесконечное множество таких решений).

^ 5.2. Решение и исследование систем уравнений первого порядка методом полного исключения (Метод Гаусса).

Формулы Крамера дают возможность, используя прием вычисления определителей, найти числовые значения решения системы уравнений в случае, когда определитель основной матрицы системы отличный от нуля. Но практическое применение этих формул во многих случаях усложнено. Прежде всего, необходимо отметить, что для нахождения решений по формулам (3) необходимо вычислить n+1 определитель n-го порядка, что представляет собой довольно трудоемкую работу, даже при использовании тех приемов, которые были указаны в §4. Но самое главное то, что в случае, когда коэффициенты уравнения заданы приближенно (в реальных задачах это бывает почти всегда), погрешность решения может быть довольно большая. Это объясняется тем, что слагаемые, которые входят в каждый из определителей, через которые определяется решение системы, могут быть довольно большие (напомним, они представляют собою произведение n сомножителей - различных коэффициентов расширенной матрицы системы), а сам определитель, который представляет собой алгебраическую сумму таких слагаемых, может быть малый. Даже в том случае, когда коэффициенты в системе исходных уравнений известны точно, но сами вычисления ведутся с учетом лишь заданного числа значащих цифр, мы по тем же причинам сможем получить довольно большие погрешности в результате. А потому при практическом решении систем уравнений в большинстве случаев используют не формулы Крамера, а другие приемы вычислений.

В данном курсе мы рассмотрим метод полного исключения, относительно решения систем уравнений 1-ого порядка также и в том случае, когда число уравнений не совпадает с числом неизвестных. Но изложение этого метода начнем с основного случая: когда число уравнений совпадает с числом неизвестных.

Таким образом, пусть снова задана система n уравнений с n неизвестными:

(1)

Поскольку хотя бы один из коэффициентов a i1 отличный от нуля (иначе в систему вообще не входило бы х1), и уравнения в системе возможно менять местами, тогда без какого-либо ограничения всеобщности можно считать, что
Поделим 1-е уравнение системы на a11 и приведем его к виду ,

Перемножая все члены полученного уравнения на аі1 и вычитая из і -го уравнения системы (1), получим новую систему

(2),

i=1, 2, ..., n; k=1, 2, ... , n

Поскольку уравнения системы (2) получены как линейные комбинации уравнений системы (1), то любое решение системы (1) является также и решением системы (2). Вместе с тем поскольку

То уравнения системы (1) могут быть получены как линейная комбинация уравнений системы (2). Следовательно, любое решение системы (2) является и решением системы (1). Таким образом, система (1) и (2) равнозначны. (Линейной комбинацией двух уравнений с 11 х 1 +с 12 х 2 +...+с 1n х n =d 1 і, с 21 х 1 +с 22 х 2 +...+с 2n х n =d 2 будем называть уравнение  1 (c 11 x 1 +c 12 x 2 +...+c 1n x n) + 2 (c 21 x 1 +c 22 x 2 +...+c 2n x n)= 1 d 1 + 2 d 2 , где  1 та  2 - числа)

Сравним теперь определители D1 и D2 основных матриц систем (1) и (2). Первая строка основной матрицы системы (2) получена из первой строки основной матрицы системы (1) делением на а 11 . Такая операция отвечает делению D1 на а11. Другие строки получены вычитанием из соответствующих строк основной матрицы системы (1) величин, пропорциональных первой строке. Эта операция не изменяет величины определителя. Отсюда выходит, что определитель D2 основной матрицы системы (2) равен . А потому
, если
и D2=0, если D1=0. Отметим, наконец, что вычисления мы проводили только с коэффициентами уравнений системы (1), поэтому нет необходимости писать сами уравнения. Достаточно написать лишь расширенную матрицу системы и преобразовать только элементы этой матрицы.

Будем обозначать переход от одной расширенной матрицы к другой, то есть фактически переход от одной системы уравнений к системе, ей равнозначной, символом или
. Тогда проведенные операции можно записать так:

Будем считать сначала, что определитель D1 основной матрицы системы (1) отличный от нуля. Тогда, как сказано выше,
, а потому, в крайнем случае, одно из чисел
(и=1, 2, ... , n) отлично от нуля, поскольку, если бы все были равны нулю, был бы равен нулю и определитель D2 основной матрицы системы (2).

Поскольку уравнения в системе (2) можно менять местами, поэтому, без ограничения, можно считать, что
. Поделим 2-е уравнение системы (2) на
, помножим полученную строку на (і=1, 3, 4, ... , n) и вычтем из і-й строки.

Тогда будем иметь

Система уравнений, что отвечает матрице В 3 , равнозначна системе (2), а поэтому и исходной системе (1). Определитель D3 основной матрицы этой системы отличный от нуля, поскольку отличный от нуля определитель D2. Отсюда, в крайнем случае, одно из чисел
(и=3, ... , n) отлично от нуля и можно снова провести те ж операции, что и ранее. Продолжая аналогичные размышления, после n операций получим матрицу

Соответствующая система уравнений имеет вид

(3),

Ее единственным решением есть (4)

Поскольку система (3) равнозначна системе (1), имеет единственное решение, то имеет единственное решение, что определяется формулами (4), и исходная система(1).

Пример 1 . Решить систему

Решение

x1=1; x2=-1; x3=0; x4=2

Отметим, если система однородна, то есть все числа bi (и=1, 2, ... , n) равны нулю, тогда равны нулю и все числа
Поэтому система (1) имеет в этом случае только нулевое решение.

Пусть теперь определитель D1 основной матрицы системы (1) равен нулю. Тогда уже нельзя утверждать, что среди чисел
(и=m, m+1, ... , n), полученных после (m-1)-го этапа преобразований, будет хотя бы одно, отличное от нуля. Больше того, на каком-то этапе все эти числа обязательно станут равными нулю (иначе мы имели бы разобранный случай). Таким образом, пусть получена матрица

Переставим m-ый столбец матрицы на место n-го, а все следующие за m-м столбцом, кроме столбца свободных членов
сдвинем на одно место влево (такая операция, очевидно, означает перестановку неизвестных в уравнениях системы или их перенумерацию, что, конечно, не изменяет решения системы). В результате получим матрицу

,

И=1, 2, ... , n;

k=m, m+1, ... , n.

Продолжая те ж преобразования, что и ранее, получим, в конечном счете, матрицу

(5)

Матрице (5) отвечает система уравнений

(6),

в которой неизвестные отличаются от неизвестных х і в системе (1) лишь нумерацией. Поскольку система (6) равнозначна системе (1), тогда вывод о решении системы (1) равносильный выводу о решении системы (6).

Очевидно, что если хотя бы одно из чисел
(и=k+1, ... , n) не равно нулю, тогда уравнение системы (6), а потому и уравнение системы (1), несовместимы. Если есть все (і=k+1, ... , n) равны нулю, тогда уравнения совместны. При этом неизвестным
можно дать любые значения, и система имеет такие решения:

,

где t1, t2, ... , te ( =n-k) произвольные

Для того, чтобы было удобно возвращаться к исходной системе неизвестных, полезно над столбцами матриц, которые получаются при проведении преобразований, надписывать обозначения соответствующих неизвестных. Укажем, кроме того, что если исходная система (1) однородна, тогда все числа (и=1, 2, ... , n) равны нулю. Поэтому имеют место такие два утверждения.

1. Система однородных уравнений 1-ого порядка всегда совместна.

2. Если определитель системы однородных уравнений 1-ого порядка равен нулю, тогда система имеет бесконечное множество решений.

Пример 2


Решение

Система уравнений, что отвечает полученной матрице, имеет вид:

Система совместна, х4=t произвольно. Система имеет бесконечное множество решений

причем t - произвольное число.

Отметим, что если бы свободные члены в уравнениях были другими, чем задано в условии, система могла бы быть несовместимой. Пусть, например, b4=1. Тогда преобразованная матрица системы будет

и последнее уравнение системы приобретет такой вид 0х1+0х2+0х3+0х4=1, что не имеет смысла.

Пример 3.

Решение.

Система совместима, х2=t произвольно; x1=1-t, x2=t, x3=-2, x4=1.

Разобранный метод без каких-либо изменений переносится и на тот случай, когда число неизвестных не совпадает с числом уравнений.

ІІ. Примеры решения задач

1.20. Решить систему

Вычислим определитель системы

Поскольку определитель системы отличный от нуля, применим правило Крамера. Для вычисления определителя detB1 заменим столбец определителя системы столбцом из свободных членов
. Имеем

Определитель detB2 получим заменой столбца
определителя системы столбцом из свободных членов:

Согласно правила Крамера, находим
;

Совокупность чисел (5;-4) является единственным решением данной системы.

1.21. Найти решения системы

Определитель из коэффициентов системы отличный от нуля:

detA=
=2·3·(-5)+5·(-9) ·2+(-8) ·4·3-(-8) ·3·2-5·4·(-5)-2·3·(-9)=-140

Поэтому можно применить правило Крамера

отсюда находим
;
;

Совокупность чисел (3, 2, 1) является единственным решением системы.

1.22. Решить систему

/IVp+II-I-III/ ~

Нетрудно видеть, что определитель из коэффициентов системы равен нулю, поскольку 4-ая строка его состоит из нулей. Последняя строка расширенной матрицы свидетельствует о том, что система не совместна.

1.23. Решить систему

Выпишем расширенную матрицу системы

/IIp. -2· I, IIIp. -I, IVp. -II-III/ ~
~

/поделим ІІІр. на (-3), IVp. на (-3)/

~
/ІІІр. +2· ІІ/ ~

В результате всех преобразований данная система линейных уравнений свелась к треугольному виду.

Она имеет единственное решение.

х3=1 х4=-1 х2=-2 х1=2 ▲

Уравнения совместимы, х4=t произвольно,

1.25. Найти решения системы

Система совместна, х4=t произвольно,

1.26. Решить систему

Система совместима, х4=t произвольно, x1=t, x2=-2t, x3=0, x4=t. ▲
^

§6 Ранг матрицы, теорема о совместимости систем уравнений первого порядка


Для исследования многих вопросов, связанных с решением систем уравнений 1-ого порядка, часто вводят понятие ранг матрицы.

Определение. Рангом матрицы называется самый высокий порядок отличного от нуля определителя квадратной субматрицы, полученной из заданной матрицы вычеркиванием некоторых строк и столбцов.

Рассмотрим, например, матрицу

Вычеркиванием любого числа строк и столбцов невозможно из заданной матрицы получить квадратную матрицу порядка выше 3-го. Отсюда, ранг ее не может быть больше трех. Но, вычеркивая один из столбцов, мы будем получать квадратные матрицы, которые имеют две одинаковые строки, а потому их определители равны нулю. Отсюда, ранг исходной матрицы меньше 3-х. Вычеркнув, например, 3-й и 4-й столбец и 3-й строку, получим квадратную матрицу
, определитель которой не равен нулю. Таким образом, все определители субматрицы 3-го порядка равны нулю, но среди определителей матриц 2-го порядка есть отличный от нуля. Тем самым ранг исходной матрицы равен двум.

Докажем теорему: ранг матрицы не изменяется при линейных операциях с ее строками.

Действительно, линейные операции со строками какой-либо матрицы приводят к тем же линейным операциям со строками любой субматрицы. Но, как указано выше, при линейных операциях со строками квадратных матриц определители этих матриц получаются один из другого умножением на число, отличное от нуля. Отсюда, нулевой определитель остается нулевым, а отличный от нуля - отличным от нуля, то есть не может измениться наивысший порядок отличного от нуля определителя субматриц. Не влияет, очевидно, на ранг матрицы и перестановка столбцов, поскольку такая перестановка может влиять лишь на знак соответствующих определителей.

Из доказанной теоремы выходит, что рассмотренные в предыдущем параграфе преобразованные матрицы имеют тот же ранг, что и исходные. Поэтому ранг основной матрицы системы уравнений первого порядка равен числу единиц на главной диагонали преобразованной матрицы.

Докажем теперь теорему про совместимость систем уравнений 1-ого порядка (теорема Кронекера-Капелли): для того чтобы система уравнений 1-ого порядка была совместима, необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы.

Пусть ранг основной матрицы системы равен k. Если ранг расширенной матрицы системы также равен k, тогда это означает, что или система содержит только k уравнений, или - все числа
(i= k+1, ... , k) в преобразованной матрице равны нулю (в противном случае ранг расширенной матрицы преобразованной, а потому и исходной системы был бы k +1)

Пусть ранг превращенной (а потому и исходной) расширенной матрицы системы больше k, то есть больше, чем число единиц на главной диагонали преобразованной матрицы. Тогда существует хотя бы одна субматрица (k+1)-го порядка, определитель которой не равен нулю. Такая субматрица может быть получена только прибавлением к единичной матрице порядка k (что находится в левом верхнем углу превращенной матрицы) какой-то одной строки и столбца, который состоит из первых k свободных членов уравнений преобразованной системы и любого одного свободного члена из следующих n-k уравнений. Чтобы определитель указанной субматрицы был отличный от нуля, отличным от нуля должен быть и этот последний добавленный элемент, то есть число (i=k+1, ... , k). Но, как было доказано ранее, в этом случае
система несовместима. Следовательно, система совместима тогда и только тогда, когда ранг основной матрицы совпадает с рангом расширенной матрицы.

ІІ. Примеры решения задач

1.39. Вычислить ранг матрицы с помощью элементарных преобразований

Где знак указывает, что соединенные ним матрицы получаются одна из другой элементарными преобразованиями, а потому имеют один и тот же ранг.

Ранг матрицы А равен 2, то есть r=2. ^

1.40. С помощью элементарных преобразований вычислить ранг матрицы

r=3, т.к. определитель треугольной матрицы с первых трех столбцов не равен нулю. ▲

Вычисление рангу матрицы методом обрамления

Выбираем в данной матрице минор второго порядка, отличный от нуля. Потом вычисляем миноры третьего порядка, которые обрамляют (включают в себя) выбранный, пока не найдем среди них отличного от нуля. Дальше вычисляем миноры четвертого порядка, которые обрамляют отличный от нуля минор ІІІ-го порядка, пока не найдем среди них отличный от нуля, и т.д. Если найти отличный от нуля минор r-го порядка, а все обрамляющие его миноры (r+1)-го порядка равны нулю или их уже нет, то ранг матрицы равен r.

1.41. Вычислить ранг матрицы


Вычеркнули ІІІр. , поскольку 2·ІІр. +І естьІІІр.

Выберем, например,

Вычислим миноры ІІІ-го порядка, которые обрамляют его

минор ІІІ-го порядка отличный от нуля.

Он содержится в определителе IV порядка заданной матрицы, который равен нулю. Следовательно, r=3. ▲

1.42. Решить системы уравнений

а) Здесь r(A)=3, r(B)=3; система совместимая, определенная.

Поскольку
,

тогда из первых трех систем, например, согласно формул Крамера, находим

х1=-1, х2=0, х3=1

b) Здесь r(A)=2, r(B)=2; система совместима, но не определенная.

Определитель

и из первых двух уравнений системы

где неизвестным х3 и х4 можно давать любые значения.

в) в этом случае r(A)=2, r(B)=3; и система несовместима.

1.43. Методом Гаусса (последовательного исключения неизвестных) решить однородную систему уравнений:

и найти ее фундаментальную систему решений.

Выпишем расширенную матрицу системы (при этом нулевой столбец можно, конечно, не писать). После понятных преобразований будем иметь

то есть заданная система равнозначна следующей:

Здесь r=3, и три неизвестных можно выразить через последние, например, так:

х 2 =-2х 3 -3х 4 -9х 5 =-2х 3 -12х 5

х 1 =-2х 2 -3х 3 -4х 4 -5х 5 =х 3 +15х 5

Фундаментальную систему можно получить, если свободным неизвестным х3, х5 придавать значение х3=1, х5=0 (тогда х1=1, х2=-2, х4=0) и значение х3=0, х5=1 (тогда х1=15, х2=-12, х4=1). Это дает фундаментальную систему решений:

e 1 =(1, -2, 1, 0, 0), e 2 =(15, -12, 0, 1, 1)

С использованием фундаментальной системы часто записывают общее решение в виде линейной комбинации решений е 1 та е 2 , то есть:

1.44. Найти фундаментальную систему решений системы линейных уравнений и записать ее общее решение



Третью строку отбросим. Система свелась к ступенчатой с основніми неизвестными х1, х2 и свободными х3, х4:

Из последнего уравнения
. Из первого
Свободных неизвестных 2. Поэтому берем определитель ІІ порядка с единичными элементами главной диагонали и нулевыми - побочной:
.

Получим вектор e 1 = (
)

Векторы e 1 и e представляют собой фундаментальную систему решений.

Теперь общее решение можно записать в виде

Присваивая коэффициентам , любые (произвольные) числовые значения будем получать разнообразные частичные решения.

/из всех строк вычтем IV/

II, III, V строки, которые пропорциональны к І-й, вычеркнем. В полученной матрице переставим І и ІІ столбцы:

Ранг матрицы равен 2.

Основные неизвестные х2 и х1. Свободные - х3, х4, х5. Система теперь имеет вид:

Присваивая свободным неизвестным последовательно значения, которое равны элементам столбцов определителя

1) х3=1, х4=0, х5=0; 2) х3=0, х4=1, х5=0; 3) х3=0, х4=0, х5=1

1) х2=1, х1=1; 2) х2=1, х1=-2; 3) х2=-2, х1=1

то есть векторы С 1 =(1, 2, 1, 0, 0)

С 2 =(-2, 1, 0, 1, 0)

С 3 =(1, -2, 0, 0, 1)

составляют фундаментальную систему решений. Общее решение системы теперь останется.

Матрица коэффициентов

имеет ранг r=2 (проверьте).

Выберем за базисный минор

Тогда сокращенная система имеет вид:

Откуда, считая х3=с1, х4=с2, х5=с3, находим

Общее решение системы

Из общего решения находим фундаментальную систему решений

С использованием фундаментальной системы общее решение может быть записано

e=с1e1+с2e2+с3e3
^

§7 Основные операции с матрицами


В предыдущем параграфе широко применялись линейные операции со строками и столбцами различных матриц. Но в некоторых вопросах линейной алгебры приходится рассматривать операции с матрицами как с единым объектом.

В основе изучения операций с матрицами лежит понятие равенства матриц. Будем исходить из такого определения : две матрицы одной и той ж размерности называются равными, если равны все их соответствующие элементы.

Следовательно, матрицы А і В одной и той же размерности nxm равны тогда и только тогда, когда Aik=Bik i=1, 2,... , n; k=1, 2,... , m. При этом еще раз подчеркнем, что сравнивать можно лишь матрицы одной и той же размерности.

Суммой двух матриц А и В одной и той же размерности nxm называется матрица С той же размерности такая, что

(С) ik =(A) ik +(B) ik (1)

Следовательно, при прибавлении матриц (прибавлять можно только матрицы одной и той же размерности) надо складывать все их соответствующие элементы.

Поскольку прибавление матриц сводится к прибавлению чисел - элементов этих матриц, очевидно, имеет место коммутативное и ассоциативное свойство.

А+В=В+А; (А+В)+С=А+(В+С) (2)

Произведением матрицы А на число  (или числа  на матрицу А) называется матрица В такая, что

(В) ik =(A) ik (3),

то есть при умножении матрицы на число (или числа на матрицу) необходимо все элементы матрицы умножить на это число. Напомним, что при умножении на число определителя матрицы достаточно было умножить на это число лишь элементы любой строки (или столбца).

Легко проверить, что при умножении матрицы на число имеет место распределительное свойство:

(А+В)=А+В; (+)=А+В (4)

Определим теперь произведение двух матриц. Пусть дана матрица А размерности nxm и матрица В размерности mxp.

Определение. Произведением матрицы А размерности nxm на матрицу В размерности mxp называется матрица С размерности nxp такая, что

(5),

иначе говоря, для получения элемента, что находится в і-й строке и в k-ом столбцу матрицы произведения, нужно вычислить сумму произведений элементов і-й строки первого множителя и соответствующих элементов k-го столбца второго множителя. Следовательно, для того чтобы возможно было сложить указанную сумму, нужно равенство числа столбцов в первой матрице (то есть число элементов в каждой строке) числу строк в другой (то есть числу элементов в каждом столбце).

Пример 1.

Найти АВ

Решение. Матрица А имеет размерность 3х2, матрица В 2х2; произведение существует - это матрица размерности 3х2.

Произведение матриц не имеет переставного свойства: АВ, вообще говоря, не равно ВА.

Во-первых, из того, что можно вычислить АВ, совсем не выходит, что имеет смысл ВА. Например, в только что разобранном примере перестановка множителей, то есть умножение В на А невозможно, поскольку нельзя матрицу размерности 2х2 умножить на матрицу размерностью 3х2 - число столбцов первой матрицы здесь не равно числу строк другой. Но даже если произведение ВА существует, то нередко
. Рассмотрим пример.

Пусть
. Тогда

Вместе с тем, можно доказать (такое доказательство мы рекомендуем провести читателю), что

(АВ)С=А(ВС) (6)

А(В+С)=АВ+АС

(обычно принимается к вниманию, что все эти произведения имеют смысл).

В соответствии с определением произведения матриц всегда возможно умножение квадратных матриц одного порядка, при этом произведение будет матрицей того же порядка. Отметим без доказательства одно из свойств произведения квадратных матриц одного порядка: определитель произведения двух матриц одного и того же порядка равен произведению определителей матриц, которые перемножаются.

Очень часто приходится рассматривать произведение матрицы размерности nxm на матрицу размерности mx1, то есть на матрицу с одним столбцом. Очевидно, мы должны получить в результате матрицу размерности nx1, то есть также матрицу с одним столбцом. Пусть, например, необходимо умножить матрицу

на матрицу

В результате получим матрицу
, элементы которой исчисляются по формулам:

Но это означает, что систему уравнений 1-ого порядка, рассмотренную в предыдущем параграфе, можно записать в очень удобной матричной форме: АХ=В.

Существенную роль в различных применениях матричной алгебры играет квадратная матрица, у которой все диагональные элементы (то есть элементы, которые находятся на главной диагонали) равны 1, а все другие элементы равны нулю. Такая матрица называется единичной матрицей. Очевидно, что определитель единичной матрицы

= 1

Характерны следующие свойства единичной матрицы: пусть задана квадратная матрица А порядка n и Е-единичная матрица того же порядка. Тогда АЕ=ЕА=А.

Действительно
, но

Поэтому в сумме
отличные от нуля только те составные, для которых e=k. Следовательно, (АЕ) ік =(А) ік, и отсюда АЕ=А. Аналогично получаем и для произведения ЕА.

Примеры решения задач

1.61. Найти произведение АВ и ВА двух матриц

∆ Произведение АВ не существует, так как число столбцов матрицы А не равно числу строк матрицы В. Число столбцов матрицы В равно числу строк матрицы А. Следовательно существует произведение ВА:

1.62. Найти матрицу 2А+5В, если

Системой m линейных уравнений с n неизвестными называется система вида

где a ij и b i (i =1,…,m ; b =1,…,n ) – некоторые известные числа, а x 1 ,…,x n – неизвестные. В обозначении коэффициентов a ij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы .

Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами.

Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной . В противном случае, т.е. если система не имеет решений, то она называется несовместной .

Рассмотрим способы нахождения решений системы.


МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче A X=B .

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .

Примеры. Решить системы уравнений.

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы .

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство . Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A 11 элемента a 11 , 2-ое уравнение – на A 21 и 3-е – на A 31 :

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений


МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x 1 . Для этого второе уравнение разделим на а 21 и умножим на –а 11 , а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а 31 и умножим на –а 11 , а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x 2 . Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x 3 , затем из 2-го уравнения x 2 и, наконец, из 1-го – x 1 .

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.


Таким образом, система имеет бесконечное множество решений.