Что называется корнем уравнения? Является ли число 2 корнем уравнения х 3 - х = 6?Что называется корнем уравнения? Является ли число 2 корнем уравнения х 3 - х = 6? Что значит решить уравнение?Что значит решить уравнение? Какие уравнения называются равносильными? Сформулируйте условия перехода от данного уравнения к равносильному уравнению. Приведите пример двух равносильных уравнений.Какие уравнения называются равносильными? Сформулируйте условия перехода от данного уравнения к равносильному уравнению. Приведите пример двух равносильных уравнений. Какое уравнение называется линейным уравнением с одной переменной?Какое уравнение называется линейным уравнением с одной переменной? Сколько корней может иметь линейное уравнение с одной переменной? Приведите примеры.Сколько корней может иметь линейное уравнение с одной переменной? Приведите примеры.




Устно: найдите корень уравнения: 6x + 1 = 43; 12x + 2 = О; -x - 4 = 11; 1-27x = 0; 1,5 + x = 0; 2 = ,5x; 5x - 8 = 1,5; x+ 2 = 0. 0 = 16 - х;


1 3 Найдите корень уравнения: 3,5 – 3x = 2,3 +x; x=0,3 x= x-1,4 + 6x = 0; x=0,2 1,2 = 2х + х- 1,5; x=0,2x = 5 - 0,3x; x=0,8 2,6 = x- 0,4x-4. x=1,1 1 3












Пример 2 Решить уравнение: 3 X+2 4 3X-1 - = = X+2 4 3X-1 - () 4 (3X-1). 12 -=-24 3 (X+2). 12 (X+2). 4- (3X-1). 3=-24 4x+8-9x+3=-24 X=7Ответ: 7 4 3

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

Изучение уравнений в среднем звене начинается с введения решения линейных уравнений и уравнений, сводящихся к линейным.

Равенство двух функций, рассматриваемых в общей области определения, называется уравнением. Переменные, входящие в уравнение, обозначаются латинскими буквами x, y,z, t … Уравнение с одной переменной х в общем, виде записывается так f(x)= g(x).

Всякое значение переменной, при котором выражения f(x) и g(x) принимают равные числовые значения, называется корнем уравнения.

Решить уравнение – это, значит, найти все его корни или доказать, что их нет.

Например, уравнение 3+x=7 имеет единственный корень 4, так как при этом и только при этом значении переменной 3+x=7 верное равенство.

Уравнение (x-1)(x-2)=0 имеет 2 корня 1 и 2.

Уравнение x 2 +1=0 не имеет действительных корней, так как сумма двух положительных чисел не равняется 0.

Для того, чтобы решить любое уравнение с одной переменной, учащийся должен знать: во-первых, правила, формулы или алгоритмы решения уравнений данного вида и, во-вторых, правила выполнения тождественных и равносильных преобразований, с помощью которых данное уравнение можно привести к простейшим.

Таким образом, решение каждого уравнения складывается из двух основных частей:

  1. преобразования данного уравнения к простейшим;
  2. решения простейших уравнений по известным правилам, формулам или алгоритмам.

Если вторая часть является алгоритмической, то первая часть - в значительной степени - эвристической, что и представляет наибольшую трудность для учащихся. В процессе решения уравнения его стараются заменить более простым, поэтому важно знать с помощью каких преобразований это возможно. Здесь необходимо в доступной для ребенка форме дать понятие равносильности.

Уравнения, имеющие одни и теже корни, называются равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.

Например, уравнения x+2=5 и x+5=8 равносильны, так как каждое из них имеет единственный корень - число 3.Равносильны и уравнения x 2 +1=0 и 2x 2 +5=0 - ни одно из них не имеет корней.

Уравнения х-5=1 и х 2 =36 не равносильны, так как первое имеет только один корень х=6, тогда как второе имеет два корня 6 и –6.

К равносильным преобразованиям относятся:

1) Если к обеим частям уравнения прибавить одно и тоже число или одно и тоже целое алгебраическое выражение, содержащее неизвестное, то новое уравнение будет равносильно данному.

2) Если обе части уравнения умножить или разделить на одно и тоже отличное от нуля число, то получится уравнение, равносильное данному.

Например, уравнение равносильно уравнению x 2 – 1 = 6x

3) Если в уравнении произвести раскрытие скобок и привести подобные слагаемые, то получится уравнения, равносильно данному.

Обучение решения уравнений начинается с простейших линейных уравнений и уравнений сводящихся к ним. Дается определение линейного уравнения и рассматриваются случаи, когда оно имеет одно решение; не имеет решений и имеет бесконечное множество решений.

Линейным уравнением с одной переменной х называют уравнение вида ах = b, где а и b - действительные числа, а - называют коэффициентом при переменной, b - свободным членом.

Для линейного уравнения ах = b могут представиться при случае:

Многие уравнения в результате преобразований сводятся к линейным.

Так в 7 классе можно применить следующие уравнения:

1)

Это уравнение сводиться к линейному уравнению.

Умножением обеих частей на 12 (наименьшее общее краткое знаменателей 3, 4, 6, 12), получим:

8 + 3x + 2 – 2x = 5x –12,

8 + 2 + 12 = 5x – 3x + 2x,

Ответ: 5,5.

2) Покажем, что уравнение 2 (х + 1) – 1 = 3 - (1 - 2х) не имеет корней.

Упростим обе части уравнения:

2х + 2 – 1 = 3 – 1 + 2х,

2х + 1 = 2 + 2х,

2х - 2х = 2 - 1,

Это уравнение не имеет корней, т.к. левая часть 0 х равна 0 при любом х, а значит не равна 1.

3) Покажем, что уравнение 3(1 – x) + 2 = 5 – 3x имеет бесконечное множество корней.

При прохождении темы “линейные уравнения с двумя переменными” можно предложить учащимся графический способ решения уравнения. Данный метод основан на пользовании графиков функций, входящих в уравнение. Суть метода: найти абсциссы точек пересечения графиков функций, стоящих в левой и правой частях уравнения. Основывается на выполнение следующих действий:

1) Преобразовать исходное уравнение к виду f(x) = g(x), где f(x) и g(x) функции, графики, которых можно построить.
2) Построить графики функций f(x) и g(x)
3) Определить точки пересечения построенных графиков.
4) Определить абсциссы найденных точек. Они и дадут множество решений исходного уравнения.
5) Записать ответ.

Преимущество данного метода заключается в том, что он позволяет легко определить число корней уравнения. Недостаток в том, что корни в общем случае определяются приближенно.

Следующим этапом в изучении линейных уравнений, являются уравнения с модулями, причем некоторые решения выполняются несколькими способами.

Решение уравнений, содержащих знак модуля и уравнений с параметрами можно назвать деятельностью, близкой к исследовательской. Это обусловлено тем, что выбор метода решения, процесс решения, запись ответа предполагают определенный уровень сформированности умений наблюдать, сравнивать, анализировать, выдвигать и проверять гипотезу, обобщать полученные результаты.

Особой интерес представляют уравнения, содержащие знак модуля.

По определению модуля числа a, имеем:

Число –a может быть отрицательным при a>0; -a положительным при a<0. из определения видно, что модуль любого числа неотрицателен. Оно же показывает, как избавиться от модуля в алгебраических выражениях.

Следовательно, x=5 или x=-5.

Рассмотрим уравнение .

Решить уравнение можно двумя способами.

1 способ. По определению модуля числа имеем:

Поэтому x - 3 = 7 или –x + 3 = 7,

x = 10 или x = -4.

Ответ: 10; -4.

2 способ – графический. Уравнение можно записать в виде системы двух уравнений:

Построим графики функций и .

Абсциссы точек пересечения этих графиков являются решением уравнения .

Ответ: -4; 10.

Решим уравнение, содержащее не один модуль

Воспользуемся следующим алгоритмом.

  1. Отметить все нули подмодульных выражений на числовой прямой, разбиваемой на промежутки, на которых все подмодульные выражения имеют постоянный знак.
  2. Из каждого промежутка взять произвольное число и подсчетом определить знак подмодульного выражения, раскрыть модули.
  3. Решить уравнение и выбрать решение, принадлежащее данному промежутку.

Итак, подмодульные выражения обращаются в нуль при х = -1 и х = -3.

I промежуток. Пусть х < - 3, тогда на этом промежутке , и уравнение примет вид

– х – 1 – х – 3 = 4,

и, следовательно, является корнем уравнения.

II промежуток. Пусть -3 < х < -1, тогда , , получим уравнение –х – 1 + х + 3 = 4,

Значит на промежутке (-3; -1) уравнение корней не имеет.

III промежуток. Пусть х > -1, тогда

х + 1 + х + 3 = 4,

Видим, что число 0 принадлежит промежутку. Значит, является корнем. Таким образом, уравнение имеет два корня: 0 и -4.

На простых примерах рассмотрим алгоритм решения уравнений с параметрами: область допустимых значений, область определения, общие решения, контрольные значения параметров, типы частных уравнений. Способы их нахождения будут устанавливаться в каждом виде уравнений отдельно.

На базе введенных понятий определим общую схему решения всякого уравнения F(a;x)=0 с параметром а (для случая двух параметров схема аналогична):

  • устанавливаются область допустимых значений параметра и область определения;
  • определяются контрольные значения параметра, разбивающие область допустимых значений параметра на области однотипности частных уравнений;
  • для контрольных значений параметра соответствующие частные уравнения исследуются отдельно;
  • находятся общие решения x=f 1 (a),…, f k (a) уравнения F(a;x)=0 на соответствующих множествах А f1 ,…, А fk значений параметра;
  • составляется модель общих решений, контрольных значений параметра;
  • на модели выделяются промежутки значений параметра с одинаковыми общими решениями (области однотипности);
  • для контрольных значений параметра и выделенных областей однотипности записываются характеристики всех типов частных уравнений
  • Особое место в алгебре отводится линейным уравнениям с параметрами.

Рассмотрим несколько примеров.

1. 2х – 3 = m+1,

2х – 3 = + 4 m + 1,

где m – неизвестный параметр.

Умножим обе части уравнения на 3, получим

6х – 9 = m х + 12m +3,

6х - m х + 12m + 12,

Вынесем общий множитель за скобки, получим
х (6-m) = 12(m+1),

, 6 – m ? 0, m ? 6.

так как стоит в знаменателе дроби.
Ответ: , при m 6.

Уравнение 2х – 3 + m (х/3 + 4) + 1 имеет множество решений, заданных формулой при всех значениях m, кроме 6.

2. , при m 2, x 1, n 0.

mx – n = 2x – 2 + 2n + 3xn,

mx – 2x – 3xn = - 2 + 2n +n,

mx – 2x – 3xn = 3n – 2,

x (m – 2 – 3n) = 3n – 2, при m 2, x 1, n 0.

Рассмотрим случай, где a = 0, тогда

m – 2 – 3n = 0,

m = 3n +2, при n 0

0 x = 3n – 2,

а) 3n – 2 = 0,

x(4 – 2 – 3 ) = 3 - 2,

x – любое число, кроме x = 1.

0 x = b. В этом случае уравнение не имеет решений.

m – 2 – 3n 0

x = , при x ? 1,

3n – 2 m – 2 – 3n,

3n + 3n 2 – 2 + m,

В этом случае уравнение решений не имеет.

Значит, при n = и m = 4, x – любое число, кроме 1; при n = 0, m = 6n

(n ), m = 3n + 2 (n ), m = 2 уравнение решений не имеет. Для всех остальных значения параметров x = .

Ответ: 1. n = , m = 4 – x ? R\.

2. n = 0, m = 6n (n ), m = 3n + 2 (n ), m = 2 – решений нет.

3. n 0, m 6n, m 3n + 2, m 2 – x = .

В дальнейшем предлагается рассмотреть решение задач методом составления линейных уравнений. Это сложный процесс, где надо уметь думать, догадываться, хорошо знать фактически материал.

В процессе решения каждой задачи надо четко размечать четыре этапа:

  1. изучение условия задачи;
  2. поиск плана решения и его составление;
  3. оформление найденного решения;
  4. критический анализ результата решения.

Теперь рассмотрим задачи, при решении которых применяются линейные уравнения.

1. Сплав меди и цинка содержит меди на 640 г. Больше, чем цинка. После того, как из сплава выделили 6/7 содержащейся в нем меди и 60% цинка, масса сплава оказалась равной 200 г. Какова была масса сплава первоначально?

Пусть в сплаве было х г. цинка, тогда меди (640 + х) г. после того, как выделили 6/7 меди и 60% цинка, осталось 1/7 меди и 40% цинка, т.е. 0,4 части. Зная, что масса сплава оказалась равной 200 г., составим уравнение.

1/7 (х + 640) + 0,4 х = 200,

х + 640 + 2,8 х =1400,

3,8х = 1400 – 640,

Значит, цинка было 200 г., а меди 840 г.

(200 + 640 = 840). 1) 200 + 840 = 1040 (г.) – масса сплава. Ответ: первоначальная масса сплава 1040 г.

2. Сколько литров 60% серной кислоты нужно прибавить к 10 л 30% кислоты, чтобы получить 40% раствор?

Пусть число литров 60% кислоты, которое прибавим х л, тогда раствора чистой кислоты будет л. А в 10 л 30% раствора чистой кислоты будет л. Зная, что в полученных (10 + х) смеси будет чистой кислоты л, составим уравнение.

60х + 300 = 40х + 400,

60х – 40х = 400 – 300,

Значит, нужно прибавить 5 л 60% кислоты.

Ответ: 5 л.

При изучении темы “Решение линейных уравнений” рекомендуется некоторая историческая справка.

Задачи на решение уравнений первой степени встречаются еще в вавилонских клинописных текстах. В них же есть некоторые задачи, приводящие к квадратным и даже кубическим уравнениям (последние, по-видимому, решались с помощью подбора корней). Древнегреческие математики нашли геометрическую форму решения квадратного уравнения. В геометрической же форме арабский математик Омар Хайям (конец XI – начало XII века н. э.) исследовал кубическое уравнение, хотя и не нашел общей формулы для его решения. Решение кубического уравнения было найдено в начале XVI века в Италии. После того, как Сципиан дель Ферро решил один частный вид таких уравнений в 1535 году, итальянец Тарталья нашел общую формулу. Он доказал, что корни уравнения x 3 + px + q = 0 имеют вид x =.

Это выражение обычно называют формулой Кардано, по имени ученого, узнавшего ее от Тартальи и опубликовавшего в 1545 году в своей книге “Великое искусство алгебраических правил”. Ученик Кардано – молодой математик Феррари решил общее уравнение четвертой степени. После этого на протяжении двух с половиной столетий продолжались поиски формулы для решения уравнений пятой степени. В 1823 году замечательный норвежский математик Нильс Хендрик Абель (1802-1829) доказал, что такой формулы не существует. Точнее говоря, он доказал, что корни общего уравнения пятой степени нельзя выразить через его коэффициенты с помощью арифметических действий и операций извлечения корня. Глубокое исследование вопроса об условиях разрешимости уравнений в радикалах провел французский математик Эварист Галуа (1811-1832), погибший на дуэли в возрасте 21 года. Некоторые проблемы теории Галуа решил советский алгебраист И.Т.Шафаревич.

Наряду с поисками формулы для решения уравнения пятой степени велись и другие исследования в области теории алгебраических уравнений. Виета установил связь между коэффициентами уравнений и его корнями. Он доказал, что если x 1 ,…,x n – корни уравнения x n + a 1 x n-1 +…+a n =0, то имеют место формулы:

x 1 + x 2 + … + x n = -a,
x 1 x 2 + x 2 x 3 + … + x n-1 x n =a 2
……………………………
x 1 x 2 … x n = (-1) n d n .

Литература:

  1. Журнал “Математика в школе” 6, 1999
  2. Приложение к газете “Первое сентября”- математика 20, 1999.
  3. С.И. Туманов “Алгебра”, пособие для учащихся 6-8 классов.
  4. Н.И. Александров; И. П.Ярандай “Словарь-справочник по математике”.
  5. О.Б. Епишева; В.И. Крупич “Учить школьников учиться математике”.
  6. Е.И.Ямщенко “Изучение функций”.
  7. А.И. Худобин; М.Ф. Шуршалов “Сборник задач по алгебре и элементарным функциям”.
  8. Ш. А. Алимов, В.А. Ильин “Алгебра 6-8 классы”.

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №1»

г.Воркуты

Конспект урока по математике


«Решение уравнений, сводящихся к линейным»

подготовила

учитель математики

Морозова Раиса Аркадьевна


2015

Образовательные цели: (слайд 1, 2)

  • повторить понятия, связанные с уравнением, вопрос о количестве и качестве корней линейного уравнения;
  • учиться решить уравнения, сводящиеся к линейным;

Развивающие цели:

  • развивать память, логическое мышление;

Воспитательные цели:

  • воспитывать интерес к предмету через исторический материала;
  • умения работать в коллективе, умение сотрудничать.

Тип урока: Урок закрепления умений и навыков учащихся.

Ход урока

I Организационный момент

Приветствие. (слайд 3)

«Смелые мысли играют роль передовых шашек в игре; они гибнут, но обеспечивают победу». И.В.Гете

«Счет и вычисления – основа порядка в голове» И.Г.Песталоцци

Сообщение учащимся темы и цели урока.

II Проверка домашнего задания

а) Работа по карточкам у доски. К доске вызываются трое учащихся. Им предлагаются задания из домашней работы.

Примеры карточек

№1

  1. Решите уравнение:

2. В каком случае уравнение имеет единственный корень?

№2

  1. Решите уравнение:

2. В каком случае уравнение не имеет корней?

№3

  1. Упростите выражение

6,8с-(3,5с+2,4) при с=2,5

Остальные учащиеся занимаются устной работой.

б) Устная работа (слайд 4)

На слайде появляются задания, а ребята на заранее приготовленных листочках записывают ответы, затем организуется самопроверка.

«Счет и вычисления – основа порядка в голове». И.Г.Песталоцци

Вычислите: (слайд 5)

Ответы: (слайд 6) 1) 60; 2) 20; 3) -20; 4) -70; 5) 2; 6) 4,5; 7) ; 8) ; 9) 49; 10) 25.

Следующие задания устного счета записаны на доске. Ребята отвечают устно.(слайд 7)

После устной работы, класс заслушивает ответы ребят, кто работал по карточкам у доски. Ответы этих ребят оцениваются.

III Решение задач

Решение многих уравнений сводится к решению линейных уравнений.

Работа с учебником

Прочитайте примеры – образцы по решению уравнений: (слайд 8)

4(x+7)=3-x

2x+5=2(x+6)

3(x+2)+x=6+4x

Затем, к доске вызываются трое учащихся для объяснения решений этих уравнений, класс решает эти уравнения в тетрадях.

А теперь повторим законы и правила, с которыми мы будем встречаться при решении уравнений, сводящихся к решению линейного уравнения.

Ответьте на следующие вопросы: (слайд 9)

  • Как читается распределительный закон умножения относительно сложения? Запишите этот закон с помощью букв: a, b, c.
  • Как раскрыть скобки, перед которыми стоит знак «+»?
  • Как раскрыть скобки, перед которыми стоит знак «-»?
  • Какие свойства уравнения вы знаете?

А знаете ли вы, ребята, что линейные уравнения с одним неизвестным умели решать еще в Древнем Вавилоне и в Египте более чем 4 тысячи лет назад. Приведем, например, задачу из папируса Ринда (его называют также папирусом Ахмеса), хранящегося в Британском музее и относящегося в периоду 2000 – 1700 гг. до н.э.: «Найти число, если известно, что от прибавления к нему его и вычитания от полученной суммы ее трети получится число 10». (слайд 10)

Решение этой задачи сводится к решению линейного уравнения. (слайд 11)

Ответ: 9.

  1. Учитель показывает поочередно карточки. На каждой из них записано уравнение, которое нужно решить устно.

Решение уравнения в тетради. (слайд 12)

  1. 0x=0
  2. 5x=0
  3. 34x=17
  4. 2x-4=2x
  1. Организуется письменное решение №136 (а, в, д, ж, и) и №137 (а, в, д) по учебнику. На доске и в тетрадях. Ребята на местах сверяют свои решения с решением в тетрадях. (слайд 12)
  2. Самостоятельная работа (слайд 13)

I вариант