Фарафонова Наталия Игоревна

Тема: Неполные квадратные уравнения.

Цели урока: - Ввести понятие неполного квадратного уравнения;

Научить решать неполные квадратные уравнения.

Задачи урока: - Уметь определять вид квадратного уравнения;

Решать неполные квадратные уравнения.

Уебник: Алгебра: Учеб. для 8 кл. общеобразоват. учреждений/ Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др. - М. : Просвещение, 2010.

Ход урока.

1. Напомнить учащимся о том, что прежде, чем решать любое квадратное уравнение, необходимо привести его к стандартному виду. Вспомнить определение полного квадратного уравнения: ax 2 + bx + c = 0, a ≠ 0.

В данных квадратных уравнениях назвать коэффициенты a, b, c:

а) 2x 2 - x + 3 = 0; б) x 2 + 4x - 1 = 0; в) x 2 - 4 = 0; г) 5x 2 + 3x = 0.

2. Дать определение неполного квадратного уравнения:

Квадратное уравнение ax 2 + bx + c = 0 называют неполным , если хотя бы один из коэффициентов, bили c, равен 0. Обратить внимание, что коэффициент а ≠ 0. Из уравнений представленных выше, выбрать неполные квадратные уравнения.

3. Виды неполных квадратных уравнений с примерами решений удобнее представить в виде таблице:

  1. Не решая, определите количество корней для каждого неполного квадратного уравнения:

а) 2x 2 - 3 = 0; б) 3x 2 + 4 = 0; в) 5x 2 - x = 0; г) 0,6x 2 = 0; д) -8x 2 - 4 = 0.

  1. Решить неполные квадратные уравнения (решение уравнений, с проверкой у доски, 2 варианта):


в) 2x 2 + 15 = 0

г) 3x 2 + 2x = 0

д) 2x 2 - 16 = 0

е) 5(x 2 + 2) = 2(x 2 + 5)

ж) (x + 1) 2 - 4 = 0

в) 2x 2 + 7 = 0

г) x 2 + 9x = 0

д) 81x 2 - 64 = 0

е) 2(x 2 + 4) = 4(x 2 + 2)

ж) (x - 2) 2 - 8 = 0.



6. Самостоятельная работа по вариантам:


1 вариант

а) 3x 2 - 12 = 0

б) 2x 2 + 6x = 0

д) 7x 2 - 14 = 0

2 вариант

б) 6x 2 + 24 = 0

в) 9y 2 - 4 = 0

г) -y 2 + 5 = 0

д) 1 - 4y 2 = 0

е) 8y 2 + y = 0

3 вариант

а) 6y - y 2 = 0

б) 0,1y 2 - 0,5y = 0

в) (x + 1)(x -2) = 0

г) x(x + 0,5) = 0

д) x 2 - 2x = 0

е) x 2 - 16 = 0

4 вариант

а) 9x 2 - 1 = 0

б) 3x - 2x 2 = 0

г) x 2 + 2x - 3 = 2x + 6

д) 3x 2 + 7 = 12x+ 7

5 вариант

а) 2x 2 - 18 = 0

б) 3x 2 - 12x = 0

г) x 2 + 16 = 0

д) 6x 2 - 18 = 0

е) x 2 - 5x = 0

6 вариант

б) 4x 2 + 36 = 0

в) 25y 2 - 1 = 0

г) -y 2 + 2 = 0

д) 9 - 16y 2 = 0

е) 7y 2 + y = 0

7 вариант

а) 4y - y 2 = 0

б) 0,2y 2 - y = 0

в) (x + 2)(x - 1) = 0

г) (x - 0,3)x = 0

д) x 2 + 4x = 0

е) x 2 - 36 = 0

8 вариант

а) 16x 2 - 1 = 0

б) 4x - 5x 2 = 0

г) x 2 - 3x - 5 = 11 - 3x

д) 5x 2 - 6 = 15x - 6


Ответы к самостоятельной работе:

1 вариант: а)2, б)0;-3; в)0; г)корней нет; д);

2 вариант а)0; б)корней; в); г); д); е)0;- ;

3 вариант а)0;6; б)0;5; в)-1;2; г)0;-0,5; д)0;2; е)4

4 вариант а); б)0;1,5; в)0;3; г)3; д)0;4 е)5

5 вариант а)3; б)0;4; в)0; г)корней нет; д) е)0;5

6 вариант а)0; б)корней нет; в) г) д)е)0;-

7 вариант а)0;4; б)0;5; в)-2;1; г)0;0,03; д)0;-4; е)6

8 вариант а) б)0; в)0;7; г)4; д)0;3; е)

Итоги урока: Сформулировано понятие «неполное квадратное уравнение»; показаны способы решения разных видов неполных квадратных уравнений. В ходе выполнения различных заданий отработаны навыки решения неполных квадратных уравнений.


7. Домашнее задание: №№ 421(2), 422(2), 423(2,4), 425.

Дополнительное задание:

При каких значениях a уравнение является неполным квадратным уравнением? Решите уравнение при полученных значениях a:

а) x 2 + 3ax + a - 1 = 0

б) (a - 2)x 2 + ax = 4 - a 2 = 0

Неполные квадратные уравнения представляют собой частный случай равенств второго порядка. Необходимо уметь решать эти уравнения, поскольку они часто встречаются не только в математических, но и в физических задачах. Методам их решения посвящена эта статья.

Квадратные уравнения: полные и неполные

Перед тем как разбирать способы решения неполных квадратных уравнений, следует рассмотреть, что они собой представляют.

На рисунке ниже изображен общий вид равенств второго порядка, которые так называются из-за максимального значения степени переменной (она равна 2), содержащейся в них.

Где a, b и c - числа (коэффициенты). Неполное уравнение получается тогда, когда один из этих коэффициентов становится равным нулю (за исключением числа a, поскольку если оно занулится, то уравнение перестанет быть квадратным). Поскольку остается всего три возможные комбинации нулевых коэффициентов, то выделяют следующие типы неполных равенств второго порядка:

  1. Только b=0. Тогда уравнение преобразуется к виду a*x 2 + c = 0. Оно называется чистым или простым неполным равенством квадратного типа.
  2. Только c=0. Тогда получаем вид: a*x 2 + b*x = 0. Оно получило название смешенного неполного уравнения квадратного.
  3. Наконец, если b=0 и c=0, то мы имеем выражение a*x 2 =0.

Последний вид неполного уравнения не рассматривается ни в одном математическом курсе, поскольку его решение является очевидным и единственно возможным: x=0.

Можно ли решать неполные уравнения с помощью формулы с дискриминантом?

Да, можно, поскольку этот способ является универсальным для любых выражений второго порядка. Однако неполные уравнения квадратные в 8 классе школы уже встречаются, и изучаться они начинают раньше, чем полные равенства этого типа, для которых уже приводится формула с дискриминантом. Кроме того, рассматриваемый вид равенств является достаточно простым, чтобы применять к ним универсальные формулы и производить ряд ненужных вычислений.

Рассмотрим простые и понятные способы решения неполных уравнений второго порядка.

Решение простого неполного уравнения

Схема его решения в общем случае представлена на рисунке ниже.

Объясним подробнее каждый отмеченный на ней шаг. Первым делом необходимо привести уравнение к виду, указанному в начале этой схемы. Условие задачи может быть так составлено, что исходное равенство будет содержать больше двух слагаемых. Все их необходимо упростить (умножить, сложить и вычесть) до вида чистого неполного равенства.

После этого свободный член c переносится в правую часть равенства и делится на коэффициент a. Для получения неизвестных x остается взять квадратный корень из отношения -c/a, при этом нужно не забывать и учитывать, что он может быть, как со знаком минус, так и с положительным знаком.

Что следует из представленной на рисунке формулы? Во-первых, корней чистого неполного квадратного равенства всегда 2-а, при этом по модулю они оба равны, а по знаку отличаются. Во-вторых, если числа c и a имеют один знак, то корни x будут мнимыми, если c и a разного знака, тогда получаются два действительных решения.

Для решения квадратного уравнения, у которого c=0, следует проделать такой же первый шаг, как и в случае определения корней чистого неполного равенства, то есть привести его к виду с двумя слагаемыми: одно из них должно содержать x 2 , а другое x. Затем, следует применить метод факторизации, то есть разложить левую часть равенства на множители. В отличие от полного уравнения это сделать очень просто, поскольку один из множителей всегда будет иксом. Сказанное выше можно записать в виде формулы:

Это равенство имеет решение, если каждый его множитель является нулем. Результат вычисления корней представлен на рисунке ниже.

Таким образом, корни этого типа неполного уравнения всегда будут действительными числами, причем один из них равен нулю. Знак второго корня определяется отношением ненулевых коэффициентов b/a.

Примеры математических задач

Теперь приведем наглядные примеры квадратных неполных уравнений с решением.

Пример 1. Найдите корни равенства 135-(2x + 3) (2x - 3) = 0. Раскрываем скобки, получаем: 135-4*x 2 +9=0. Заметим, что члены, содержащие x в первой степени, сократились. Выполняя перенос свободных членов в правую часть и деление их на -4, получаем: x 2 = 36. Откуда следуют два корня: 6 и -6.

Пример 2. 23*(x 2 -2)=34*x-46. Как и в первом случае, раскрываем скобки и переносим все слагаемые в левую часть. Имеем: 23*x 2 -46-34*x+46=0. Теперь сокращаем свободные члены и разлагаем сумму на множители, получаем: x*(23*x-34)=0. Откуда следует, что x=0 и x = 34/23≈1,47826.

Решение примеров показало, что алгоритм нахождения корней любого вида неполного уравнения второго порядка является достаточно простым, поэтому нет никакого смысла запоминать представленные на рисунках выше формулы.

Пример физической задачи

Многие школьники слышали от своего учителя физики о том, что Галилео Галилей в XVII веке проводил эксперименты по вычислению ускорения свободного падения, сбрасывая различные тела с башни в Пизе. Многим это покажется любопытным, но не существует ни одного исторического свидетельства, что такие эксперименты ученый действительно проводил. Однако в том же XVII веке их выполнил другой итальянец.

Джованни Риччоли - астроном и иезуит, который смог действительно вычислить ускорение падения свободного, сбрасывая глиняные шары с высоты башни Азинелли, находящейся в городе Болонье. Риччоли получил значение ускорения равное 9,6 м/с 2 (современная величина равна 9,81 м/с 2). Зная это число, необходимо определить, сколько времени глиняный шар падал на землю, учитывая, что высота башни равна 97,6 метра.

Для решения задачи необходимо вспомнить, что путь при равноускоренном движении выражается формулой: l=v 0 *t+g*t 2 /2. Поскольку в момент, когда Риччоли отпускал шар, скорость последнего была равна нулю, то член v 0 *t = 0. Тогда мы приходим к уравнению: 97,6 = 9,6*t 2 /2. Откуда получаем, что t = 4,51 секунды (отрицательный корень был сознательно отброшен).

Более простым способом. Для этого вынесите z за скобки. Вы получите : z(аz + b) = 0. Множители можно расписать: z=0 и аz + b = 0, так как оба могут давать в результате ноль. В записи аz + b = 0 перенесем второй вправо с другим знаком. Отсюда получаем z1 = 0 и z2 = -b/а. Это и есть корни исходного .

Если же имеется неполное уравнение вида аz² + с = 0, в данном случае находятся простым переносом свободного члена в правую часть уравнения. Также поменяйте при этом его знак. Получится запись аz² = -с. Выразите z² = -с/а. Возьмите корень и запишите два решения - положительное и отрицательное значение корня квадратного.

Обратите внимание

При наличии в уравнении дробных коэффициентов помножьте все уравнение на соответствующий множитель так, чтобы избавиться от дробей.

Знание о том, как решать квадратные уравнения, необходимо и школьникам, и студентам, иногда это может помочь и взрослому человеку в обычной жизни. Существует несколько определенных методов решений.

Решение квадратных уравнений

Квадратным уравнение вида a*x^2+b*x+c=0. Коэффициент х является искомой переменной, a, b, c - числовые коэффициенты. Помните, что знак «+» может меняться на знак «-».

Для того чтобы решить данное уравнение, необходимо воспользоваться теоремой Виета или найти дискриминант. Самым распространенным способом является нахождение дискриминанта, так как при некоторых значениях a, b, c воспользоваться теоремой Виета не представляется возможным.

Чтобы найти дискриминант (D), необходимо записать формулу D=b^2 - 4*a*c. Значение D может быть больше, меньше или равно нулю. Если D больше или меньше нуля, то корня будет два, если D=0, то остается всего один корень, более точно можно сказать, что D в этом случае имеет два равнозначных корня. Подставьте известные коэффициенты a, b, c в формулу и вычислите значение.

После того как вы нашли дискриминант, для нахождения х воспользуйтесь формулами: x(1) = (- b+sqrt{D})/2*a; x(2) = (- b-sqrt{D})/2*a, где sqrt - это функция, означающая извлечение квадратного корня из данного числа. Посчитав эти выражения, вы найдете два корня вашего уравнения, после чего уравнение считается решенным.

Если D меньше нуля, то он все равно имеет корни. В школе данный раздел практически не изучается. Студенты вузов должны знать о том, что появляется отрицательное число под корнем. От него избавляются выделяя мнимую часть, то есть -1 под корнем всегда равно мнимому элементу «i», который умножается на корень с таким же положительным числом. К примеру, если D=sqrt{-20}, после преобразования получается D=sqrt{20}*i. После этого преобразования, решение уравнения сводится к такому же нахождению корней, как было описано выше.

Теорема Виета заключается в подборе значений x(1) и x(2). Используется два тождественных уравнения: x(1) + x(2)= -b; x(1)*x(2)=с. Причем очень важным моментом является знак перед коэффициентом b, помните, что этот знак противоположен тому, который стоит в уравнении. С первого взгляда кажется, что посчитать x(1) и x(2) очень просто, но при решении вы столкнетесь с тем, что числа придется именно подбирать.

Элементы решения квадратных уравнений

По правилам математики некоторые можно разложить на множители: (a+x(1))*(b-x(2))=0, если вам посредством формул математики удалось преобразовать подобным образом данное квадратное уравнение, то смело записывайте ответ. x(1) и x(2) будут равны рядом стоящим коэффициентам в скобках, но с противоположным знаком.

Также не стоит забывать про неполные квадратные уравнения. У вас может отсутствовать какое-то из слагаемых, если это так, то все его коэффициенты просто равны нулю. Если перед x^2 или x ничего не стоит, то коэффициенты а и b равны 1.

Квадратные уравнения. Общая информация.

В квадратном уравнении обязательно должен присутствовать икс в квадрате (поэтому оно и называется

«квадратным»). Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и

просто число (свободный член ). И не должно быть иксов в степени, больше двойки.

Алгебраическое уравнение общего вида.

где x — свободная переменная, a , b , c — коэффициенты, причём a 0 .

Например :

Выражение называют квадратным трёхчленом .

Элементы квадратного уравнения имеют собственные названия:

· называют первым или старшим коэффициентом,

· называют вторым или коэффициентом при ,

· называют свободным членом.

Полное квадратное уравнение.

В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с

коэффициентом а, икс в первой степени с коэффициентом b и свободный член с. В се коэффициенты

должны быть отличны от нуля.

Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме

старшего (либо второй коэффициент, либо свободный член), равен нулю.

Предположим, что b = 0, - пропадёт икс в первой степени. Получается, например:

2х 2 -6х=0,

И т.п. А если оба коэффициента, b и c равны нулю, то всё ещё проще, например:

2х 2 =0,

Обратите внимание, что икс в квадрате присутствует во всех уравнениях.

Почему а не может быть равно нулю? Тогда исчезнет икс в квадрате и уравнение станет линейным .

И решается уже совсем иначе...

Неполное квадратное уравнение отличаются от классических (полных) уравнений тем, что его множители или свободный член равны нулю. Графиком таких функций являются параболы. В зависимости от общего вида их делят на 3 группы. Принципы решения для всех типов уравнений одинаковы.

Ничего сложного в определении типа неполного многочлена нет. Рассмотреть основные отличия лучше всего на наглядных примерах:

  1. Если b = 0, то уравнение имеет вид ax 2 + c = 0.
  2. Если c = 0, то решать следует выражение ax 2 + bx = 0.
  3. Если b = 0 и c = 0, то многочлен превращается в равенство типа ax 2 = 0.

Последний случай является скорее теоретической возможностью и никогда не встречается в заданиях для проверки знаний, так как единственно верное значение переменной x в выражении – это ноль. В дальнейшем будет рассмотрены способы и примеры решения неполных квадратных уравнений 1) и 2) видов.

Общий алгоритм поиска переменных и примеры с решением

Не зависимо от разновидности уравнения алгоритм решения сводится к следующим шагам:

  1. Привести выражение к удобному для поиска корней виду.
  2. Произвести вычисления.
  3. Записать ответ.

Решать неполные уравнения проще всего, разложив на множители левую часть и оставив ноль в правой. Таким образом, формула неполного квадратного уравнения для поиска корней сводится к вычислению значения x для каждого из множителей.

Научиться способам решения можно только лишь на практике, поэтому рассмотрим конкретный пример нахождения корней неполного уравнения:

Как видно, в данном случае b = 0. Разложим левую часть на множители и получим выражение:

4(x – 0,5) ⋅ (x + 0,5) = 0.

Очевидно, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Подобным требованиям отвечают значения переменной x1 = 0,5 и (или) x2 = -0,5.

Для того, чтобы легко и быстро справляться с задачей разложения квадратного трехчлена на множители, следует запомнить следующую формулу:

Если в выражении отсутствует свободный член, задача многократно упрощается. Достаточно будет всего лишь найти и вынести за скобки общий знаменатель. Для наглядности рассмотрим пример, как решать неполные квадратные уравнения вида ax2 + bx = 0.

Вынесем переменную x за скобки и получим следующее выражение:

x ⋅ (x + 3) = 0.

Руководствуясь логикой, приходим к выводу, что x1 = 0, а x2 = -3.

Традиционный способ решения и неполные квадратные уравнения

Что же будет, если применить формулу дискриминанта и попытаться найти корни многочлена, при коэффициентах равных нулю? Возьмем пример из сборника типовых заданий для ЕГЭ по математики 2017 года, решим его с помощью стандартных формул и методом разложения на множители.

7x 2 – 3x = 0.

Рассчитаем значение дискриминант: D = (-3)2 – 4 ⋅ (-7) ⋅ 0 = 9. Получается, многочлен имеет два корня:

Теперь, решим уравнение разложением на множители и сравним результаты.

X ⋅ (7x + 3) = 0,

2) 7x + 3 = 0,
7x = -3,
x = -.

Как видно, оба метода дают одинаковый результат, но решить уравнение вторым способ получилось гораздо проще и быстрее.

Теорема Виета

А что же делать с полюбившейся теоремой Виета? Можно ли применять данный метод при неполном трехчлене? Попробуем разобраться в аспектах приведения неполных уравнений к классическому виду ax2 + bx + c = 0.

На самом деле применять теорему Виета в данном случае возможно. Необходимо лишь привести выражение к общему виду, заменив недостающие члены нулем.

Например, при b = 0 и a = 1, дабы исключить вероятность путаницы следует записать задание в виде: ax2 + 0 + c = 0. Тогда отношение суммы и произведения корней и множителей многочлена можно выразить следующим образом:

Теоретические выкладки помогают ознакомиться с сутью вопроса, и всегда требуют отработки навыка при решении конкретных задач. Снова обратимся к справочнику типовых заданий для ЕГЭ и найдем подходящий пример:

Запишем выражение в удобном для применения теоремы Виета виде:

x 2 + 0 – 16 = 0.

Следующим шагом составим систему условий:

Очевидно, что корнями квадратного многочлена будут x 1 = 4 и x 2 = -4.

Теперь, потренируемся приводить уравнение к общему виду. Возьмем следующий пример: 1/4× x 2 – 1 = 0

Для того, чтобы применить к выражению теорему Виета необходимо избавиться от дроби. Перемножим левую и правую части на 4, и посмотрим на результат: x2– 4 = 0. Полученное равенство готово для решения теоремой Виета, но гораздо проще и быстрее получить ответ просто перенеся с = 4 в правую часть уравнения: x2 = 4.

Подводя итог, следует сказать, что лучшим способом решения неполных уравнений является разложения на множители, является самым простым и быстрым методом. При возникновении затруднений в процессе поиска корней можно обратиться к традиционному методу нахождения корней через дискриминант.