В частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоемкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

История происхождения

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D уравнение имеет вид:

\frac{\partial}{\partial t}c(x,\;t)=\frac{\partial}{\partial x}D\frac{\partial}{\partial x}{c(x,\;t)}+f(x,\;t).

При постоянном D приобретает вид:

\frac{\partial}{\partial t}c(x,\;t)=D\frac{\partial^2}{\partial x^2}{c(x,\;t)}+f(x,\;t),

где c(x,\;t) - концентрация диффундирующего вещества, a f(x,\;t) - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=(\nabla,\;D\nabla c(\vec{r},\;t))+f(\vec{r},\;t),

где \nabla=(\partial_x,\;\partial_y,\;\partial_z) - оператор набла , а (\;,\;) - скалярное произведение. Оно также может быть записано как

\partial_t c=\mathbf{div}\,(D\,\mathbf{grad}\,c)+f,

а при постоянном D приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=D\Delta c(\vec{r},\;t)+f(\vec{r},\;t),

где \Delta=\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} - оператор Лапласа .

n -мерный случай

n-мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n-мерные версии соответствующих операторов:

\nabla=(\partial_1,\;\partial_2,\;\ldots,\;\partial_n), \Delta=\nabla^2=\partial_1^2+\partial_2^2+\ldots+\partial_n^2.

Это касается и двумерного случая n=2.

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

\Phi=-\varkappa\frac{\partial c}{\partial x} (одномерный случай), \mathbf j=-\varkappa\nabla c (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

\frac{\partial c}{\partial t}+\frac{\partial\Phi}{\partial x}=0 (одномерный случай), \frac{\partial c}{\partial t}+\mathrm{div}\,\mathbf j=0 (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n-мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c(x,\;t)=\int\limits_{-\infty}^{+\infty}c(x",\;0)c_f(x-x",\;t)\,dx"=\int\limits_{-\infty}^{+\infty}c(x",\;0)\frac{1}{\sqrt{4\pi Dt}}\exp\left(-\frac{(x-x")^2}{4Dt}\right)\,dx".

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

-(\nabla,\;D\nabla c(\vec{r}))=f(\vec{r}).

  • При D, не зависящем от \vec{r}, стационарное уравнение диффузии становится уравнением Пуассона (неоднородное), или уравнением Лапласа (однородное, то есть при f=0):
\Delta c(\vec{r})=-\frac{f(\vec{r})}{D}, \Delta c(\vec{r})=0.

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и t\geqslant t_0, удовлетворяющее условию u(x,\;t_0)=\varphi(x)\quad(-\infty, где \varphi(x) - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области -\infty\leqslant x\leqslant +\infty и t\geqslant t_0, удовлетворяющее условиям

\left\{\begin{array}{l}

u(x,\;t_0)=\varphi(x),\quad(0 где \varphi(x) и \mu(t) - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0\leqslant x\leqslant l и -\infty, удовлетворяющее условиям

\left\{\begin{array}{l}

u(0,\;t)=\mu _1(t), \\ u(l,\;t)=\mu _2(t), \end{array}\right. где \mu_1(t) и \mu_2(t) - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u_t=a^2 u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f(x,\;t)=0, то такое уравнение называют однородным , в противном случае - неоднородным .

u(x,\;0)=\varphi(x),\quad 0\leqslant x\leqslant l - начальное условие в момент времени t=0, температура в точке x задается функцией \varphi(x). \left.\begin{array}{l}

u(0,\;t)=\mu_1(t), \\ u(l,\;t)=\mu_2(t), \end{array}\right\}\quad 0\leqslant t\leqslant T - краевые условия. Функции \mu_1(t) и \mu_2(t) задают значение температуры в граничных точках 0 и l в любой момент времени t.

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай (\alpha_i^2+\beta_i^2\ne 0,\;(i=1,\;2)).

\begin{array}{l}

\alpha_1 u_x(0,\;t)+\beta_1 u(0,\;t)=\mu_1(t), \\ \alpha_2 u_x(l,\;t)+\beta_2 u(l,\;t)=\mu_2(t). \end{array}

Если \alpha_i=0,\;(i=1,\;2), то такое условие называют условием первого рода , если \beta_i=0,\;(i=1,\;2) - второго рода , а если \alpha_i и \beta_i отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция u(x,\;t) в пространстве D\times,\;D\in\R^n, удовлетворяет однородному уравнению теплопроводности \frac{\partial u}{\partial t}-a^2\Delta u=0, причем D - ограниченная область. Принцип максимума утверждает, что функция u(x,\;t) может принимать экстремальные значения либо в начальный момент времени, либо на границе области D.

{{#ifeq: Image:Wiki_letter_w.svg|none||Шаблон:!class ="ambox-image"Шаблон:! }}

Уравнение диффузии описывает распространение (растекание) со временем по протяженному телу некоторой субстанции, например, тепла или концентрации. В одномерном случае тело представляется протяженным вдоль оси x .

На рис. 19.2 показан пример распределения вдоль оси x такого параметра как температура T . Из обычного опыта хорошо известно, что в каждый момент времени t температура T на разных участках тела x имеет разные значения, то есть меняется в зависимости от участка и времени. То есть должен существовать закон, по которому изменяется величина этого параметра T как функции от (x , t ). Для температуры этот закон чаще всего задается уравнением диффузии.

Если изменяемый параметр (в общем случае) обозначить как y , время, в течение которого отслеживаются изменения параметра, обозначить как t , а ось, вдоль которой происходят изменения параметра, как x , то уравнение диффузии имеет вид:

и обычно дополняется условиями - значениями переменной y на краях и границах: на левом краю x = 0, на правом краю x = L , на границе - начальные условия (t = 0):

y (x , 0) = f 1 (x ),
y (0, t ) = f 2 (t ),
y (L , t ) = f 3 (t ),
где f 1 (x ), f 2 (t ) и f 3 (t ) - заданные функции.

На рис. 19.3 представлен схематически вид области, для которой определены граничные и начальные условия. Функции f 1 (x ), f 2 (t ), f 3 (t ) и само уравнение диффузии предопределяют поведение функции y (x , t ) внутри этой области, чей полный вид обычно надо определить. Если на схеме дополнительно построить ось y (см. рис. 19.4 ), то визуально на рисунке можно отобразить и сам вид функций. На рисунке четко видно, что в углах схемы значения задаваемых функций должно совпадать.

Коэффициент α имеет смысл коэффициента теплопроводности; f (x , t ) имеет смысл функции, описывающей работу источников и стоков тепла.

Величина y , описывающая распределение температуры, является функцией двух переменных - протяженности тела x и времени t : y (x , t ). Графически функция представляется поверхностью (см. рис. 19.5 ) или набором изолиний (см. рис. 19.6 ), вид которых обычно требуется определить.

Если заменить выражения производных их дискретным аналогом, то в разностном виде уравнение будет выглядеть так:

или, выражая неизвестное через известные величины:

В результате получена расчетная формула, реализуемая на цифровой вычислительной машине. Благодаря этой формуле можно рассчитать значение параметра y в любой точке (x , t ).

Назовем значение y (x , t ) узлом расчета . Тогда схематично расчет выглядит как сетка узлов на поле, составленном из частей тела и отрезков времени (см. рис. 19.7 ). Сама формула расчета одного узла зависит от состояния трех узлов (левого y (x – Δx , t – Δt ), правого y (x + Δx , t – Δt ), собственного y (x , t – Δt )) в предыдущий (t – Δt ) момент времени и напоминает треугольный шаблон. До начала расчета известны состояния всех узлов для t = 0. Применяя формулу последовательно ко всем узлам для следующего момента времени, можно определить температуру во всех узлах следующего временного слоя (t + Δt ). Кроме самого левого и самого правого узлов - их состояние вычислено быть не может, но оно задано краевыми условиями.

Если процедуру повторять, переходя от одной точки тела x к другой, и далее от одного временного слоя к другому, то по данной формуле можно вычислить значение температуры в любой части тела в любой момент времени. Таким образом, расчетом покрывается все поле (L x T) (см. рис. 19.7 ). Последовательное определение неизвестных значений в данном случае возможно, потому что шаблон имеет вид явного выражения - единственное неизвестное в формуле выражено через ранее вычисленные значения.

Заметим, что при больших значениях производных и больших значениях шагов расчет может дать неверные решения. Решения могут оказаться неточными или даже неустойчивыми (качественно неверными) (см. лекцию 10. «Численные методы интегрирования дифференциальных уравнений. Метод Эйлера»).

Условие устойчивости для треугольного шаблона при решении уравнения диффузии: Δx t > α (см. подробнее рис. 19.12 ).

При моделировании возможно применение других разностных формул (шаблонов) (см. рис. 19.8 ). При выборе шаблона необходимо принимать во внимание: явный шаблон или нет, какую он обеспечивает точность и при каких значениях шагов он обеспечивает устойчивость расчета. Так, например, шаблон в виде прямоугольника - неявный: в одной расчетной формуле содержится сразу две неизвестные величины. Поэтому при использовании такого шаблона необходимо решать систему алгебраических уравнений размером (L · T) .

На практике устойчивости, а далее - точности добиваются получением решений с использованием разных шаблонов и разных значений шага. Если значения искомой переменной, вычисленные с шагом h и с шагом h /2, отличаются в узлах с одинаковыми индексами не более чем на 1-5%, то вычисленное значение принимают за приближенное решение задачи. Иначе уменьшают шаг еще в два раза, и процедуру оценки повторяют. (Дополнительно см. лекцию «Умеем ли мы вычислять на компьютере?».)

Свойства уравнения диффузии отражены на рис. 19.9 и заключаются в том, что при возникновении неоднородности в какой-то из частей тела со временем тепло за счет процессов теплообмена перетекает в соседние области. Температуры соседних областей выравниваются, усредняются. Темп процесса зависит от величины коэффициента теплопроводности.

Если принять условие, что задача стационарная, то есть процессы протекают так долго, что все переходные процессы успели закончиться (производная по времени равна 0), то уравнение диффузии приобретает следующий вид (для случая двухмерного пространства - оси x и z ) без источников и стоков:

∂ 2 y /∂x 2 + ∂ 2 y /∂z 2 = 0.

В разностном виде уравнение имеет вид:

(Y i + 1, j – 2 · Y i , j + Y i – 1, j )/Δx 2 + (Y i , j – 1 – 2 · Y i , j + Y i , j + 1)/Δz 2 = 0.

Если принять Δx = Δz , то уравнение примет вид:

4 · Y i , j Y i + 1, j Y i – 1, j Y i , j – 1 – Y i , j + 1 = 0.

Легко понять, что шаблон расчета уравнения неявный и имеет вид креста (чтобы рассчитать значение температуры в узле сетки, надо знать температуры его соседей слева, справа, сверху и снизу). Если стена дома имеет размеры 2 метра на 2 метра, а шаг Δx = Δz = 20 мм, то всего для расчета температурного режима стены придется решать систему из 10 000 линейных уравнений c 10 000 неизвестных Y i , j :

4 · Y i , j Y i + 1, j Y i – 1, j Y i , j – 1 – Y i , j + 1 = 0, для i = 1÷100 и j = 1÷100,

к которым следует присоединить 400 штук краевых условий:
Y 0, j = f 1 (j );
Y 101, j = f 2 (j );
Y i , 0 = f 3 (i );
Y i , 101 = f 4 (i ).

Вид решения уравнения показан на рис. 19.6 .

ОБЩЕЕ УРАВНЕНИЕ ПЕРЕНОСА. ДИФФУЗИЯ. УРАВНЕНИЕ ФИКА

Наименование параметра Значение
Тема статьи: ОБЩЕЕ УРАВНЕНИЕ ПЕРЕНОСА. ДИФФУЗИЯ. УРАВНЕНИЕ ФИКА
Рубрика (тематическая категория) Спорт

Необходимым условием жизни является перенос веществ через биологические мембраны в клетку и из клетки. Мембраны при этом выполняют две прямо противоположные функции: барьерную, благодаря которой клетка защищается от чужеродных веществ, и транспортную, обеспечивающую всœем необходимым процессы метаболизма, генерации биопотенциалов и нервных импульсов, биоэнергетики и т.д.

В физике под термином перенос понимают необратимые процессы, в результате которых в физической системе происходит пространственное перемещение (перенос) массы, импульса, энергии, заряда или какой-либо другой физической величины. Следует понимать, что с места на место переходят частицы, которые и переносят свои физические характеристики: массу, импульс, энергию, заряд и т.д.

К явлениям переноса относятся диффузия – перенос массы; теплопроводность – перенос энергии; вязкость – перенос импульса частиц среды.

Наиболее существенными для жизнедеятельности биологических организмов являются процессы переноса массы и электрического заряда. В биофизике в качестве синонима термину перенос используют термин ʼʼтранспортʼʼ. Выведем, исходя из представлений молекулярно-кинœетической теории, общее уравнение переноса. Прежде всœего, с этой целью определим количество молекул, переходящих за промежуток времени Δt через некоторую воображаемую площадку ΔS, помещённую в вещество. Направим ось OX перпендикулярно ΔS (рис.5). Т.к. движение частиц среды хаотично, то условно можно считать, что вдоль каждой из пространственных осœей движется треть от общего числа частиц. Причём, половина от этой трети (ᴛ.ᴇ. 1/6) движется вдоль OX слева направо, а вторая половина – справа налево. Тогда, в одну сторону через площадку ΔS за 1 секунду пройдёт 1/6 всœех частиц, находящихся в объёме прямоугольного параллелœепипеда с основанием ΔS и высотой, равной средней скорости движения частиц среды: , где n – число частиц в единице объёма. За время Δt число частиц прошедших в данном направлении:

. (1)

Будем помнить, что каждая частица при этом перенесёт через площадку свои физические характеристики: массу, заряд, импульс, энергию и т. д. Тогда количество любой физической характеристики φ, перенесённое всœеми частицами в направлении нормали через площадку ΔS за время :

. (2)

Понятно, в случае если среда однородна, то количество частиц движущихся “слева направо” и “справа налево” будет одинаковым, и результирующего переноса физических величин не будет.

Предположим, что рассматриваемая среда неоднородна по своим физическим свойствам. Это означает, что значения одной и той же характеристики φ в разных точках пространства разные. В этом случае количество физической величины перешедшей ʼʼслева направоʼʼ и ʼʼсправа налевоʼʼ не будет одинаковым. Оценим результирующий перенос величины через площадку ΔS.

Пусть значение убывает в положительном направлении OX, будучи равным 1 слева от площадки ΔS и 2 – справа от неё (рис.6). Результирующий перенос величины (φN) через площадку ΔS за время Δt слева направо, равен:

Теперь остаётся только узнать на каком расстоянии от ΔS следует взять значения φn 1 и φn 2 . Обмен значениями величины φ и изменение концентрации n происходит только при взаимодействиях молекул. Это означает, что значение сохраняется неизменным на расстоянии равным длинœе свободного пробега – λ слева и справа от площадки. На этих расстояниях от ΔS и будем брать значения (φn) для подстановки в формулу (3). Умножив и разделив правую часть (3) на 2λ, получим:

Величину

(5)

называют градиентом величины (φn). 2λ = Δx – расстояние на котором величина (φn) изменяется от значения (φn) 1 до (φn) 2 . Окончательно для результирующего переноса имеем:

. (6)

Знак минус обусловлен тем, что перенос физической величины происходит в направлении, противоположном градиенту величины (φn). Grad(φn) направлен справа налево, а перенос (φn) – слева направо (рис.3). Выражение (6) является общим уравнением переноса.

Рассмотрим на его основании явление диффузии, ᴛ.ᴇ. перенос массы. Переносимой величиной будет масса молекулы, ᴛ.ᴇ. φ = m. Тогда, m·n = ρ. Подставляя в уравнение (6) вместо φ – m, получим

, (7)

где ΔM – масса газа, переносимая путём диффузии за Δt через площадку ΔS, перпендикулярную направлению убывания плотности. Обозначив , получим уравнение диффузии (закон Фика) в виде:

, (8)

где константа D – коэффициент диффузии, размерность которого (м 2 /с).

Количество вещества, ĸᴏᴛᴏᴩᴏᴇ переносится через всё поперечное сечение ΔS за единицу времени, принято называть потоком вещества:

. (9)

Уравнение Фика должна быть записано также через плотность потока вещества (интенсивность переноса) – величину, под которой понимают массу вещества, перенесённую через единицу площади поперечного сечения потока за единицу времени:

. (10)

Явления переноса изучают как на живых клетках, так и на разного рода моделях. Перенос вещества может происходить без затраты энергии (пассивный транспорт) и за счёт энергии АТФ (активный транспорт).

4. ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ БИОЛОГИЧЕСКИЕ МЕМБРАНЫ.

4.1 ПАССИВНЫЙ ПЕРЕНОС. РАЗНОВИДНОСТИ ПАССИВНОГО ТРАНСПОРТА МОЛЕКУД И ИОНОВ ЧЕРЕЗ МЕМБРАНУ.

Важным элементом функционирования биологических мембран является их способность пропускать или не пропускать молекулы, атомы и ионы. Эта способность принято называть проницаемостью. Проблема мембранной проницаемости включает в себя вопрос кинœетики поступления частиц в клетку и из клетки, а также механизм распределœения вещества между клеткой и межклеточной средой. Изучение проницаемости биомембран имеет большое значение для медицины и, особенно, для фармакологии и токсикологии. Для лечения крайне важно знать проникающую способность фармакологических средств и ядов через мембрану в норме и при патологии.

Перенос вещества через мембрану является сложным процессом и может осуществляться многими способами. Учитывая зависимость оттого, что является движущей силой перемещения молекул, всœе виды переноса можно разделить на пассивные и активные. Пассивный транспорт вещества осуществляется за счёт энергии, сконцентрированной в каком-либо градиенте и не связан с затратой химической энергии гидролиза АТФ. Наиболее значимыми для биологических систем являются градиенты концентрации – dc/dx, электрического потен-циала – dφ/dx и гидростатического давления – dр/dx.

Выделяют следующие виды пассивного переноса через биологические мембраны: простая диффузия, диффузия через поры, облегченная диффузия, осмос и фильтрация :

а) Простая диффузия - ϶ᴛᴏ самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вследствие хаотического теплового движения частиц. Рассмотрим в качестве примера диффузию незаряженных частиц определённого вида через биологическую мембрану толщиной l . Запишем уравнение Фика через концентрацию вещества данного вида в растворе. Не трудно видеть, что для раствора масса растворённого вещества в единице объёма и есть его массовая концентрация (кг/м 3). Теперь плотность потока вещества через поверхность мембраны в направлении нормали к ней, в соответ-ствии с (10), запишется:

, (11)

где D – коэффициент диффузии, Δc/Δx – градиент массовой концентрации вдоль направления переноса. Будем считать, что концентрация частиц, диффундирующих через мембрану, изменяется в мембране по линœейному закону от значения с i ,м внутри клетки, до значения с о,м в межклеточной среде (рис.7). Тогда градиент концентрации можно выразить соотношением:

. (12)

Измерить концентрации с о,м и с i ,м в приграничных слоях мембраны практически невозможно. По этой причине воспользуемся соотношением:

, (13)

где с о и с i – концентрации данного вещества в межклеточной жидкости и цитоплазме соответственно. Откуда, с учётом того, что с i ,м = k с i , a с о,м = k с о, получим:

. (14)

С учётом (14) уравнение диффузии частиц через мембрану примет вид:

–уравнение Коллендера. (15)

Величина Р = Dk / l принято называть коэффициентом проницаемости . В живой клетке такая диффузия обеспечивает прохождение кислорода и углекислого газа, а также ряда лекарственных веществ и ядов.

б) Диффузия может проходить через липидные и белковые поры или каналы , которые образуют в мембране проход (рис.8). Такой механизм проникновения сквозь мембрану характерен для молекул нерастворимых в липидах веществ и водорастворимых гидратированных ионов (сахар, спирт). Этот вид переноса допускает проникновение через мембрану не только малых молекул, к примеру, молекул воды, но и более крупных частиц. Значение проницаемости при этом определяется размерами молекул: с ростом размеров проницаемость молекул уменьшается.

Диффузия через поры также описывается уравнением Фика. При этом, наличие пор увеличивает коэффициент проницаемости Р. Каналы могут проявлять селœективность или избирательность по отношению к разным ионам, это проявляется в разной величинœе проницаемостях для разных ионов.

в) Облегченная диффузия происходит при участии молекул-переносчиков . Было обнаружено, что скорость проникновения в клетку глюкозы, глицерина, аминокислот не имеет линœейной зависимости от разности концентраций. Для определœенных концентраций скорость проникновения вещества через мембрану намного больше, чем следует ожидать для простой диффузии. При увеличении разности концентраций скорость диффузии возрастает в меньшей степени, чем это следует из уравнения Коллендера (15). В данном случае наблюдается облегченная диффузия.

Её механизм состоит в том, что вещество A, ĸᴏᴛᴏᴩᴏᴇ самостоятельно плохо проникает через мембрану, может образовать комплекс с молекулами X вспомогательного вещества (рис.9), ĸᴏᴛᴏᴩᴏᴇ растворено в липидах. У поверхности мембраны молекулы А образуют комплекс AX, который способен растворяться в липидах. Оказавшись в результате диффузии по другую сторону мембраны, некоторые из комплексов отщеплют молекулы A. Молекула X возвращается к наружной поверхности мембраны и может образовать новой комплекс с молекулой А. Разумеется транспорт вещества А таким способом происходит в одну и другую сторону. По этой причине результирующий перенос возникнет только при условии, что концентрация А по одну и другую стороны мембраны разная. Таким способом, к примеру, антибиотик валиномицин переносит через мембраны ионы калия. Соединœения, обладающие способностью избирательно увеличивать скорость переноса ионов через мембрану получили название ионофоров .

В случае если концентрация молекул А в среде такова, что всœе молекулы вещества-переносчика задействованы, то дальнейшее повышении концентрации вещества А не будет больше вызывать рост скорости диффузии. Это означает, что облегчённая диффузия обладает свойст-

вом насыщения.

При облегчённой диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком выступает одно и тоже соединœение. К примеру, глюкоза переносится лучше, чем фруктоза; фруктоза лучше, чем ксилоза; ксилоза, лучше, чем арабиноза и т.д.

Известны также соединœения, способные избирательно блокировать облегчённую диффузию ионов через мембрану. Οʜᴎ образуют прочные комплексы с молекулами переносчиками. К примеру яд рыбы фугу тетродотоксин блокирует транспорт натрия, флоридзин подавляет транспорт сахаров и т.д.

Разновидностью облегчённой диффузии является транспорт с помощью неподвижных переносчиков. Молекулы X образуют фиксированные цепочки поперек мембраны, к примеру, выстилают изнутри пору (рис.10). Молекулы переносимого вещества А передаются от одной молекулы переносчика к другой, как по эстафете. При этом предполагается, что пространство в поре недостаточно велико для прохождения через нее частиц А, в случае если только они не способны к специфическому взаимодействию с переносчиком Х.

Диффузия является основным видом пассивного транспорта веществ через мембрану клетки. Все остальные виды пассивного переноса связаны в основном с транспортом воды.

в) Осмос – диффузия растворителя через полупроницаемую мембрану, разделяющую два раствора с разной концентрацией . Сила, которая вызывает это движение растворителя, принято называть осмотическим давлением. Оно возникает вследствие теплового движения молекул воды и растворённого вещества. Некоторые молекулы воды, векторы скорости которых параллельны каналам мембраны, проникают через неё. В то же время для растворённого вещества А мембрана непроницаема. По этой причинœе поток воды из раствора, где концентрация А ниже будет больше (в данном растворе выше концентрация воды). Процесс приводит к возрастанию гидростатического (водяного) давления в растворе с большей концентрацией А. Это избыточное давление вызывает фильтрацию воды в обратном направлении. В некоторый момент наступает состояние динамического равновесия. Давление соответствующее этому состоянию принято называть осмотическим давлением. Величина осмотического давления определяется уравнением Ван-Гоффа:

р = i·c·R·T, (16)

где с – концентрация растворённого вещества; Т – термодинамическая температура; R – газовая постоянная; i – изотонический коэффициент, показывает во сколько раз возросло число частиц в растворе из-за диссоциации молекул. Скорость осмотического переноса воды через мембрану определяется соотношением:

, (17)

где Р о – коэффициент проницаемости, S – площадь мембраны, (р 1 – р 2) – разность осмотических давлений по одну и другую стороны мембраны.

г) Фильтрацией принято называть движение жидкости через поры в мембране под действием градиента гидростатического давления . Объёмная скорость переноса жидкости при этом подчиняется закону Пуазейля:

где r – радиус поры; l – длина канальца поры; (р 1 -р 2) – разность давлений на концах канальца; η – коэффициент вязкости переносимой жидкости; – модуль градиента давления вдоль поры; – гидравлическое сопротивление. Это явление наблюдается при переносœе воды через стенки кровеносных сосудов (капилляров). Явление филь-трации играет важную роль во многих физиологических процессах. Так, к примеру, образование первичной мочи в почечных нефронах происходит в результате фильтрации плазмы крови под действием давления крови. При некоторых патологиях фильтрация усиливается, что приводит к отёкам.

ОБЩЕЕ УРАВНЕНИЕ ПЕРЕНОСА. ДИФФУЗИЯ. УРАВНЕНИЕ ФИКА - понятие и виды. Классификация и особенности категории "ОБЩЕЕ УРАВНЕНИЕ ПЕРЕНОСА. ДИФФУЗИЯ. УРАВНЕНИЕ ФИКА" 2017, 2018.

Явлением диффузии называется процесс установления внутри фаз равновесного распределения концентраций.

Результатом диффузии при постоянной температуре является выравнивание химических потенциалов. В однофазной системе при постоянной температуре и при отсутствии внешних сил диффузия выравнивает концентрацию компонента фазы во всей системе. Если на систему действуют внешние силы или поддерживается градиент температуры, то в результате диффузии устанавливаются градиенты концентраций отдельных компонентов (термодиффузия, электродиффузия и другие процессы).

Уравнение диффузии в одномерном случае

Уравнение диффузии в одномерном случае () в двухкомпонентной системе - это первый закон Фика:

где dm – масса первого компонента, которая переносится за время dt через элементарную площадку dS в направлении нормали x к рассматриваемой площадке в сторону убывания плотности первого компонента, – градиент плотности, D – коэффициент диффузии.

Если в однокомпонентной системе выделить группу молекул, выравнивание концентрации выделенных частиц по объёму сосуда называется самодиффузией. Самодиффузия тоже описывается уравнением диффузии (первым законом Фика), в котором коэффициент D- называется коэффициентом самодиффузии.

Уравнение диффузии в трехмерном случае

В случае трехмерной диффузии изменение концентрации с течением времени при постоянной температуре и отсутствии внешних сил описывается дифференциальным уравнением диффузии:

где D- коэффициент диффузии, t- время. Если D не зависит от концентрации, то уравнение диффузии будет иметь вид:

Уравнение (3) еще называют вторым законом Фика, где - дифференциальный оператор Лапласа.

В том случае, если перенос вещества вызван лишь градиентом его концентрации уравнение диффузии можно записать и в следующем виде:

где c(x, t) - концентрация вещества в точке среды в момент времени t, D – коэффициент диффузии, q - коэффициент поглощения, a F - интенсивность источников вещества. Величины D, q и F обычно являются функциями координат и времени, а также могут зависеть от концентрации с(x, t). B последнем случае, уравнение диффузии (4) становится нелинейным. В анизотропной среде коэффициент диффузии D является тензорным полем. В случае, когда величины D и q постоянны уравнение (4) является уравнением параболического типа. Для такого типа уравнений в математической физике разработаны методы решения. Допущение о постоянстве коэффициента диффузии справедливо в большинстве случаев реализуемых на практике. Уравнения диффузии не содержат ни каких сведений о механизмах этого процесса. Основная цель решения уравнения - найти распределение примеси c(x,t) после диффузии в течение определенного времени при различных условиях осуществления процесса.

Решение уравнения диффузии

Для выделения единственного решения для уравнения (4) необходимо задать начальные и граничные условия. Обычно, рассматривают следующие граничные условия:

1) на границе поверхности S поддерживается заданное распределение вещества

2)на границе поверхности S поддерживается заданная плотность потока вещества, входящего в V через границу S:

где n – внутренняя нормаль к поверхности S

3) S- полупроницаема, и диффузия во внешнюю среду с заданной концентрацией через поверхность S происходит по линейному закону:

В простейшем случае, когда диффузия происходит только вдоль одной прямой и c=c(x,t)уравнение (3) запишется в виде:

с начальным условием:

Тогда уравнение (5) имеет решение вида:

Текущая координата интегрирования.

Выражение (6) называется фундаментальным решением уравнения диффузии в случае (5).

Примеры решения задач

ПРИМЕР 1

Задание Найти массу газа ( с молярной плотностью прошедшего вследствие диффузии через площадку за время , если градиент плотности в направлении, перпендикулярном площадке, равен . Температура газа T, средняя длинна свободного пробега молекулы .
Решение Запишем первый закон Фика в терминах условий задачи:

Знак минус означает, направление вектора плотности. Возьмем модуль от правой части выражения (1.1):

Зная, что , где - средняя длина свободного пробега молекулы, - средняя скорость молекулы газа и она равна: .

Соответственно преобразуем (1.2), найдем искомую массу газа:

Ответ Искомая масса газа может быть найдена по формуле:

В гл. ХIII, § 2, 6, мы исследовали интегральное уравнение (56) для теплопроводности и диффузии. Из метода его вывода ясно, что это уравнепие применимо и в более общем случае, рассматриваемом в этом пункте. Мы увидим, что в действительности оно имеет еще более общее значение. В самом деле, согласно принципу, изложенному в гл. ХIII, § 2, 3, функции, входящие в это уравнение, можно рассматривать как некоторые вероятности. Поэтому, если состояние некоторой физической системы определяется переменной зависящей от времени статистическим образом, т. е. совершающей некоторого рода броуновское движение, то это движение опять-таки будет описываться интегральным уравнением (51).

Если есть вероятность того, что система в момент времени находится между вероятность того, что система в течение времени переходит из начального положения, лежащего между конечное положение, лежащее между то удовлетворяет линейному интегральному уравнению:

ядро которого вообще говоря, несимметрично.

В случае обыкновенного броуновского движения, при отсутствии внешних сил, ядро симметрично относительно и имеет вид, определенный в гл. ХIII, §2, (56а). Там же указано решение "уравнения (8) в этом случае. Чтобы найти решение в общем случае, целесообразно преобразовать интегральное уравнение (8) в дифференциальное уравнепие следующим способом.

Введем сначала в уравнепие (8) вместо новую переменную представляющую собой смещение системы за время Тогда уравнение (8) примет вид:

где выражение очевидно, равно вероятности того, что система сместится за время из начального положения х на расстояние между и Примем теперь, что очень мало, и разложим левую часть (9) по степеням

с точностью до членов первого порядка, а правую часть по степеням у. Тогда мы получим

где величины имеют значение:

Из определения функции как вероятности непосредственно следует, что Предположим теперь, что существуют предельные значения:

Тогда из (10) получается дифференциальное уравнение для функции

где есть оператор

Это уравнение называется в статистическоё физике дифференциальным уравнением Фоккера-Планка Оно имеет самые разнообразные применения.

Если механическая система испытывает беспорядочные флуктуации иод действием внешних сил, с одной стороны, и вследствие теплового движения молекул - с другой, как это имеет место при обыкновенном броуновском движении, то функция согласно (11) и (12), есть средняя скорость приобретаемая частицами под действием внешних сил. Далее, в этом случае а все при тождественно равны нулю. Таким, образом, (13) переходит в обобщенное уравнение диффузии (6), где есть коэффициент диффузии. Согласно (11) и (12):

т. е. равно среднему квадрату смещения, деленному на соотношение, которое мы уже встречали в гл. XIII, § 2, (23) под названием формулы Эйнштейна.

Если внешние силы отсутствуют, т. е. если функция в (8) симметрична относительно то функция согласно (12), тождественно равна нулю, и (13) переходит в обыкновенное дифференциальное уравнение диффузии гл. XIII, § 1 (22). Поэтому всякая функция, определяемая интегральным уравнением (50) гл. § 2, должна одновременно удовлетворять уравнению (22) гл.

Если же внешние силы не равны нулю, то можно найти стационарное решение и уравнения Фоккера-Планка, соответствующее состоянию, устанавливающемуся через достаточно большой промежуток времени независимо от начального состояния. В этом случае и есть вероятность пребывания системы в промежутке между или относительное число тождественных систем, находящихся в этом интервале, если в начальный момент они были распределены