Реферат на тему:

«Биохимические основы наследственности»


1.Белки-строение и функции

2. Нуклеиновые кислоты

З. Транскрипция и трансляция

4.Генетический код

5.Биосинтез белка в клетке

6.Ген - функциональная единица наследственности, его свойства.

7. Практическое применение молекулярной генетики


Это полимеры, состоящие из мономеров - аминокислот. В состав белков входит до 20 различных аминокислот. Соединения из нескольких аминокислот называют пептидами. В зависимости от их количества Е белке бывают дипептиды, три-, тетра-, пента- или полипептиды (от 6-10 до 300-500 аминокислот). Молекулярная масса белков колеблется от 5000 ДО нескольких миллионов. Белки отличаются друг от друга не только составом и числом аминокислот, но и последовательностью чередования их в полипептидной цепи.

Организация белковых молекул:

1) первичная структура - это полипептидная цепь, т.е. аминокислоты, соединенные ковалентными пептидными связями в виде цепи;

2) вторичная структура - белковая нить закручена в виде спирали, поддерживаемая водородными связями;

4) четвертичная cтруктypa - состоит из нескольких глобул; например, гемоглобин, состоит из 4-х глобул.

Функции белка разнообразны:

1) каталитическая: белки-ферменты ускоряют биохимические реакции организма;

2) строительная: белки участвуют в образовании всех клеточных мембран и органоидов;

3) двигательная: белки обеспечивают сокращение мышц, мерцание ресничек, белки-гистоны, сокращаясь, образуют хромосомы из хроматина;

4) защитная: антитела гамма-гло6улины - распознают чужеродные для организма вещества и способствуют их уничтожению;

5) транспортная: белки переносят различные соединения (гемоглобин - кислород, белки плазмы -гормоны, лекарства и т.д.);

6) регуляторная: белки участвуют в регуляции обмена веществ (гормоны роста, гормон-инсулин, половые гормоны, адреналин и др.);

7) энергетическая - при распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Энергии.

2. Нуклеиновые кислоты

К ним относятся ДНК - и РНК.

В 1953 г. Д. Уотсон и Ф. Крик открыли структуру ДНК состоящую из двух цепей, спирально закрученных относительно друг друга. Каждая цепь - полимер, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из сахара дезоксирибозы, остатка фосфорной кислоты и одного из 4-х азотистых оснований (аденин, гуанин, тимин, цитозин).

Сахар связан с фосфорной группой ковалентной связью, а с азотистыми основаниями - водородной связью.

Две цепи соединяются сла6ыми водородными связями между азотистыми основаниями по принципу комплементарности; аденин дополняется тимином, гуанин – цитазином.

Самой длинной молекулой в организме является ДНК (108 нуклеотидов), имеющая очень большую молекулярную массу.

Перед делением клетки ДНК удваивается, происходит реплuкацuя ДНК. Сначала с помощью фермента ДНК-полимеразы разрываются слабые водородные связи между двумя цепями ДНК, а затем к каждой уже отдельной цепочке достраиваются по принципу комплементарности нуклеотиды (А-Т, Ц-Г), образуются уже 2 цепочки ДНК абсолютно похожие друг на друга. Репликация ДНК обеспечивает точное воспроизведение генетической информации в поколениях клеток и организмов в целом.

Функции ДНК:

1) хранит генетическую информацию, записанную в виде последовательности нуклеотидов;

2) передает наследственную информацию с ядра в цитоплазму.

Для этого с ДНК снимает копию и-РНК и переносит информацию к рибосомам - месту синтеза белка;

3) передает наследственную информацию от материнской клетки к дочерним, для этого перед делением клетка ДНК реплицируется, а во время деления превращается в суперспираль с помощью белка-гистона (в хромосому).

Кроме ДНК в клетке имеется РНК - рибонуклеиновая кислота, которая является также полимером, мономерами которого будут нуклеотиды.

В отличие от ДНК РНК - это: одноцепочная молекула; только у вирусов РНК - двухцепочная; вместо сахара дезоксирибозы в РНК входит сахар рибоза;в состав нуклеотидов входит азотистое основание урацил вместо тимина;

4) состоит из меньшего количества нуклеотидов, чем ДНК.

В зависимости от выполняемых функций РНК бывают несколько видов:

· и-РНК - информационная или матричная РНК - переносит информацию о структуре белка от ДНК к рибосомам, она составляет ~ 1% от общего содержания РНК.

· т-РНК (транспортная) переносит аминокислоты из цитоплазмы в рибосомы, на долю т-РИК приходится около 10% от общего количества РИК клетки.

· р-РНК (рибосомальная)- составляет одну из субъединиц рибосомы, на ее долю приходится около 90% от всех РНК клетки.


3. Транскрипция и трансляция

ДНК - носитель генетической информации. Впервые понятие ген было сформулировано в 1941 году Д. Бидлом и Э. Татумом. В настоящее время геном называют участок молекулы ДНК, кодирующий первичную структуру полипептида. ДНК непосредственного участия в синтезе белков не принимает. В клетках человека молекулы ДНК находятся в ядре и отделены ядерной мембраной от цитоплазмы, где проходит синтез белка. Информацию несет посредник – и-РНК, который по принципу комплементарности считывает (копирует) с ДНК информацию при участии фермента РИК-полимеразы. Переписывание последовательности нуклеотидов или генетической информации происходит с одной нити ДНК и называется транскрипцией (лат. transcriptio - переписывание). Если в переписываемой нити ДНК стоит нуклеотид гуанин (Г), то фермент РНК - полимераза включает в и-РНК комплементарный цитозин (Ц); если стоит аденин (А), фермент включает урацил (У). По длине каждая из молекул и-РНК в сотни раз короче ДНК. Информационная РНК является копией не всей молекулы ДНК, а только ее части - одного гена, несущего информацию о структуре белка. Готовая и-РНК отходит от ДНК и направляется к месту синтеза белка. Существует механизм «узнавания» выбора цепи ДНК для транскрипции - это система «оперона».

Она состоит из генов:

1) ген-активатор, к которому присоединяется фермент РНК-полимераза;

2) ген-промотор, указывает место транскрипции, с его помощью выбирается участок ДНК, который под действием фермента раскручивается;

З) ген-начала синтеза - ТАЦ;

4) ген-оператор - управляющий работой генов, наращиванием цепи и-РНК, продвижением фермента PHK-полимеразы по цепочке ДНК;

5) ген-терминатор-участок ДНК, прекращающий транскрипцию - АТЦ, АТТ, АЦТ.

Благодаря процессу транскрипции в клетке осуществляется передача информации от ДНК к белку по цепочке: ДНК - и-РНК- белок

Перевод информации с и-РНК на последовательность аминокислот называется трансляцией (от лат. translatio - передача), которая происходит на рибосомах.

4. Генетический код

Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью СТРОГО определенной последовательности расположения нуклеотидов в ДНК и и-РНК. Участок молекулы дик, состоящий из 3-х нуклеотидов, называется триплетом или кодоном.

Каждому триплету соответствует определенная аминокислота. Из 4 нуклеотидов (аденин, гуанин, тимин, цитозин) можно создать 64 различных комбинации по 3 нуклеотида в каждой. Эти 64 триплета кодируют 20 аминокислот. Поэтому аминокислота кодируется несколькими триплетами, только метионин - одним триплетом - АУГ и триптофан УГГ. Эта множественность кода необходима для надежного хранения информации.

Свойства генетического кода:

1. Специфичность- каждый кодон шифрует ТОЛЬКО одну определенную аминокислоту;

2. Универсальность - один триплет кодирует одну и ту же аминокислоту у всех живых организмов. Это говорит о единстве всего живого на Земле;

3. Код непрерываем - каждый триплет передается по наследству целиком, не разрываясь на нуклеотиды, и переписывание информации происходит строго потриплетно;

4. Триплеты УАА, УАГ, УГА обозначают конец синтеза, т.к к ним нет аминокислот. Они находятся на конце каждого гена.

В ДНК запрограммирована вся наследственная информация, и-РНК переписывает информацию с участка ДНК (гена) и переносит ее в цитоплазму на рибосому. У эукариот и-РНК еще незрелая. Поэтому в ядре и при выходе и3 него происходит его процессинг - дозревание (вырезание неактивных участков и др. процесс), поэтому и-РНК укорачивается

Дозревшая и-РНК переносит информацию о синтезе белка в рибосому. Информация закодирована в виде триплетов ОДИН триплет (кодон) кодирует одну аминокислоту, а последовательность триплетов и-РНК кодирует последовательностъ аминокислот в белковой молекуле.

Генетический код индивидуален для каждого организма, он может быть идентичен только однояйцовых близнецов.

5. Биосинтез белка

Проходит в рибосоме, к которой подходит и-РНК, прикрепляется в функциональной зоне рибосомы. Одновременно в рибосоме помещается 2 триплета и-РНК.

В цитоплазме клетки всегда имеется не менее 20 различных видов аминокислот и соответствующих им т-РНК. С ПОМОЩЬЮ специфических ферментов аминокислоты узнаются, активируются и при соединяются к т-РНК, которая переносит их к месту синтеза белка в рибосому. В рибосоме (в и-РНК) находится кодон, а у т-РНК есть антикодон, комплементарный строго определенному триплету и-РНК.

Если в рибосоме на и-РНК будет триплет АУГ, то к нему подойдет т-РНК с комплементарным антикодоном УАЦ; если ГГГ - то т-РНК С антикодоном ЦЦЦ. Каждому антикодону соответствует своя аминокислота.

Аминокислоты проталкиваются в функциональную зону рибосомы одна за другой соответственно кодону и прикрепляются друг к другу пептидной связью. Эта реакция осуществляется в большой субъединице рибосомы.

Т-РНК вытесняются и «уходят» В цитоплазму за другой аминокислотой, а рибосома передвигается на следующий триплет и-рнк. Так происходит считывание информации. Когда рибосома окажется на терминирующем триплете (ген-терминатор), синтез белка заканчивается. Синтез

Одной молекулы белка длится всего 3-4 секунды. Каждый этап синтеза белка катализируется соответствующим ферментом и снабжается энергией за счет расщепления АТФ.

После окончания синтеза белка и образования первичной структуры белка в рибосомах формируется в эндоплазматической сети вторичная, третичная, а иногда и четвертичная структура белка и он становится способным выполнять свои функции.

Сходство и различие организмов определяется набором белков. Каждый вид имеет только ему присущий набор белков, Т.е. они являются основой видовой специфичности, а также обуславливают индивидуальность организмов. На Земле нет двух людей, у которых все белки были бы одинаковыми (за исключением монозиготных близнецов). ДНК ядра каждой клетки несет в себе информацию о форме клеток, белках-ферментах, гормонах, практически все признаки клеток и организма определяются белками. Таким образом, в ДНК заключена вся информация о структуре и деятельности клеток, органов и организма. Эта информация называется наследственной. Небелковые молекулы синтезируются в два этапа: сначала образуется специфический белок-фермент, а затем с его помощью образуются углеводы, липиды, витамины.


6. Ген - функциональная единица наследственности, его свойства

Ген - это элементарный материальный наследственный фактор, определяющий строение белковой полипептидной цепи. Это участок ДНК, кодирующий развитие отдельного признака.

Возможность проявления гена в виде признака зависит от других генов гомологичной хромосомы и от условий внешней среды.

У всех организмов одного вида каждый конкретный ген расположен в одном и том же месте - локусе - строго определенной хромосомы.

В гаплоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом содержатся 2 гомологичные хромосомы и значит 2 гена определяют развитие какого-либо признака. Гены, расположенные в одних и тех же локусах гомологичных хромосом и ответственные за развитие одного признака, называются аллельными.

Доминантный ген - преобладающий, подавляет проявление других аллелей; обозначается большой буквой латинского алфавита.

Рецессивный - подавляемый ген, проявляется только в гомозиготном состоянии, обозначают маленькой буквой.

Организм, в котором данная пара аллельных генов одинакова, называется гомозиготой: АА, аа.

Организм, в котором пара аллелей неодинакова (Аа) - гетерозигота. Гемизигота - (от греческого hemi - полу и зигота), когда в диплоидных клетках присутствует один ген из пары аллелей и он всегда проявляется. Например, у мужчин в половых Х-хромосомах некоторые гены не имеют второго аллеля в Хромосомах, и признак определяется не парой аллельных генов, а одним аллелем.

Закон чистоты гамет: в процессе образования гамет в каждую из них попадает только 1 ген из аллельной пары. Цитологически это объясняется мейозом: в анафазе мейоза гомологичные хромосомы расходятся и вместе с ними расходятся аллельные гены.

Генотип - совокупность генов данного организма. Но часто под генотипом понимают одну или две пары аллелей (гомозиготы или гетерозиготы). Гены в генотипе взаимодействуют друг с другом, влияя на проявленние определенных свойств. Таким: образом, для генов существует своя генотипическая среда.

Свойства генов:

1) способность к мутации;

2)способность к рекомбинациям с другими генами.

Фенотип - совокупность признаков данного организма (внешних и внутренних). Он развивается в результате взаимодействия генотипа с внешней средой. В фенотипе реализуются не все генотипические возможности, а лишь их часть, для которых были оптимальные условия. Фенотип-это частный случай реализации генотипа в конкретных условиях.

7. Практическое применение молекулярной генетики

Практическое применение молекулярной генетики открывает большие перспективы переделки наследственной природы организмов. Ворганизме кишечной бактерии был выделен ген, ответственный за усвоение лактозы, а вскоре генетики внедрили в организм кишечной палочки ген инсулина, не характерный ей. Тогда кишечные палочки стали вырабатывать инсулин, что использовано для npомышленного производства инсулина для больных диабетом. Постепенно генетики добрались до расшифровки генома человека, что было окончательно сделано в 2000 году. В настоящее время открыты все гены в молекуле ДНК, их функции. Это поможет в лечении наследственной патологии путем генной инженерии.

Стало возможным внедрить ген соединительной ткани, способствующий усвоено сахара галактозы в культуру клеток соединительной ткани для лечения больных галактоземией. Выделен ген, руководящий ростом раковых клеток и фермент, который усиливает рост этих клеток.

Обнаружен ген старения клеток и организма. Все это открывает большие перспективы в лечении и предупреждении многих заболеваний.

Генную инженерию давно используют при получении бактерий-продуцентов необыкновенных для них веществ или обыкновенных, но в большом количестве. Например, продуценты антибиотиков, ферментов, витаминов, белков.

Знания генетики стали использовать для клонирования организмов, создавая культуру клеток, тканей и организма, начиная с одного ядра клетки, в котором записана вся информация об организации. В октябре 2001 года генетики сообщили, что открыли механизм регуляции митоза и мейоза. Теперь можно будет руководить этим процессом, предупредить образование раковых клеток.


Список используемой литературы

1.Медицинская генетика / Под ред. Бочкова Н.П. - М.: Мастерство, 2001.

2.Ярыгин В.Н., Волков И.Н. и др. Биология. - М.: Владос, 2001.

3. Биология / Под ред. Чебышева. Н.В. - М.: ГОУ ВУНМЦ,2005.

4.Орехова. В.А., Лажковская Т.А., Шейбак М.П. Медицинская генетика. - Минск: Высшая школа, 1999.

5.Пособие по биологии для довузовского обучения иностранных учащихся / Под ред. Чернышова В.Н., Елизаровой Л.Ю., Шведовой Л.П.- М.: ГОУ ВУНМЦ МЗ РФ, 2004.

6.Врожденные пороки развития // Серия учебной литературы «Образование медсестер», модуль 10. - М.: Гэотар-мед, 2002.

Биохимические основы наследственности.

    Химическое строение и генетическая роль нуклеиновых кислот: ДНК и РНК.

    Гены и их структура. Реализация генетической информации.

    Генетический код и его свойства.

1. Химическое строение и генетическая роль нуклеиновых кислот: ДНК и РНК.

Организмы обладают способностью передавать следующим поколениям свои признаки и особенности, т.е. воспроизводить себе подобных.

Это явление наследования признаков основано на передаче из поколения в поколение наследственной информации. Материальным носителем этой информации являются молекулы ДНК.

Рисунок 7 Строение молекулы ДНК

Нуклеиновая кислота представляет собой гигантскую молекулу или макромолекулу, построенную из многих повторяющихся единиц, называемых нуклеотидами.

Выяснение структуры и функции нуклеиновых кислот позволило понять, каким образом живые клетки, а значит, и организмы точно воспроизводят себя и как осуществляется хранение и кодирование генетической информации, необходимой для регуляции всех жизненных процессов. Поскольку нуклеиновые кислоты состоят из многократно повторяющихся мономерных звеньев - нуклеотидов, их называют также полинуклеотидами.

Нуклеотид состоит из азотистого основания, сахара, остатка фосфорной кислоты.

Рисунок 8 Строение и составные части нуклеотида

Азотистые основания в структуре нуклеотида представляют собой производные одного из двух классов соединений - пуринового или пиримидинового ряда.

В нуклеиновых кислотах присутствуют два пуриновых производных - аденин (А) и гуанин (Г) и три пирими-диновых - цитозин (Ц), тимин (Т), урацил (У).

В состав ДНК входят аденин, гуанин, цитозин и тимин. РНК тоже имеет четыре типа оснований, из которых три (аденин, гуанин и цитозин) такие же, как в ДНК, а тимин заменен здесь другим пиримидином - урацилом.

Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот - дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую кислоту (РНК).

Нуклеиновые кислоты являются кислотами, потому что в их молекулу входит остаток фосфорной кислоты .

Фосфорная кислота. В нуклеотидах к молекуле дезоксирибозы (или рибозы) с одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых оснований.

Именно такая специфичность строения полимерных молекул нуклеиновых кислот определяет возможность хранения в них обширной и сложной генетической информации.

Молекула ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.

Рисунок 9 Схема строения молекулы ДНК по Уотсону и Крику

Двойная спираль ДНК правосторонняя, с диаметром 20 нм и шагом около 3,4 нм, каждый виток которой включает 10 пар нуклеотидов.

Пространственная структура ДНК удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.

Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований (А с Т и Г с Ц) обусловлено их пространственным соответствием.

Пиримидиновое основание комплементарно пуриновому основанию. Вследствие такой комплементарности азотистых оснований порядок чередования нуклеотидов в обеих нитях ДНК оказывается взаимообусловленным.

Комплементарность двух нитей молекулы ДНК приводит к тому, что число пуринов в нем равно числу пиримидинов [А=Т; Г=Ц или (А+Г)/(Т+Ц)=1].

Именно комплементарностью определяется точное воспроизведение последовательности оснований при копировании (репликации) молекул ДНК.

Рисунок 10 Комплементарность цепей в ДНК

Размеры ДНК могут меняться в гигантских пределах - от нескольких нук-леотидов до миллиардов пар оснований. Единицами измерения длины молекулы являются: пары оснований (п. о.), тысячи пар оснований - килобазы (кб), миллионы пар оснований - мегабазы (мб).

Молекулы ДНК бывают либо линейными, либо замкнутыми в кольцо. У человека большая часть ДНК (3,2 миллиарда пар оснований в гаплоидном наборе) присутствует в ядрах клеток (они диплоидны) в виде 46 плотно упакованных, суперскрученных нитей (хромосом). Сравнительно небольшая часть ДНК, около 5 % локализована в митохондриях.

В отличие от ДНК молекулы РНК, как правило, однонитевые.

Построены они аналогично нитям ДНК, только, как уже говорилось, в сахарно-фосфатный остов их молекул входит не дезоксирибоза, а рибоза, и вместо тимина у них имеется другой пиримидин - урацил.

В зависимости от функций, присущих молекулам РНК, все РНК могут быть разделены на несколько классов: РНК-транскрипты (информационная иРНК или матричная мРНК), транспортная (тРНК), рибосомальная (рРНК) и гетерогенная ядерная РНК(гяРНК)

Каждая молекула РНК выполняет свою специфическую функцию:

Рисунок 11 Структура молекулы РНК

МРНК (иногда ее называют информационной - иРНК) переносят информацию о структуре белка от ДНК к рибосомам, т.е. являются транскриптом (копией) смысловой ДНК, который служит матрицей для синтеза белка;

ГяРНК участвуют в процессе сплайсинга (вырезания последователь ностей, комплементарных интронам, из первичного РНК-транскрипта);

ТРНК переносят аминокислоты в рибосомы, специфичность такого переноса обеспечивается наличием 20 типов тРНК, соответствующих 20 аминокислотам;

РРНК образуют в комплексе с белками рибосому, сложную органеллу, в которой происходит синтез белка.

Рисунок 12 Количество РНК в клетке в %

Размеры молекул РНК очень различны, но в общем они меньше молекул ДНК. К самым мелким относятся тРНК, молекулярная масса молекулы около 25 000, состоят они из 75 нуклеотидов.

2. Гены и их структура. Реализация генетической информации.

Элементарной единицей наследственности является ген.

Ген - это отрезок молекулы ДНК, он дискретен, так как состоит из набора нуклеотидов.

Экзон-интронная организация гена. Ген человека имеет кодирующую часть (экзон ) общей длиной в несколько тысяч пар оснований. Однако общая длина гена значительно больше, поскольку кроме экзонов (кодирующей части) в состав гена входят интроны (некодирующая часть) и фланкирующие последовательности, расположенные до (с 5"-конца) и после (с З"-конца) кодирующей части.

Рисунок 13 Организация гена

Кодирующая часть большинства генов находится в пределах 1-3 тысяч пар оснований, что соответствует белковому продукту из 300-1000 аминокислотных остатков. У большинства генов кодирующая часть поделена на несколько экзонов, между которыми расположены некодирующие участки (интроны).

Межгенные участки ДНК называются спейсерами. Спейсеры состоят из повторяющихся последовательностей ДНК различных типов и уникальных нетранскрибируемых последовательностей, не являющихся генами. Их функция неизвестна.

Молекула ДНК может содержать множество генов. По приблизительным оценкам человек имеет около 30 тыс. генов, каждый из которых выполняет специфическую функцию - кодирует определенный полипептид (например, ферменты или структурные белки клетки) или молекулу РНК.

Генетическая информация реализуется через следующие этапы.

    Транскрипция («переписывание») - перенос генетической информации от ДНК к РНК, который заключается в избирательном синтезе молекул мРНК, комплементарных определенным участкам ДНК, соответствующих одному или нескольким генам.

Рисунок 14 Формирование молекулы мРНК на ДНК-матрице

Транскрипция заключается в том, что на одной из нитей ДНК происходит матричный синтез нити мРНК. Этот синтез осуществляется особым ферментом - РНК-полимеразой, который прикрепляется к началу участка ДНК, расплетает двойную спираль ДНК и, перемещаясь вдоль одной из нитей, последовательно строит рядом с ней комплементарную ей нить РНК.

По мере передвижения РНК-полимеразы, растущая нить РНК отходит от матрицы ДНК и двойная спираль ДНК позади фермента восстанавливается, а когда РНК-полимераза достигает конца копируемого участка, РНК отделяется от ДНК.

Синтезированная нить РНК содержит информацию, точно переписанную с соответствующего участка ДНК, так как последовательность нуклеотидов в ней полностью предопределена последовательностью нуклеотидов в ДНК: в строящуюся РНК напротив аденина ДНК включается урацил, напротив гуанина - цитозин, напротив цитозина - гуанин и напротив тимина - аденин.

В зависимости от того, какие гены транскрибируются, продуктами транскрипции могут быть те или другие виды РНК: рибосомальные РНК, транспортные РНК, матричные РНК.

Процессинг - образование молекул мРНК, представляющих собой непрерывную последовательность нуклеотидов, комплементарную только экзонам - кодирующим участкам гена. Далее молекулы мРНК выходят из ядра в цитоплазму и соединяются с рибосомами, где происходит процесс трансляции - синтез полипептидной цепи по молекуле мРНК.

    Трансляция («перевод») - процесс декодирования мРНК, в результате которого информация с языка последовательности оснований мРНК переводится на язык аминокислотной последовательности белка (рис. 2.9).

Центральное место в трансляции принадлежит рибосомам - рибонуклеопротеиновым частицам диаметром 20-30 нм, в большом количестве присутствующим в цитоплазме клеток. Рибосома образована двумя субъединицами - большой и малой, состоящими из рРНК и белков. Аминокислоты, синтезированные клеткой, доставляются к месту сборки из них белка, т.е. в рибосомы, посредством тРНК.

В цитоплазме клетки находится 20 различных аминокислот и соответствующие им тРНК. С помощью ферментов аминокислоты «узнают» соответствующие тРНК, присоединяются к ним, и тРНК переносит их к месту синтеза белка в рибосому. Все тРНК имеют три функциональных участка в своей молекуле:

1) участок узнавания фермента, определяющий, какая именно аминокислота будет присоединена к данной тРНК;

2) акцепторный участок, к которому прикрепляется аминокислота;

3) участок, состоящий из трех нуклеотидов - антикодон, определяющий то место в синтезируемой молекуле белка, какое должна занять данная аминокислота.

Акцепторный участок одинаков у всех тРНК, он имеет последовательность оснований Ц-Ц-А. Участки узнавания и антикодоны разные у различных тРНК.

Каждой аминокислоте в мРНК соответствует определенная тройка (триплет) нуклеотидов, называемая кодоном этой аминокислоты; кодон комплементарен триплету, образующему антикодон соответствующей тРНК.

Соответственно, если в рибосоме на мРНК будет кодон АУГ, то к нему подойдет тРНК с комплементарным антикодоном УАЦ.

В рибосоме, в большой ее субъединице между аминокислотами образуются пептидные связи.

Затем тРНК вытесняется в цитоплазму, а рибосома передвигается на следующий кодон, т.е. происходит считывание информации.

В мРНК существуют кодоны: инициирующие (АУГ) - определяющие начало синтеза белка; терминирующие (стоп-кодон) (УАГ, УАА, УГА), заканчивающие синтез белка.

Сигналом к завершению трансляции служит один из трех стоп-кодо-нов.

Таким образом, появление стоп-кодона на рибосоме прерывает процесс трансляции.

На следующем этапе полипептидные цепи транспортируются к специфическим органеллам клетки и модифицируются с образованием зрелого, функционально активного белка.

Рисунок 15 Схема репликации, транскрипции и

трансляции генетического

3. Генетический код и его свойства.

Генетическая информация, содержащаяся в ДНК и мРНК, заключена в последовательности расположения нуклеотидов в молекулах.

Перенос информации с языка нуклеотидов на язык аминокислот осуществляется с помощью генетического кода.

Генетический код обозначается четырьмя буквами (первыми буквами названий четырех нуклеотидов), отличающихся азотистыми основаниями: А, Т, Ц, Г. В белках встречается 20 различных аминокислот, длина «слова», определяющая аминокислоту, состоит из трех нуклеотидов. Число возможных триплетов нуклеотидов равно 64.

Это вытекает из того, что в молекуле нуклеиновой кислоты имеется только четыре разных вида нуклеотидов, различающихся своими азотистыми основаниями, а молекула белка содержит 20 разных аминокислот. 4 3 = 64. . Из 64 кодонов три кодона - УАГ, УАА, УГА не кодируют аминокислот.

Свойства генетического кода

1. Генетический код триплетен. Каждая аминокислота кодируется группой из трех нуклеотидов (триплетом нуклеотидов.

2. Вырожденность генетического кода. Одна аминокислота может кодироваться не одним, а несколькими определенными триплетами нуклеотидов

3. Однозначность генетического кода. Каждому кодону соответствует только одна аминокислота, т.е. триплет шифрует только одну аминокислоту.

4. Неперекрываемость генетического кода. Процесс считывания генетического кода не допускает возможности перекрывания кодонов. Начавшись на определенном кодоне, считывание следующих идет без пропусков, т.е. внутри гена нет знаков препинания. Например, при выпадении одного или двух нуклеотидов из цепи, при считывании образуется белок, не имеющий ничего общего с тем белком, который кодировался нормальным геном.

5. Универсальность генетического кода. Генетическая информация для всех организмов, обладающих разным уровнем организации (от ромашки до человека), кодируется одинаково.

6. Линейность генетического кода. Кодоны прочитываются последовательно в направлении закодированной записи от 5"-конца к 3 " -конц у.

Практическое занятие

    Изучение кодовых таблиц по составу аминокислот.

    Решение задач на синтез белка.

Наименование параметра Значение
Тема статьи: Основы биохимической генетики
Рубрика (тематическая категория) Генетика

Классификация мутаций

Особенности мутаций

1. Мутационные изменения обусловлены изменением наследственных структур в половых или соматических клетках и могут воспроизводиться в поколениях, то есть являются наследственными;

2. Мутации возникают внезапно у единичных особей, носят случайный, ненаправленный характер, бывают рецессивными и доминантными;

3. Мутации могут идти в разных направлениях, затрагивать один или несколько признаков и свойств, бывают ценными, полезными или вредными. Мутации, снижающие выживаемость мутантов более чем на 10%, вредны для природных популяций (Ригер Р., Михаэлис А., 1967). В сельскохозяйственной практике ценность мутации определяется ее значением для селœекции;

4. Одни и те же мутации могут возникать повторно.

1. Геномные (полиплоидия)

А) Гаплоидия

Б)Эуплоидия

Автополиплоидия

Аллоплоидия

В)Гетероплоидия

2. Хромосомные аберации

Делœеция

Дефишенси

Инверсия

Дупликация

Фрагментация

Транслокация

Транспозиция

Замена нуклеотидов в ДНК

Вставка или выпадение нуклеотидов в ДНК

Полиплоидия – этогеномная мутация, обусловленная изменением числа хромосом в клетках, а также процесс возникновения или создания геномных мутантов (полиплоидов). Полиплоидия чаще встречается у растений и является защитной реакцией организма (в горах больше полиплоидных растений). Полиплоиды отличаются от диплоидов плодовитостью. Гаплоиды - ϶ᴛᴏ организмы, которые имеют одинарный набор хромосом. В клетках гаплоидов содержится только половина соматического набора хромосом (п), присущего данному виду, то есть такое же число хромосом, как и в нормальных половых клетках – гаметах. Гаплоиды бесплодны, но могут размножаться партеногенетически и сохраняться при вегетативном размножении.

Эуплоиды (истинные полиплоиды) – организмы, в клетках которых содержится более двух гаплоидных наборов хромосом одного вида или происходит соединœение и кратное увеличение хромосомных наборов разных видов. Автополиплоиды – организмы, в клетках которых содержится более двух гаплоидных наборов хромосом, присущих данному виду (триплоиды (3 п число хромосом), тетраплоиды (4п), пентаплоиды (5п), гексаплоиды (6п) и т.д.). Автополиплоидия обуславливает изменение морфологических признаков и свойств, присущих исходным типам. У полиплоидов увеличиваются размеры ядра и клетки в целом, а также количество органоидов цитоплазмы – пластид, митохондрий, рибосом. Аллополиплоиды – межвидовые полиплоиды, в кариотипе которых содержаться удвоенные наборы хромосом разных видов. Аллополиплоидам обычно присущи признаки и свойства исходных диплоидных родительских форм в различных сочетаниях, как это обычно бывает при межвидовой и межродовой гибридизации. Полиплоидизация позволяет восстановить плодовитость, так как межвидовые и межродовые гибриды, как правило бесплодны.

Гетероплоиды – или анеуплоиды - ϶ᴛᴏ организмы, число хромосом у которых некратное гаплоидному (2п-1, 2п+1). Причиной возникновения гетероплоидов должна быть отсутствие разделœения хромосом на хроматиды, при отсутствии коньюгации гомологичных хромосом. Учитывая зависимость отчисла дополнительных или недостающих хромосом применяют следующие термины: 2п-1 12 – моносомик, 2п-2 12 – нуллисомик, 2п+1 5 – трисомик, 2п+2 5 – тетрасомик. Нижний индекс указывает номер хромосомной пары в кариотипе, в которой изменилось число хромосом.

Полиплоидия у животных встречается крайне редко. К примеру, золотистый хомячок в кариотипе которого содержится 44 хромосомы, в то время как у животных других родов серого и обыкновенного хомяка их 22. У аксолотля были получены тетраплоидные самки. При скрещивании их с диплоидными самцами было получено триплоидное, полностью бесплодное потомство. Бычий гипогонадизм характеризуется трисомией по половой Х-хромосоме. Такие бычки отстают в росте и развитии, характеризуются недоразвитием вторичных половых признаков и сниженным уровнем спермопродукции вплоть до ее отсутствия.

У людей установлены и описаны следующие болезни (синдромы полиплоидии): синдром Патау – тяжелое заболевание, обусловленное трисомией по 13-й хромосоме. Частота встречаемости – 1:5000-7000 новорожденных. Характерна многопалость (полидактилия), пороки внутренних органов (перегородки сердца), головного мозга и высокая ранняя смертность. Синдром Дауна обусловлен трисомией по 21-1 хромосоме. Частота встречаемости 1:700-800 рождений. Характерна умственная отсталость, разболтанность суставов, пороки формы головы и лица. Моносомия по Х-хромосоме обуславливает синдром Шершевского-Тернера. Характерно бесплодие (так как у таких женщин нет яичников), недоразвитие половых признаков, низкий рост. Отмечены случаи рождения мужчин только с одной Х-хромосомой, а У-хромосома отсутствует в результате анеуплоидной мутации. В медицинœе данный синдром принято называть Клайнфелтера. Характерно недоразвитие семенников, евнухоидное телосложение. Трисомия по хромосоме 8 приводит к ряду аномалий – косоглазию, дефектам в строении ногтей, увеличению носа и ушей, умственной отсталости. Нуллисомия (полное отсутствие какой-либо хромосомы) для человека смертельно. Нуллисомия по какой-либо хромосоме может привести к гибели, и связана с фенотипическими изменениями.

Огромное большинство генов организма строго локализовано, каждый ген находится в определœенном месте одной из хромосом. С помощью генетических и цитологических методов для каждой хромосомы можно составить ее генную карту. Только некоторые так называемые мобильные генетические элементы (ʼʼпрыгающие геныʼʼ) бывают разбросаны в разных местах хромосом и способны время от времени перемещаться в другие места той же или другой хромосомы.

Рассмотрим хромосомные аберрации (перестройки).

Характер хромосомной перестройки во многом зависит от состояния хромосомы в момент воздействия мутагенного фактора. В случае если хромосома находится в состоянии одиночной нити (период G 1 интерфазы, анафаза и телофаза митоза), то в последующий период S интерфазы она удваивается и аберрация сохраняется в обеих хроматидах, то есть возникают хромосомные аберрации. В случае если мутаген действует на хромосому, находящуюся в состоянии двойной нити (период G 2 или S интерфазы, профаза и метафаза митоза), аберрация может произойти только в одной хроматиде. В этом случае возникают хроматидные перестройки .

Различают внутри- и межхромосомные аберрации.

Внутрихромосомные аберрации.

Делœеция – выпадение участка хромосомы в средней ее части, содержащего обычно целый комплекс генов. В случае выпадения концевого участка возникает концевая делœеция – дефишенси. Когда делœеция и дефишенси захватывают небольшой фрагмент хромосомы, это вызывает изменение признака, к примеру желтую окраску тела и белоглазие у дрозофилы. Крупные делœеции вызывают гибель организма. Иллюстрацией вредного действия крупных делœеций может служить хронический миелоз у человека. Это тяжелая форма белокровия, характеризующаяся безудержным размножением некоторых видов лейкоцитов, вызывается очень крупной делœецией в одной из аутосом 21-й пары.

Инверсия – возникает в результате разрыва хромосомы одновременно в двух местах с сохранением внутреннего участка, который воссоединяется с этой же хромосомой после поворота на 180 о. Инверсия не влияет на фенотип особи. Гетерозиготность по инверсии сильно мешает в мейозе нормальной коньюгации и образуются анеуплоидные половые клетки. У гомозиготных по инвертированной хромосоме особей коньюгация в мейозе протекает нормально. Результатом инверсии бывают гетероплоидные потомки или бесплодие. Инверсии часто встречаются в природе. Особенно много получено данных о распространении инверсий в популяциях разных видов мух, комаров и мошек, у которых инверсии легко обнаружить в хромосомах слюнных желœез, где они имеют огромные размеры и ясно выраженную структуру.

Дупликация – удвоение участка хромосомы. Характерны слабые фенотипические проявления. В эволюционном плане дупликации обогащают генотипы новыми генами (полосковидные глаза у дрозофилы при дупликации гена Bar).

Межхромосомные аберрации .

Транслокация - обмен участками между негомологичными хромосомами. У особей гетерозиготных по транслокации нарушается коньюгация гомологичных хромосом и образуются нежизнеспособные гаметы (или ранняя эмбриональная смертность). Такие особи характеризуются пониженной плодовитостью или образуются гетероплоидные потомки (мутанты тутового шелкопряда, где самцы выводятся только из белых яичек и образуют более крупные коконы для шелководства).

Транспозиция (инсерция) - это вставка в какое-либо место хромосомы мобильного генетического элемента (мгэ), перенесенного туда из другого места той же или другой хромосомы. В геноме организма может присутствовать несколько разных мгэ в сумме они могут составлять 10-15 % генома. Мутации, вызываемые транспозицией, иногда нестойки (ревертируемы). Для бактерий показано, что транспозиции мгэ могут происходить между близкими видами, а также между бактериальной хромосомой и геномом заразившего ее вируса (фага).

Фрагментация – происходит в результате разрыва хромосом или хроматид в нескольких местах одновременно. Обуславливает возникновение летальных мутантов.

Генные, или толчковые мутации - ϶ᴛᴏ изменение структуры молекулы ДНК на участке определœенного гена, кодирующего синтез соответствующей белковой молекулы (или стойкие изменения отдельных генов). У любого организма генные мутации приводят к чрезвычайно разнообразным изменениям всœевозможных морфологических, физиологических и биохимических признаков. У бактерий генные мутации изменяют цвет и форму колоний, подвижность клеток, темп их делœения, способность сбраживать различные сахара, устойчивость к высокой температуре, лекарственным веществам, восприимчивость к заражению фагами, способность расти на неполноценной питательной среде, токсичность и т.д. У дрозофилы в результате генных мутаций изменяются цвет, размер и строение глаз, размер, форма и жилкование крыльев, строение брюшка, груди, ног и усиков, число, толщина и форма щетинок, плодовитость, продолжительность жизни, быстрота выработки условных рефлексов. Картина генных мутаций в общих чертах универсальна для всœех живых существ.

Генные мутации бывают доминантными, рецессивными или полудоминантными. Примером может служить доминантная мутация у дрозофилы, вызывающая развитие щетинок на жилках крыльев мухи. Различный характер редукции щетинок на телœе дрозофилы вызывали множественные аллели гена scut – sc 1 ,sc 2 ,sc 3 . Впервые множественный аллелизм был установлен в 1930 ᴦ. А.С.Серебровским, Н.П.Дубининым и Б.П.Сидоровым у дрозофилы. Множественным аллелизмом называют различное состояние одного и того же локуса (гена), обусловленное толчковыми мутациями, детерминирующими различное проявление одного и того же признака или свойства. Аллели одного гена, возникшие в результате толчковой мутации, называют множественными аллелями. Ярким примером множественного аллелизма могут служить аллели, кодирующие синтез глобина – белка, крайне важно го для образования сложных молекул гемоглобина крови. Известно 100 типов гемоглобина, контролируемых серией множественных аллелœей. В гомозиготном состоянии гемоглобин обусловливает тяжелое наследственное заболевание – серповидно-клеточную анемию.

Процесс восстановления первоначальной структуры и исправления повреждений молекулы ДНК принято называть репарацией. Наиболее изучены фотореактивация и темновая репарация. Фотореактивация осуществляется фотореактивирующим ферментом. Свет активирует фермент, и он восстанавливает исходную структуру молекулы ДНК, поврежденную ультрафиолетовыми лучами. Темновая репарация протекает в несколько этапов при участии четырех типов ферментов, последовательное действие которых исправляет повреждение ДНК (эндонуклеаза-обследует, эндонуклеаза-расширяет участок ДНК, ДНК-полимераза - синтезирует, лигаза – скрепляет синтезированные ДНК).

Генетические различия в активности репарирующих ДНК-ферментов представляет одну из главных причин разной устойчивости организмов к действию мутагенов, в частности ионизирующей радиации и ультрафиолетовых лучей. Подобные различия существуют не только между генотипически неодинаковыми особями в пределах вида, но и между равными видами. Так, у человека известна врожденная болезнь, называемая пигментной ксеродермией. Кожа таких людей ненормально чувствительна к солнечным лучам и при их интенсивном воздействии покрывается крупными пигментными пятнами, изъязвляется, а иногда процесс приобретает злокачественный характер (рак кожи). Пигментная ксеродермия вызывается мутацией, инактивирующей ген, ответственный за синтез фермента͵ репарирующего повреждения ДНК кожных клеток ультрафиолетовой частью солнечных лучей.

Знание разных типов мутаций и причин их возникновения крайне важно для практической селœекции микроорганизмов, возделываемых растений и домашних животных, а также для ветеринарной медицины и медицины с целью диагностики, предупреждения и изыскания способов лечения болезней животных и человека.

Наиболее разительны успехи в селœекции бактерий и грибов – продуцентов антибиотиков и других биологически активных веществ. Активность лучистого гриба – продуцента витамина В12 – повысилась в 6 раз, а активность бактерии – продуцента аминокислоты лизина – в 300-400 раз. Искусственное вызывание мутаций используется и экономически оправданно в селœекции растений. Пшеница, рожь, кукурузу, ячмень и другие культуры превосходят исходные формы по урожайности, содержанию белка, скороспелости, устойчивости к полеганию, к разным болезням. Советским генетиком Струнниковым В.А. разработан пригодный для практического шелководства и широко теперь внедренный способ получения у тутового шелкопряда только мужского потомства. Коконы самцов содержат на 25-30% больше шелка, чем коконы самок.

Гибрид, получивший название биохимической, или молекулярной генетики, оказался необычайно продуктивным и дал больше информации, чем ее можно было получить из генетики и биохимии по отдельности (Роберт Вудс, 1982). Биохимическая генетика - ϶ᴛᴏ наука о наследственных закономерностях биохимических процессов, которые являются основой жизнедеятельности организма в норме и патологии; структуре, функции и синтезе нуклеиновых кислот, которые составляют материальную основу наследственности; биосинтезе и генетической регуляции биосинтеза белков; генетическом значении и роли изменений этих процессов в патологии. Первое указание на потенциальные возможности этой гибридной дисциплины было получено в 1909 ᴦ., когда Гаррод показал, что болезнь фенилкетонурия обусловлена нарушением метаболизма ароматических аминокислот фенилаланина и тирозина. Назвал он эту болезнь ʼʼврожденной ошибкой метаболизмаʼʼ. Это пример биохимической плейотропии, вызванной мутацией генов, ответственных за синтез ферментов. Неспособность генотипа вырабатывать эти ферменты приводит к тому, что поступающая с пищей аминокислота фенилаланин накапливается в плазме крови, а затем в мозге. Избыток ее определяет плейотропный эффект: у больных детей развивается умственная отсталость, потеря речи, отсутствие координации движений. В тканях накапливаются промежуточные продукты расщепления кетокислот (фенилацетат, фенилактат), которые являются токсинами для цнс. Это приводит к дибильности или идиотии. Эту болезнь устанавливают с помощью реактива Фелинга, который добавляют в пробирку со свежей мочой. Положительная реакция – наличие синœе-зелœеного окрашивания. Фенилкетонурия принадлежит к аутосомно-рецессивным заболеваниям. Больные были гомозиготными по рецессивному аллелю (а/а), тогда как у гетерозигот (А/а) и у доминантных гомозигот (А/А), признаков заболевания не наблюдалось. С помощью специальной диеты, получена возможность, предотвратить это заболевание.

В 1914 ᴦ. было показано, что у больных алкаптонурией отсутствует активность фермента – оксидазы гомогентизиновой кислоты, который превращает гомогентизиновую кислоту в малеилацетоуксусную кислоту. Проявляется болезнь в возрасте 40 лет и старше и характеризуется патологическими изменениями суставов конечностей, позвоночника, потемнением мочи, заболевание сердца и сосудов, атеросклерозом. Лечится большими дозами витамина С.

Тирозиноз – заболевание, обусловленное нарушениями в метаболизме аминокислоты тирозина. Накопление в организме избытка этой аминокислоты и ее метаболитов обусловливает задержку в развитии младенца, кретинизм, слабоумие, патологию почек и печени.

Альбинизм – болезнь, обусловленная отсутствием фермента тирозиназы, способствующего синтезу меланина из тирозина. При альбинизме меланин отсутствует в коже, волосах, радужке глаза, что приводит к светобоязни, ухудшению зрения, глухоте с немотой, эпилепсии, воспалению кожи при солнечном облучении. Альбинизм бывает местным и общим. Местный альбинизм никогда не поражает глаза, а только кожу и волосы – наследуется доминантно. Общий альбинизм наследуется по аутосомно-рецессивному типу. Не лечится.

Порфирия – болезнь крупного рогатого скота͵ возникающая вследствие нарушения метаболизма с чрезмерным образованием красного пигмента – порфирина и накоплением его в крови, костях, зубах и других частях тела. Порфирин - ϶ᴛᴏ обязательный компонент гемоглобина. Чрезмерное накопление и выведение его - ϶ᴛᴏ последствие ферментной блокады метаболизма при образовании гема с предшественника – профобилиногена. У больных животных черно-коричневая моча и розовая окраска зубов. Животные очень чувствительны к солнечным лучам и как следствие ожоги и повреждения, а затем кожные рубцы (вокруг глаз, ноздрей, вдоль спины, участки лишены волос). В случае если животного не выпускать на солнце, то болезнь не проявится. Аномалия наблюдается у шортгорнского скота͵ голштинофризов – по аутосомно-рецессивному типу, у свинœей – по доминантному типу наследования. У овец наблюдается разновидность порфирии при чрезмерном накоплении филлоэритрина. Проявляется болезнь в 5-7 недель у ягнят саутдаунских овец. Печень ягнят не синтезирует филлоэритрин, который образуется при расщеплении хлорофила и при действии солнечного облучения. На лицевой части черепа и ушах образуется экзема, а через 2-3 недели животные погибают. Наследуется по аутосомно-рецессивному типу.

Зоб – недостаток в организме животных йода в связи с наследственными нарушениями метаболизма. У коз зоб наследуется доминантно, у овец – по аутосомно-рецессивному типу, а у свинœей – в форме микседемы (гипертиреоз). При этой болезни увеличивается количество мертворожденных телят с припухлостями на шее или в виде водянки плода.

Перечисленные болезни относят к ферментопатиям .

В 1950 ᴦ. стало ясно, что гены кодируют ферменты (Митчелл и Лейн).

Генетический код.

Кодом наследственности или гентическим кодом принято называть процесс перевода триплетной последовательности нуклеотидов молекулы ДНК в последовательность аминокислот в белковой молекуле. Одним из важнейших свойств генетического кода является его колинœеарность – четкое соответствие между последовательностями кодонов нуклеиновых кислот и аминокислотами полипептидных цепей (таблица). Важное значение для раскрытия генетического кода имели исследования М.Ниренберга и Дж.Маттеи, а затем С.Очао с сотрудниками, начатые ими в 1961 ᴦ. в США.

Колинœеарность генетического кода

Основы биохимической генетики - понятие и виды. Классификация и особенности категории "Основы биохимической генетики" 2017, 2018.

МОЛЕКУЛЯРНЫЕ ОСНОВЫ ГЕНЕТИКИ

Строение ДНК

Элементарной функциональной единицей наследственности которая определяет развитие признака является ген. Исследования показали, что материальным субстратом наследственности и изменчивости являются нуклеиновые кислоты, которые были обнаружены Мишером в 1869 г в ядрах клеток гноя.

ДНК – дезоксирибонуклеиновая кислота полимер, мономером которого является нуклеотид. Нуклеотид состоит из сахара – пентозы, азотистого основания и остатка фосфорной кислоты. Азотистые основания относятся к двум группам: пуриновые (аденин, гуанин), пиримидиновые (цитозин, тимин). К первому атому углерода С 1 присоединяется азотистое основание, к С 3 – гидроксильная группа ОН, С 4 соединяется с С 5 , к которому присоединяется остаток фосфорной кислоты.

В 1953 г Дж.Уотсон и Ф.Крик предложили структурную формулу ДНК.

Первичная структура ДНК – это последовательно соединенные нуклеотиды, которая образует нуклеотидную цепь. Каждый последующий нуклеотид соединяется с предыдущим путем взаимодействия фосфата одного нуклеотида с гидроксилом другого, так, что между ними устанавливается фосфодиэфирная связь. Сборка полинуклеотидной цепи происходит при участии фермента полимеразы в направлении 5 – 3.Начало цепи всегда несет фосфатную группу в положении 5, а нижний конец гидроксильную группу в положении 3.

Вторичная структура ДНК – это две полинуклеотидные цепочки соединенные между собой через азотистые основания по принципу комплементарности А-Т, Ц-Г, водородными связями. Между А и Т – 2 связи, а Ц – Г – 3 связи. Полинуклеотидные цепочки антипараллельны, т.е. направление одной цепи 5-3, направление другой – 3-5.

Третичная структура ДНК – две цепочки образуют спираль закрученную вокруг собственной оси. В основном спираль ДНК закручена слева направо. Существует несколько форм правозакрученной ДНК: А-форма, в витке которой находится 11 нуклеотидных пар; В-форма – 10 нуклеотидных пар; С-форма – 9 нуклеотидных пар. Существуют участки, в которых ДНК закручена справа налево – Z-форма – 12 нуклеотидных пар.

В настоящее время продолжается изучение пространственной трехмерной спирали ДНК.

Репликация ДНК

Одним из основных свойств наследственного материала является способность ДНК к самоудвоению – репликации. Репликация происходит в синтетическом периоде интерфазы. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей дочерняя нить. В итоге из одной двойной спирали ДНК образуются две идентичные двойные спирали. Такой способ репликации называется полуконсервативным, т.к. в образовавшихся молекулах ДНК, одна нить – материнская, другая – дочерняя.

Для репликации цепи материнской ДНК должны быть отделены друг от друга, чтобы стать матрицей. Для этого фермент ДНК – геликаза разрушает водородные связи между азотистыми основаниями цепей ДНК. Отделившиеся цепи выпрямляются при помощи дестабилизирующих белков с образованием репликационной вилки. Синтез дочерних цепей ДНК осуществляется при помощи фермента ДНК-полимераза . Однако, для начала синтеза необходима РНК- затравка (синтезируемая при помощи РНК-праймазы ), из 10 нуклеотидов для получения свободного С 3 -конца с ОН группой. Синтез дочерней нити в направлении 5-3 строится непрерывно и эта нить называется лидирующей . В связи с тем, что противоположная цепь ДНК антипараллельна, то фермент ДНК-полимераза не может присоединять нуклеотиды в противоположном направлении, поэтому другая дочерняя цепь строится участками – фрагментами Оказаки. В каждом фрагменте направление синтеза 5-3 и начинается синтез также с РНК-затравки. В дальнейшем при помощи фермента ДНК-лигазы убирается РНК-затравка и сшиваются фрагменты Оказаки, поэтому эта нить несколько отстает от лидирующей нити и ее называют - запаздывающей (направление нити 3-5).

У прокариот фрагменты Оказаки содержат от 1000 до 2000 нуклеотидов, у эукариот они короче – от 100 до 200 нуклеотидов. Скорость синтеза белка у прокариот 1000 нуклеотидов секунду, у эукариот – 100 нуклеотидов в секунду. Фрагмент ДНК от точки начала репликации до точки ее окончания образует единицу репликации репликон. У прокариот вся ДНК – один репликон, у эукариот ДНК содержит большое количество репликонов (у человека 50 000 репликонов).

Уровни компактизации ДНК

Известно 5 уровней компактизации ДНК:

1 – нуклеосомный

2 – нуклеомерный

3 – хромомерный

4 – хромонемный

5 – хромосомный.

1 - Нуклеосомный уровень компактизации ДНК представлен нитью ДНК и белками-гистонами и напоминает цепочку бус. Гистоны представлены пятью фракциями: Н1, Н2А, Н2В, Н3, Н4. Являясь положительно заряженными основными белками, гистоны достаточно прочно соединяются с молекулой ДНК, чем препятствуют считыванию заключенной в ней биологической информации. В этом состоит их регуляторная функция.

Н1 – богатый лизином гистон

Н2А, Н2В – умеренно богатый лизином гистон

Н3, Н4 – богатый аргинином гистон

В нуклеосомы входят 8 молекул четырех фракций гистоновых белков: Н2А, Н2В. Н3 и Н4, которые образуют октамер. Вокруг октомера оборачивается нить ДНК 1,7 раза, которую удерживает гистон Н1. Октомер с нитью ДНК является нуклеосомой. Между нуклеосомами нить ДНК называется линкерной нитью. Количество нуклеотидных пар в нуклеосоме и линкере 200-240. Уменьшение нити ДНК за первый нуклеосомный уровень - в 7 раз.

2 - Нуклеомерный уровень – представлен глобулами, состоящими из 8-12 нуклеосом.

3 - Хромомерный уровень – представлен петлями у основания которых находятся кислые негистоновые белки, которые способны узнавать специфические нуклеотидные последовательности вненуклеосомной ДНК. Эти белки сближают указанные участки с образованием петель. Уменьшение нити ДНК в 30 раз.

4 - Хромонемный уровень – появляется за счет сближения в линейном порядке хромомерных петель с образованием хромонемной нити.

5 – Хромосомный уровень – образуется в результате спиральной укладки хромонемы (или хроматиды). Хромосомный уровень является максимальной степенью компактизации ДНК и достигается в метафазе митоза (мейоза).

Неодинаковая степень компактизации разных участков хромосом имеет большое функциональное значение. В зависимости от состояния хроматина выделяют эухроматиновые участки хромосом, отличающиеся меньшей плотностью компактизации в которых находятся активные гены и которые способны быстрой декомпактизации и транскрипции для синтеза белка.

Гетерохроматиновые участки характеризуются отсутствием активных генов и более высокой плотностью компактизации ДНК. Различают структурный (конститутивный) и факультативный гетерохроматин.

Структурный образован нетранскрибируемой (саттелитный) ДНК. Содержится в теломерных и околоцентромерных участках.

Примером факультативного гетерохроматина служит тельце Бара, которое является одной из двух Х-хромосом у женщины.

Фракции ДНК:

1 – фракция уникальных повторов – 1-3-5 раз на геном. В этих участках ДНК находятся структурные гены.

2 – фракция умеренных повторов 10 2 -10 5 повторов. В этих участках находится информация о рРНК, тРНК, гистоновых белках.

3 – фракция множественных повторов до 10 6 . Эти участки ДНК называются сателлитной ДНК. Эти участки неинформативны, находятся в теломерных участках и около центромер. Участвуют в регуляции активности генов, в конъюгации хромосом при образовании бивалентов, и является спейсерными участками (разделяющими) между информативными участками ДНК.

Для того чтобы происходили процессы передачи будущим поколениям признаков и особенностей развития организмов, хромосомная вещество должно обладать способностью к точному удвоение и формирования огромного разнообразия генов, которые существуют в природе.

Материальный носитель наследственности.

В середине XX в. было доказано, что носителем генетической информации является дезоксирибонуклеиновая кислота (ДНК) - органическое соединение, которое вместе с белком образует тело хромосомы.

ДНК имеет цепную молекулярное строение, что обеспечивает способность к удвоению и образования множества типов сочетаний ее элементарных единиц - нуклеотидов. Каждый нуклеотид состоит из трех частей: азотистого основания (О), углеводного компонента (дезоксирибозы - Д) и остатка фосфорной кислоты (Ф) (рис. 2.10).

Рис. 2.10.

В цепочке ДНК отдельные нуклеотиды соединены друг с другом через фосфорную кислоту крепким химической связью. Углеводный и фосфорный компоненты во всех нуклеотидов одинаковые, но основ есть четыре типа: аденин, цитозин, гуанин и тимин. Для записи генетического кода их обозначают буквами А, Ц, Г и Т соответственно.

Молекула ДНК образована двумя такими цепочками, которые соединяются между собой слабыми водородными связями через основы. Основы пары подходят друг другу, как ключ и замок. Аденин всегда спаривается с тимином, а гуанин - с цитозином (рис. 2.11, 2.12). Благодаря комплементарной (дополняющие) строении эта двойная молекула способна точно воспроизводить себя, образуя идентичные двойные молекулы.

Рис. 2.11.

Перед удвоением ДНК слабые водородные связи между основаниями рвутся и две напивмолекулы расходятся, как застежка-молния. После этого на каждой из них достраивается новая комплементарная половинка, в результате чего образуются две новые молекулы ДНК, абсолютно идентичны начальной. Одна из них имеет старую "правую" сторону и новую "левую", а другая, наоборот, - старую "левую" и новую "правую" (рис. 2.13). Однако это лишь модель, а на самом деле процесс гораздо сложнее.

Поскольку основы в молекуле ДНК расположены линейно (одна за другой), то количество комбинаций их взаимного расположения практически не ограничено, хотя основ всего четыре. Например, если один ген содержит 500 оснований, то можно получить 4500 способов их расположения. Такая комбинативная свойство обеспечивает существование большого количества различных генов.

Рис. 2.12.

А - аденин, Т - тимин, Г - гуанин, Ц - цитозин,

Ф - остаток фосфорной кислоты, Д - дезоксирибоза

Рис. 2.13.

ДНК содержится в хромосомах вместе с белками (гистонов и негистоновых) и небольшим количеством РНК. В каждой хромосоме имеется только одна молекула ДНК. Во время деления клетки хромосомы значительно укорачиваются, утолщаются и их можно увидеть под микроскопом. Это происходит в результате многоуровневой спирализации молекулы ДНК (рис. 2.14).

Рис. 2.14.

Ген и его основная функция.

Современной генетике много известно о строении хромосом, структуру и функции ДНК, но она еще не может дать точное определение гена. Согласно распространенным современным представлениям, ген - это небольшой участок хромосомы, выполняет определенную биохимическую функцию и осуществляет специфическое влияние на структурные, физиологические и биохимические свойства организма. Биохимическая функция гена заключается в том, что он обусловливает синтез определенного фермента.

Ферменты - особые белки, которые в живых клетках играют роль биологических катализаторов. С помощью ферментов осуществляются все биохимические реакции обмена веществ и энергии в живых организмах. Гены содержат информацию о последовательности аминокислот в молекулах "первичных белков» - полипептидов, что является цепочками с аминокислот, количество которых варьирует от шести до нескольких десятков. С определенного количества соответствующих полипептидов с помощью особых ферментов синтетаз образуется молекула определенного белка. Кроме того, некоторые полипептиды в организме могут выполнять функции гормонов, биологически активных веществ, антибиотиков и т.

Генетический код.

В состав белка принадлежит 20 различных аминокислот, а типов оснований ДНК - всего четыре. Информация о последовательности оснований в молекуле ДНК превращается в последовательность аминокислот в молекуле белка благодаря кодированию одной аминокислоты тремя основаниями. Функциональную генетическую единицу из трех основ называют триплетом (кодоном), а зависимость порядка расположения аминокислот в молекулах полипептидов от порядка расположения триплетов оснований в молекуле ДНК - генетическим кодом (табл. 2.1).

Таблица 2.1.

Примечание. Генетический код ДНК содержит комплементарные основания и В заменен в нем на Т.

Терм - терминатор (стоп-кодон) основы: А - аденин, Г - гуанин, Т - тимин, Ц - цитозин, В - урацил; аминокислоты: Ала - аланин, Apr - аргинин, АСН - аспарагин, Асп - аспарагиновая кислота, Вал - валин, ГИС - гистидин, Гли - глицин, Глу - глютамин, Илей - изолейцин, Лей - лейцин, Лиз - лизин, Мет - метионин, О - пролин, Сэр - серин, Тир - тирозин, Тре - треонин, Три - триптофан, Фен - фенилаланин, Цис - цистеин.

61 код он определяет соответствующие аминокислоты, и все аминокислоты, за исключением триптофана и метионина, кодируются несколькими кодонами. Кодоны-синонимы обычно образуют группы, в которых две первые основы в кодоне являются общими, а третья варьирует.

Генетический код универсален, так как во всех живых организмов одни и те же аминокислоты кодируются одними и теми же триплетами. Конечно аминокислота может кодироваться более чем одним триплетом (количество возможных триплетов 64, аминокислот - 20). Кроме того, код не перекрывается, то есть каждая основа может принадлежать только одному триплета.

Механизм синтеза белков (полипептидов) в клетке очень сложный. Он требует участия другого вида нуклеиновых кислот - рибонуклеиновой кислоты (РНК) и особых клеточных органелл - рибосом (рис. 2.15).

Рис. 2.15.

Современные молекулярно-генетические исследования показали, что строение гена и принцип считывания информации для синтеза белка у эукариот (организмов, клетки которых имеют настоящее ядро) отличаются от строения гена и принципа считывания информации у прокариот (одноклеточных организмов, лишенных настоящего ядра). Оказалось, что гены эукариот содержат как кодированные участки, несущие информацию для синтеза специфического белка, - экзоты, так и некодированные - интроны. Причем некодированных участков может быть в несколько раз больше, чем кодированных, а у человека со всей генетической ДНК только примерно 5 % составляют кодированные участка.

Имея такое строение один и тот же ген эукариот может нести информацию для кодирования не одного полипептида, как у прокариот, а в зависимости от специфики ткани, в которой они функционируют, большого количества различных полипептидов. Например, некоторые гены могут нести код для синтеза почти 40 тыс. Полипептидов. Это достигается путем изменения порядка считывания кодированных участков гена. У человека, по современным данным, 74% генов работают именно по такому принципу.

Гены в хромосомах. Хромосомная теория наследственности утверждает, что гены в хромосомах расположены линейно. Место в хромосоме, где расположен определенный ген, называют локусом этого гена. Определенный локус может занимать лишь одна из форм одного и того же гена - доминантный, рецессивный или другая. Такие разные положения гена называют аллелями. Для большинства генов известны только доминантный и рецессивный аллели, но часто случается т. Н. Множественный аллелизм, когда существует ряд положений определенного гена.

Простейшим примером множественного алелизму является наследование групп крови у человека по системе АВО. Каждый человек имеет одну из четырех групп крови, которые обусловлены взаимодействием трех множественных аллелей одного и того же гена - Iа, и в и / °. Аллели и Ив являются доминантными, а / 0 - рецессивным. Сочетание пар аллелей определяют такие группы крови:

I, или 0 - 1 ° 1 °;

II или А - Iа Iа, Iа 1 °;

III или В - Ив Ив, Ин 1 °;

IV, или АВ - Iа Ин.

УIV группе крови доминирование аллеля не наблюдается, но отсутствует и промежуточный эффект. Кровь этой группы одновременно проявляет признаки II и III групп.

Аллели гена, расположенные в тождественных локусах гомологичных хромосом, могут быть одинаковыми - доминантными (АА) или рецессивными (аа). Такое сочетание пары аллелей одного гена называют гомозиготным. Если ген представлен двумя разными аллелями (Аа), его состояние будет гетерозиготным.