И другими).

Оценка максимального правдоподобия является популярным статистическим методом, который используется для создания статистической модели на основе данных, и обеспечения оценки параметров модели.

Соответствует многим известным методам оценки в области статистики. Например, предположим, что вы заинтересованы ростом жителей Украины. Предположим, у вас данные роста некоторого количества людей, а не всего населения. Кроме того предполагается, что рост является нормально распределенной величиной с неизвестной дисперсией и средним значением. Среднее значение и дисперсия роста выборки является максимально правдоподобным к среднему значению и дисперсии всего населения.

Для фиксированного набора данных и базовой вероятностной модели, используя метод максимального правдоподобия, мы получим значения параметров модели, которые делают данные «более близкими» к реальным. Оценка максимального правдоподобия дает уникальный и простой способ определить решения в случае нормального распределения.

Метод оценки максимального правдоподобия применяется для широкого круга статистических моделей, в том числе:

  • линейные модели и обобщенные линейные модели;
  • факторный анализ;
  • моделирования структурных уравнений;
  • многие ситуации, в рамках проверки гипотезы и доверительного интервала формирования;
  • дискретные модели выбора.

Сущность метода

называется оце́нкой максима́льного правдоподо́бия параметра . Таким образом оценка максимального правдоподобия - это такая оценка, которая максимизирует функцию правдоподобия при фиксированной реализации выборки.

Часто вместо функции правдоподобия используют логарифмическую функцию правдоподобия . Так как функция монотонно возрастает на всей области определения, максимум любой функции является максимумом функции , и наоборот. Таким образом

,

Если функция правдоподобия дифференцируема, то необходимое условие экстремума - равенство нулю ее градиента :

Достаточное условие экстремума может быть сформулировано как отрицательная определенность гессиана - матрицы вторых производных:

Важное значение для оценки свойств оценок метода максимального правдоподобия играет так называемая информационная матрица, равная по определению:

В оптимальной точке информационная матрица совпадает с математическим ожиданием гессиана, взятым со знаком минус:

Свойства

  • Оценки максимального правдоподобия, вообще говоря, могут быть смещёнными (см. примеры), но являются состоятельными , асимптотически эффективными и асимптотически нормальными оценками. Асимптотическая нормальность означает, что

где - асимптотическая информационная матрица

Асимптотическая эффективность означает, что асимптотическая ковариационная матрица является нижней границей для всех состоятельных асимптотически нормальных оценок.

Примеры

Последнее равенство может быть переписано в виде:

где , откуда видно, что своего максимума функция правдоподобия достигает в точке . Таким образом

. .

Чтобы найти её максимум, приравняем к нулю частные производные :

- выборочное среднее , а - выборочная дисперсия .

Условный метод максимального правдоподобия

Условный метод максимального правдоподобия (Conditional ML) используется в регрессионных моделях. Суть метода заключается в том, что используется не полное совместное распределение всех переменных (зависимой и регрессоров), а только условное распределение зависимой переменной по факторам, то есть фактически распределение случайных ошибок регрессионной модели. Полная функция правдоподобия есть произведение «условной функции правдоподобия» и плотности распределения факторов. Условный ММП эквивалентен полному варианту ММП в том случае, когда распределение факторов никак не зависит от оцениваемых параметров. Это условие часто нарушается в моделях временных рядов, например в авторегрессионной модели . В данном случае, регрессорами являются прошлые значения зависимой переменной, а значит их значения также подчиняются той же AR-модели, то есть распределение регрессоров зависит от оцениваемых параметров. В таких случаях результаты применения условного и полного метода максимального правдоподобия будут различаться.

См. также

Примечания

Литература

  • Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. - М .: Дело, 2007. - 504 с. - ISBN 978-5-7749-0473-0

Wikimedia Foundation . 2010 .

Смотреть что такое "Метод максимального правдоподобия" в других словарях:

    метод максимального правдоподобия - — метод максимального правдоподобия В математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия… …

    Метод оценки по выборке неизвестных параметров функции распределения F(s; α1,..., αs), где α1, ..., αs неизвестные параметры. Если выборка из п наблюдений разбита на r непересекающихся групп s1,…, sr; р1,..., pr… … Геологическая энциклопедия

    Метод максимального правдоподобия - в математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия (совместной плотности вероятности наблюдений при значениях, составляющих… … Экономико-математический словарь

    метод максимального правдоподобия - maksimaliojo tikėtinumo metodas statusas T sritis automatika atitikmenys: angl. maximum likelihood method vok. Methode der maksimalen Mutmaßlichkeit, f rus. метод максимального правдоподобия, m pranc. méthode de maximum de vraisemblance, f;… … Automatikos terminų žodynas

    метод максимального правдоподобия с частичным откликом - Метод обнаружения сигналов по Витерби, при котором обеспечивается минимальный уровень межсимвольных искажений. См. тж. Viterbi algorithm. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М … Справочник технического переводчика

    обнаружитель последовательности, использующий метод максимального правдоподобия - Устройство вычисления оценки наиболее вероятной последовательности символов, максимизирующей функцию правдоподобия принимаемого сигнала. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М … Справочник технического переводчика

    метод наибольшего правдоподобия - метод максимального правдоподобия — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы метод максимального правдоподобия EN maximum likelihood method … Справочник технического переводчика

    метод максимума правдоподобия - Общий метод вычисления оценок параметров. Ищутся оценки, которые максимизируют функцию правдоподобия выборки, равную произведению значений функции распределения для каждого наблюденного значения данных. Метод максимального правдоподобия лучше… … Словарь социологической статистики

До сих пор мы считали, что оценка неизвестного параметра известна и занимались изучением ее свойств с целью использования их при построении доверительного интервала. В этом параграфе рассмотрим вопрос о способах построения оценок.

Методы правдоподобия

Пусть требуется оценить неизвестный параметр, вообще говоря, векторный, . При этом предполагается, что вид функции распределения известен с точностью до параметра,

В таком случае все моменты случайной величины становятся функциями от:

Метод моментов требует выполнения следующих действий:

Вычисляем k «теоретических» моментов

По выборке строим k одноименных выборочных моментов. В излагаемом контексте это будут моменты

Приравнивая «теоретические» и одноименные им выборочные моменты, приходим к системе уравнений относительно компонент оцениваемого параметра

Решая полученную систему (точно или приближенно), находим исходные оценки. Они, конечно, являются функциями от выборочных значений.

Мы изложили порядок действий, исходя из начальных - теоретических и выборочных - моментов. Он сохраняется при ином выборе моментов, начальных, центральных или абсолютных, который определяется удобством решения системы (25.1) или ей подобной.

Перейдем к рассмотрению примеров.

Пример 25.1. Пусть случайная величина распределена равномерно на отрезке [ ; ] , где - неизвестные параметры. По выборке () объема n из распределения случайной величины. Требуется оценить и.

В данном случае распределение определяется плотностью

1) Вычислим первые два начальных «теоретических» момента:

2) Вычислим по выборке два первых начальных выборочных момента

3) Составим систему уравнений

4) Из первого уравнения выразим через

и подставим во второе уравнение, в результате чего придём к квадратному уравнению

решая которое, находим два корня

Соответствующие значения таковы

Поскольку по смыслу задачи должно выполнятся условие < , выбираем в качестве решения системы и оценок неизвестных параметров

Замечая, что есть не что иное, как выборочная дисперсия, получаем окончательно

Если бы мы выбрали в качестве «теоретических» моментов математическое ожидание и дисперсию, то пришли бы к системе (с учетом неравенства <)

которая линейна и решается проще предыдущей. Ответ, конечно, совпадает с уже полученным.

Наконец, отметим, что наши системы всегда имеет решение и при том единственное. Полученные оценки, конечно, состоятельны, однако свойствам несмещенности не обладают.

Метод максимального правдоподобия

Изучается, как и прежде, случайная величина, распределение которой задается либо вероятностями её значений, если дискретна, либо плотностью распределения, если непрерывна, где - неизвестный векторный параметр. Пусть () - выборка значений. Естественно в качестве оценки взять то значение параметра, при котором вероятность получения уже имеющейся выборки максимальна.

Выражение

называют функцией правдоподобия , она представляет собой совместное распределение или совместную плотность случайного вектора с n независимыми координатами, каждая из которых имеет то же распределение (плотность), что и.

В качестве оценки неизвестного параметра берется такое его значение, которое доставляет максимум функции, рассматриваемой как функции от при фиксированных значениях. Оценку называют оценкой максимального правдоподобия . Заметим, что зависит от объема выборки n и выборочных значений

и, следовательно, сама является случайной величиной.

Отыскание точки максимума функции представляет собой отдельную задачу, которая облегчается, если функция дифференцируема по параметру.

В этом случае удобно вместо функции рассматривать её логарифм, поскольку точки экстремума функции и её логарифма совпадают.

Методы дифференциального исчисления позволяют найти точки, подозрительные на экстремум, а затем выяснить, в какой из них достигается максимум.

С этой целью рассматриваем вначале систему уравнений

решения которой - точки, подозрительные на экстремум. Затем по известной методике, вычисляя значения вторых производных

по знаку определителя, составленного из этих значений, находим точку максимума.

Оценки, полученные по методу максимального правдоподобия, состоятельны, хотя могут оказаться смещенными.

Рассмотрим примеры.

Пример 25.2. Пусть производится некоторый случайный эксперимент, исходом которого может быть некоторое события А, вероятность Р(А) которого неизвестна и подлежит оцениванию.

Введем случайную величину равенством

если событие А произошло,

если событие А не произошло (произошло событие).

Распределение случайной величины задается равенством

Выборкой в данном случае будет конечная последовательность (), где каждое из может быть равно 0 либо 1.

Функция правдоподобия будет иметь вид

Найдем точку её максимума по р, для чего вычислим производную логарифма

Обозначим - это число равно количеству единиц «успехов» в выбранной последовательности.

В работах, предназначенных для первоначального знакомства с математической статистикой, обычно рассматривают оценки максимального правдоподобия (сокращенно ОМП):

Таким образом, сначала строится плотность распределения вероятностей, соответствующая выборке. Поскольку элементы выборки независимы, то эта плотность представляется в виде произведения плотностей для отдельных элементов выборки. Совместная плотность рассматривается в точке, соответствующей наблюденным значениям. Это выражение как функция от параметра (при заданных элементах выборки) называется функцией правдоподобия. Затем тем или иным способом ищется значение параметра, при котором значение совместной плотности максимально. Это и есть оценка максимального правдоподобия.

Хорошо известно, что оценки максимального правдоподобия входят в класс наилучших асимптотически нормальных оценок. Однако при конечных объемах выборки в ряде задач ОМП недопустимы, т.к. они хуже (дисперсия и средний квадрат ошибки больше), чем другие оценки, в частности, несмещенные. Именно поэтому в ГОСТ 11.010-81 для оценивания параметров отрицательного биномиального распределения используются несмещенные оценки, а не ОМП. Из сказанного следует априорно предпочитать ОМП другим видам оценок можно - если можно - лишь на этапе изучения асимптотического поведения оценок.

В отдельных случаях ОМП находятся явно, в виде конкретных формул, пригодных для вычисления.

В большинстве случаев аналитических решений не существует, для нахождения ОМП необходимо применять численные методы. Так обстоит дело, например, с выборками из гамма-распределения или распределения Вейбулла-Гнеденко. Во многих работах каким-либо итерационным методом решают систему уравнений максимального правдоподобия или впрямую максимизируют функцию правдоподобия.

Однако применение численных методов порождает многочисленные проблемы. Сходимость итерационных методов требует обоснования. В ряде примеров функция правдоподобия имеет много локальных максимумов, а потому естественные итерационные процедуры не сходятся. Для данных ВНИИ железнодорожного транспорта по усталостным испытаниям стали уравнение максимального правдоподобия имеет 11 корней. Какой из одиннадцати использовать в качестве оценки параметра?

Как следствие осознания указанных трудностей, стали появляться работы по доказательству сходимости алгоритмов нахождения оценок максимального правдоподобия для конкретных вероятностных моделей и конкретных алгоритмов.

Однако теоретическое доказательство сходимости итерационного алгоритма - это еще не всё. Возникает вопрос об обоснованном выборе момента прекращения вычислений в связи с достижением требуемой точности. В большинстве случаев он не решен.

Но и это не все. Точность вычислений необходимо увязывать с объемом выборки - чем он больше, тем точнее надо находить оценки параметров, в противном случае нельзя говорить о состоятельности метода оценивания. Более того, при увеличении объема выборки необходимо увеличивать и количество используемых в компьютере разрядов, переходить от одинарной точности расчетов к двойной и далее - опять-таки ради достижения состоятельности оценок.

Таким образом, при отсутствии явных формул для оценок максимального правдоподобия нахождение ОМП натыкается на ряд проблем вычислительного характера. Специалисты по математической статистике позволяют себе игнорировать все эти проблемы, рассуждая об ОМП в теоретическом плане. Однако прикладная статистика не может их игнорировать. Отмеченные проблемы ставят под вопрос целесообразность практического использования ОМП.

Пример 1. В статистических задачах стандартизации и управления качеством используют семейство гамма-распределений. Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (7) определяется тремя параметрами a, b, c , где a >2, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Г(а) является нормировочным, он введен, чтобы

Здесь Г(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (7),

Подробные решения задач оценивания параметров для гамма-распределения содержатся в разработанном нами государственном стандарте ГОСТ 11,011-83 «Прикладная статистика. Правила определения оценок и доверительных границ для параметров гамма-распределения». В настоящее время эта публикация используется в качестве методического материала для инженерно-технических работников промышленных предприятий и прикладных научно-исследовательских институтов.

Поскольку гамма-распределение зависит от трех параметров, то имеется 2 3 - 1 = 7 вариантов постановок задач оценивания. Они описаны в табл. 1. В табл. 2 приведены реальные данные о наработке резцов до предельного состояния, в часах. Упорядоченная выборка (вариационный ряд) объема n = 50 взята из государственного стандарта. Именно эти данные будут служить исходным материалом для демонстрации тех или иных методов оценивания параметров.

Выбор «наилучших» оценок в определенной параметрической модели прикладной статистики - научно-исследовательская работа, растянутая во времени. Выделим два этапа. Этап асимптотики : оценки строятся и сравниваются по их свойствам при безграничном росте объема выборки. На этом этапе рассматривают такие характеристики оценок, как состоятельность, асимптотическая эффективность и др. Этап конечных объемов выборки: оценки сравниваются, скажем, при n = 10. Ясно, что исследование начинается с этапа асимптотики: чтобы сравнивать оценки, надо сначала их построить и быть уверенными, что они не являются абсурдными (такую уверенность дает доказательство состоятельности).

Пример 2. Оценивание методом моментов параметров гамма-распределения в случае трех неизвестных параметров (строка 7 таблицы 1).

В соответствии с проведенными выше рассуждениями для оценивания трех параметров достаточно использовать три выборочных момента - выборочное среднее арифметическое:

выборочную дисперсию

и выборочный третий центральный момент

Приравнивая теоретические моменты, выраженные через параметры распределения, и выборочные моменты, получаем систему уравнений метода моментов:

Решая эту систему, находим оценки метода моментов. Подставляя второе уравнение в третье, получаем оценку метода моментов для параметра сдвига:

Подставляя эту оценку во второе уравнение, находим оценку метода моментов для параметра формы:

Наконец, из первого уравнения находим оценку для параметра сдвига:

Для реальных данных, приведенных выше в табл. 2, выборочное среднее арифметическое = 57,88, выборочная дисперсия s 2 = 663,00, выборочный третий центральный момент m 3 = 14927,91. Согласно только что полученным формулам оценки метода моментов таковы: a * = 5,23; b * = 11,26, c * = - 1,01.

Оценки параметров гамма-распределения, полученные методом моментов, являются функциями от выборочных моментов. В соответствии со сказанным выше они являются асимптотически нормальными случайными величинами. В табл. 3 приведены оценки метода моментов и их асимптотические дисперсии при различных вариантах сочетания известных и неизвестных параметров гамма-распределения.

Все оценки метода моментов, приведенные в табл. 3, включены в государственный стандарт. Они охватывают все постановки задач оценивания параметров гамма-распределения (см. табл. 1), кроме тех, когда неизвестен только один параметр - a или b . Для этих исключительных случаев разработаны специальные методы оценивания.

Поскольку асимптотическое распределение оценок метода моментов известно, то не представляет труда формулировка правил проверки статистических гипотез относительно значений параметров распределений, а также построение доверительных границ для параметров. Например, в вероятностной модели, когда все три параметра неизвестны, в соответствии с третьей строкой таблицы 3 нижняя доверительная граница для параметра а , соответствующая доверительной вероятности г = 0,95, в асимптотике имеет вид

а верхняя доверительная граница для той же доверительной вероятности такова

где а * - оценка метода моментов параметра формы (табл. 3).

Пример 3. Найдем ОМП для выборки из нормального распределения, каждый элемент которой имеет плотность

Таким образом, надо оценить двумерный параметр (m , у 2).

Произведение плотностей вероятностей для элементов выборки, т.е. функция правдоподобия, имеет вид

Требуется решить задачу оптимизации

Как и во многих иных случаях, задача оптимизации проще решается, если прологарифмировать функцию правдоподобия, т.е. перейти к функции

называемой логарифмической функцией правдоподобия. Для выборки из нормального распределения

Необходимым условием максимума является равенство 0 частных производных от логарифмической функции правдоподобия по параметрам, т.е.

Система (10) называется системой уравнений максимального правдоподобия. В общем случае число уравнений равно числу неизвестных параметров, а каждое из уравнений выписывается путем приравнивания 0 частной производной логарифмической функции правдоподобия по тому или иному параметру.

При дифференцировании по m первые два слагаемых в правой части формулы (9) обращаются в 0, а последнее слагаемое дает уравнение

Следовательно, оценкой m * максимального правдоподобия параметра m является выборочное среднее арифметическое,

Для нахождения оценки дисперсии необходимо решить уравнение

Легко видеть, что

Следовательно, оценкой (у 2)* максимального правдоподобия для дисперсии у 2 с учетом найденной ранее оценки для параметра m является выборочная дисперсия,

Итак, система уравнений максимального правдоподобия решена аналитически, ОМП для математического ожидания и дисперсии нормального распределения - это выборочное среднее арифметическое и выборочная дисперсия. Отметим, что последняя оценка является смещенной.

Отметим, что в условиях примера 3 оценки метода максимального правдоподобия совпадают с оценками метода моментов. Причем вид оценок метода моментов очевиден и не требует проведения каких-либо рассуждений.

Пример 4. Попытаемся проникнуть в тайный смысл следующей фразы основателя современной статистики Рональда Фишера: “нет ничего проще, чем придумать оценку параметра”. Классик иронизировал: он имел в виду, что легко придумать плохую оценку. Хорошую оценку не надо придумывать (!) - ее надо получать стандартным образом, используя принцип максимального правдоподобия.

Задача. Согласно H 0 математические ожидания трех независимых пуассоновских случайных величин связаны линейной зависимостью: .

Даны реализации этих величин. Требуется оценить два параметра линейной зависимости и проверить H 0 .

Для наглядности можно представить линейную регрессию, которая в точках принимает средние значения. Пусть получены значения. Что можно сказать о величине и справедливости H 0 ?

Наивный подход

Казалось бы, оценить параметры можно из элементарного здравого смысла. Оценку наклона прямой регрессии получим, поделив приращение при переходе от x 1 =-1 к x 3 =+1 на, а оценку значения найдем как среднее арифметическое:

Легко проверить, что математические ожидания оценок равны (оценки несмещенные).

После того как оценки получены, H 0 проверяют как обычно с помощью хи-квадрат критерия Пирсона:

Оценки ожидаемых частот можно получить, исходя из оценок:

При этом, если наши оценки ”правильные”, то расстояние Пирсона будет распределено как случайная величина хи-квадрат с одной степенью свободы: 3-2=1. Напомним, что мы оцениваем два параметра, подгоняя данные под нашу модель. При этом сумма не фиксирована, поэтому дополнительную единицу вычитать не нужно.

Однако, подставив, получим странный результат:

С одной стороны ясно, что для данных частот нет оснований отвергать H 0 , но мы не в состоянии это проверить с помощью хи-квадрат критерия, так как оценка ожидаемой частоты в первой точке оказывается отрицательной. Итак, найденные из “здравого смысла” оценки не позволяют решить задачу в общем случае.

Метод максимального правдоподобия

Случайные величины независимы и имеют пуассоновское распределение. Вероятность получить значения равна:

Согласно принципу максимального правдоподобия значения неизвестных параметров надо искать, требуя, чтобы вероятность получить значения была максимальной:

Если постоянны, то мы имеем дело с обычной вероятностью. Фишер предложил новый термин “правдоподобие” для случая, когда постоянны, а переменными считаются. Если правдоподобие оказывается произведением вероятностей независимых событий, то естественно превратить произведение в сумму и дальше иметь дело с логарифмом правдоподобия:

Здесь все слагаемые, которые не зависят от, обозначены и в окончательном выражении отброшены. Чтобы найти максимум логарифма правдоподобия, приравняем производные по к нулю:

Решая эти уравнения, получим:

Таковы “правильные” выражения для оценок. Оценка среднего значения совпадает с тем, что предлагал здравый смысл, однако оценки для наклона различаются: . Что можно сказать по поводу формулы для?

  • 1) Кажется странным, что ответ зависит от частоты в средней точке, так как величина определяет угол наклона прямой.
  • 2) Тем не менее, если справедлива H 0 (линия регрессии - прямая), то при больших значениях наблюдаемых частот, они становятся близки к своим математическим ожиданием. Поэтому: , и оценка максимального правдоподобия становится близка к результату, полученному из здравого смысла.

3) Преимущества оценки начинают ощущаться, когда мы замечаем, что все ожидаемые частоты теперь оказываются всегда положительными:

Это было не так для “наивных” оценок, поэтому применить хи-квадрат критерий можно было не всегда (попытка заменить отрицательную или равную нулю ожидаемую частоту на единицу не спасает положения).

4) Численные расчеты показывают, что наивными оценками можно пользоваться только, если ожидаемые частоты достаточно велики. Если использовать их при малых значениях, то вычисленное расстояние Пирсона часто будет оказываться чрезмерно большим.

Вывод : Правильный выбор оценки важен, так как в противном случае проверить гипотезу с помощью критерия хи-квадрат не удастся. Оценка, казалось бы, очевидная может оказаться непригодной!

непрерывная случайная величина с плотностью Вид плотности известен, но неизвестны значения параметров Функцией правдоподобия называется функция (здесь - выборка объема п из распределения случайной величины £). Легко видеть, что функции правдоподобия можно придать вероятностный смысл, а именно: рассмотрим случайный вектор компоненты которого независимые в совокупности одинаково распределенные случайные величины с законом Д(ж). Тогда элемент вероятности вектора Е имеет вид т.е. функция правдоподобия связана с вероятностью получения фиксированной выборки в последовательности экспериментов П. Основная идея метода правдоподобия состоит в том, что в качестве оценок параметров А предлагается взять такие значения (3), которые доставляют максимум функции правдоподобия при данной фиксированной выборке, т. е. предлагается считать выборку, полученную в эксперименте, наиболее вероятной. Нахождение оценок параметров pj сводится к решению системы к уравнений (к - число неизвестных параметров): Поскольку функция log L имеет максимум в той же точке, что и функция правдоподобия, то часто систему уравнений правдоподобия (19) записывают в виде В качестве оценок неизвестных параметров Д следует брать решения системы (19) или (20), действительно зависящие от выборки и не являющиеся постоянными. Вслучае, когда £ дискретна с рядом распределения, функцией правдоподобия называют функцию и оценки ищут как решения системы Метод максимального правдоподобия или эквивалентной ей Можно показать, что оценки максимального правдоподобия обладают свойством состоятельности. Следует отмстить, что метод максимального правдоподобия приводит к более сложным вычислениям, нежели метод моментов, но теоретически он более эффективен, так как оценки максимального правдоподобия меньше уклоняются от истинных значений оцениваемых параметров, чем оценки, полученные по методу моментов. Для наиболее часто встречающихся в приложениях распределений оценки параметров, полученные по методу моментов и по методу максимального правдоподобия, в большинстве случаев совпадают. Пршир 1. Отклонение (размера детали от номинала является нормально распределенной случайной личиной. Требуется по выборке определить систематическую ошибку и дисперсию отклонения. М По условию (- нормально распределенная случайная величина с математическим ожиданием (систематическая ошибка) и дисперсией, подлежащими оценке по выборке объема п: Х\>...уХп. В этом случае Функция правдоподобия Система (19) имеет вид Отсюда, исключай решения, не зависящие от Хх, получаем т е. оценки максимального правдоподобия в этом случае совпадают с уже известными нам эмпирическими средним и дисперсией > Пример 2. Оценить по выборке параметр /i экспоненциально распределенной случайной величины. 4 Функция правдоподобия имеет вид Уравнение правдоподобия приводит нас к решению совпадающему с оценкой этого же параметра, полученной по методу моментов, см. (17). ^ Пример 3. Пользуясь методом максимального правдоподобия, оценить вероятность появления герба, если при десяти бросаниях монеты герб появился 8 раз. -4 Пусть подлежащая оценке вероятность равна р. Рассмотрим случайную величину (с рядом распределения. Функция правдоподобия (21) имеет вид Метод максимального Уравнение правдоподобия дает в качестве оценки неизвестной вероятности р частоту появления герба в эксперименте Заканчивая обсуждение методов нахождения оценок, подчеркнем, что, даже имея очень большой объем экспериментальных данных, мы все равно не можем указать точного значения оцениваемого параметра, более того, как уже неоднократно отмечалось, получаемые нами оценки близки к истинным значениям оцениваемых параметров только «в среднем» или «в большинстве случаев». Поэтому важной статистической задачей, которую мы рассмотрим далее, является задача определения точности и достоверности проводимого нами оценивания.

Кроме метода моментов, который изложен в предыдущем параграфе, существуют и другие методы точечной оценки неизвестных параметров распределения. К ним относится метод наибольшего правдоподобия, предложенный Р. Фишером.

А. Дискретные случайные величины. Пусть X - дискретная случайная величина, которая в результате n испытаний приняла значения х 1 , х 2 , ..., х п . Допустим, что вид закона распределения величины X задан, но неизвестен параметр θ , которым определяется этот закон. Требуется найти его точечную оценку.

Обозначим вероятность того, что в результате испытания величина X примет значение х i (i = 1 , 2, . . . , n ), через p (х i ; θ ).

Функцией правдоподобия дискретной случайной вели чины X называют функцию аргумента θ :

L (х 1 , х 2 , ..., х п ; θ ) = p (х 1 ; θ ) р (х 2 ; θ ) . . . p (х n ; θ ),

где х 1 , х 2 , ..., х п - фиксированные числа.

В качестве точечной оценки параметра θ принимают такое его значение θ * = θ * (х 1 , х 2 , ..., х п ), при котором функция правдоподобия достигает максимума. Оценку θ * называют оценкой наибольшего правдоподобия.

Функции L и ln L достигают максимума при одном и том же значении θ , поэтому вместо отыскания максимума функции L ищут (что удобнее) максимум функции ln L .

Логарифмической функцией правдоподобия называют функцию ln L . Как известно, точку максимума функции ln L аргумента θ можно искать, например, так:

3) найти вторую производную ; если вторая производная приθ = θ * отрицательна, то θ * - точка максимума.

Найденную точку максимума θ * принимают в качестве оценки наибольшего правдоподобия параметра θ .

Метод наибольшего правдоподобия имеет ряд достоинств: оценки наибольшего правдоподобия, вообще говоря, состоятельны (но они могут быть смещенными), распределены асимптотически нормально (при больших значениях n приближенно нормальны) и имеют наименьшую дисперсию по сравнению с другими асимптотически нормальными оценками; если для оцениваемого параметра θ существует эффективная оценка θ *, то уравнение правдоподобия имеет единственное решение θ *; этот метод наиболее полно использует данные выборки об оцениваемом параметре, поэтому он особенно полезен в случае малых выборок.

Недостаток метода состоит в том, что он часто требует сложных вычислений.

Замечание 1. Функция правдоподобия - функция от аргумента θ ; оценка наибольшего правдоподобия - функция от независимых аргументов х 1 , х 2 , ..., х п .

Замечание 2. Оценка наибольшего правдоподобия не всегда совпадает с оценкой, найденной методом моментов.

Пример 1. λ распределения Пуассона

где m - число произведенных испытаний; x i - число появлений события в i -м (i =1, 2, ..., n ) опыте (опыт состоит из т испытаний).

Решение. Составим функцию правдоподобия, учитывая, что. θ= λ :

L = p (х 1 ; λ :) p (х 2 ; λ :) . . .p (х n ; λ :),=

.

Напишем уравнение правдоподобия, для чего приравняем первую производную нулю:

Найдем критическую точку, для чего решим полученное уравнение относительно λ:

Найдем вторую производную по λ:

Легко видеть, что при λ = вторая производная отрицательна; следовательно,λ = - точка максимума и, значит, в качестве оценки наибольшого правдоподобия параметра λ распределения Пуассона надо принять выборочную среднюю λ* = .

Пример 2. Найти методом наибольшего правдоподобия оценку параметра p биномиального распределения

если в n 1 независимых испытаниях событие А появилось х 1 = m 1 раз и в п 2 независимых испытаниях событие А появилось х 2 = т 2 раз.

Решение. Составим функцию правдоподобия, учитывая, что θ = p :

Найдем логарифмическую функцию правдоподобия:

Найдем первую производную по р:

.

.

Найдем критическую точку, для чего решим полученное уравнение относительно p :

Найдем вторую производную по p :

.

Легко убедиться, что при вторая производная отрицательна; следовательно, - точка максимума и, значит, ее надо принять в качестве оценки наибольшего правдоподобия неизвестной вероятности p биномиального распределения:

Б. Непрерывные случайные величины. Пусть X - непрерывная случайная величина, которая в результате n испытаний приняла значения х 1 , х 2 , ..., x п . Допустим, что вид плотности распределения f (x ) задан, но не известен параметр θ , которым определяется эта функция.

Функцией правдоподобия непрерывной случайной вели чины X называют функцию аргумента θ :

L (х 1 , х 2 , ..., х п ; θ ) = f (х 1 ; θ ) f (х 2 ; θ ) . . . f (x n ; θ ),

где х 1 , х 2 , ..., x п - фиксированные числа.

Оценку наибольшего правдоподобия неизвестного параметра распределения непрерывной случайной величины ищут так же, как в случае дискретной величины.

Пример 3. Найти методом наибольшего правдоподобия оценку параметра λ, показательного распределения

(0< х < ∞),

если в результате n испытаний случайная величина X , распределенная по показательному закону, приняла значения х 1 , х 2 , ..., х п .

Решение. Составим функцию правдоподобия, учитывая, что θ= λ:

L = f (х 1 ; λ ) f (х 2 ; λ ) . . . f (х n ; λ ) =.

Найдем логарифмическую функцию правдоподобия:

Найдем первую производную по λ:

Напишем уравнение правдоподобия, для чего приравняем первую производную нулю:

Найдем критическую точку, для чего решим полученное уравнение относительно λ:

Найдем вторую производную по λ: