Самое лучшее определение вращательного момента – это тенденция силы вращать предмет вокруг оси, точки опоры или точки вращения. Вращательный момент можно рассчитать с помощью силы и плеча момента (перпендикулярное расстояние от оси до линии действия силы), или используя момент инерции и угловое ускорение.

Шаги

Использование силы и плеча момента

  1. Определите силы, действующие на тело и соответствующие им моменты. Если сила не перпендикулярна рассматриваемому плечу момента (т.е. она действует под углом), то вам может понадобиться найти ее составляющие с использованием тригонометрических функций, таких как синус или косинус.

    • Рассматриваемая составляющая силы будет зависеть от эквивалента перпендикулярной силы.
    • Представьте себе горизонтальный стержень, к которому нужно приложить силу 10 Н под углом 30° над горизонтальной плоскостью, чтобы вращать его вокруг центра.
    • Поскольку вам нужно использовать силу, не перпендикулярную плечу момента, то для вращения стержня вам необходима вертикальная составляющая силы.
    • Следовательно, нужно рассматривать y-составляющую, или использовать F = 10sin30° Н.
  2. Воспользуйтесь уравнением момента, τ = Fr, и просто замените переменные заданными или полученными данными.

    • Простой пример: Представьте себе ребенка массой 30 кг, сидящего на одном конце качели-доски. Длина одной стороны качели составляет 1,5 м.
    • Поскольку ось вращения качели находится в центре, вам не нужно умножать длину.
    • Вам необходимо определить силу, прилагаемую ребенком, с помощью массы и ускорения.
    • Поскольку дана масса, вам нужно умножить ее на ускорение свободного падения, g, равное 9,81 м/с 2 . Следовательно:
    • Теперь у вас есть все необходимые данные для использования уравнения момента:
  3. Воспользуйтесь знаками (плюс или минус), чтобы показать направление момента. Если сила вращает тело по часовой стрелке, то момент отрицательный. Если же сила вращает тело против часовой стрелки, то момент положительный.

    • В случае нескольких приложенных сил, просто сложите все моменты в теле.
    • Поскольку каждая сила стремится вызвать различные направления вращения, важно использовать знак поворота для того, чтобы следить за направлением действия каждой силы.
    • Например, к ободу колеса, имеющего диаметр 0,050 м, были приложены две силы, F 1 = 10,0 Н, направленная по часовой стрелке, и F 2 = 9,0 Н, направленная против часовой стрелки.
    • Поскольку данное тело – круг, фиксированная ось является его центром. Вам нужно разделить диаметр и получить радиус. Размер радиуса будет служить плечом момента. Следовательно, радиус равен 0,025 м.
    • Для ясности мы можем решить отдельные уравнения для каждого из моментов, возникающих от соответствующей силы.
    • Для силы 1 действие направлено по часовой стрелке, следовательно, создаваемый ею момент отрицательный:
    • Для силы 2 действие направлено против часовой стрелки, следовательно, создаваемый ею момент положительный:
    • Теперь мы можем сложить все моменты, чтобы получить результирующий вращательный момент:

    Использование момента инерции и углового ускорения

    1. Чтобы начать решать задачу, разберитесь в том, как действует момент инерции тела. Момент инерции тела – это сопротивление тела вращательному движению. Момент инерции зависит как от массы, так и от характера ее распределения.

      • Чтобы четко понимать это, представьте себе два цилиндра одинакового диаметра, но разной массы.
      • Представьте себе, что вам нужно повернуть оба цилиндра вокруг их центральной оси.
      • Очевидно, что цилиндр с большей массой будет сложнее повернуть, чем другой цилиндр, поскольку он “тяжелее”.
      • А теперь представьте себе два цилиндра различных диаметров, но одинаковой массы. Чтобы выглядеть цилиндрическими и иметь разную массу, но в то же время иметь разные диаметры, форма, или распределение массы обоих цилиндров должна отличаться.
      • Цилиндр с большим диаметром будет выглядеть как плоская закругленная пластина, тогда как меньший цилиндр будет выглядеть как цельная трубка из ткани.
      • Цилиндр с большим диаметром будет сложнее вращать, поскольку вам нужно приложить большую силу, чтобы преодолеть более длинное плечо момента.
    2. Выберите уравнение, которое вы будете использовать для расчета момента инерции. Есть несколько уравнений, которые можно использовать для этого.

      • Первое уравнение – самое простое: суммирование масс и плечей моментов всех частиц.
      • Это уравнение используется для материальных точек, или частиц. Идеальная частица – это тело, имеющее массу, но не занимающее пространства.
      • Другими словами, единственной значимой характеристикой этого тела является масса; вам не нужно знать его размер, форму или строение.
      • Идея материальной частицы широко используется в физике с целью упрощения расчетов и использования идеальных и теоретических схем.
      • Теперь представьте себе объект вроде полого цилиндра или сплошной равномерной сферы. Эти предметы имеют четкую и определенную форму, размер и строение.
      • Следовательно, вы не можете рассматривать их как материальную точку.
      • К счастью, можно использовать формулы, применимые к некоторым распространенным объектам:
    3. Найдите момент инерции. Чтобы начать рассчитывать вращательный момент, нужно найти момент инерции. Воспользуйтесь следующим примером как руководством:

      • Два небольших “груза” массой 5,0 кг и 7,0 кг установлены на расстоянии 4,0 м друг от друга на легком стержне (массой которого можно пренебречь). Ось вращения находится в середине стержня. Стержень раскручивается из состояния покоя до угловой скорости 30,0 рад/с за 3,00 с. Рассчитайте производимый вращательный момент.
      • Поскольку ось вращения находится в середине стержня, то плечо момента обоих грузов равно половине его длины, т.е. 2,0 м.
      • Поскольку форма, размер и строение “грузов” не оговаривается, мы можем предположить, что грузы являются материальными частицами.
      • Момент инерции можно вычислить следующим образом:
    4. Найдите угловое ускорение, α. Для расчета углового ускорения можно воспользоваться формулой α= at/r.

      • Первая формула, α= at/r, может использоваться в том случае, если дано тангенциальное ускорение и радиус.
      • Тангенциальное ускорение – это ускорение, направленное по касательной к направлению движения.
      • Представьте себе объект, двигающийся по криволинейному пути. Тангенциальное ускорение – это попросту его линейное ускорение на любой из точек всего пути.
      • В случае второй формулы, легче всего проиллюстрировать ее, связав с понятиями из кинематики: смещением, линейной скоростью и линейным ускорением.
      • Смещение – это расстояние, пройденное объектом (единица СИ – метры, м); линейная скорость – это показатель изменения смещения за единицу времени (единица СИ – м/с); линейное ускорение – это показатель изменения линейной скорости за единицу времени (единица СИ – м/с 2).
      • Теперь давайте рассмотрим аналоги этих величин при вращательном движении: угловое смещение, θ – угол поворота определенной точки или отрезка (единица СИ – рад); угловая скорость, ω – изменение углового смещения за единицу времени (единица СИ – рад/с); и угловое ускорение, α – изменение угловой скорости за единицу времени (единица СИ – рад/с 2).
      • Возвращаясь к нашему примеру – нам были даны данные для углового момента и время. Поскольку вращение начиналось из состояния покоя, то начальная угловая скорость равна 0. Мы можем воспользоваться уравнением, чтобы найти:
    5. Если вам сложно представить, как происходит вращение, то возьмите ручку и попробуйте воссоздать задачу. Для более точного воспроизведения не забудьте скопировать положение оси вращения и направление приложенной силы.

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента всех внешних сил, действующих на это тело.

2.Чему равен момент силы? (формула в векторном и скалярном виде, рисунки).

Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент ) - физическая величина, характеризующая вращательное действие силы на твёрдое тело.

Момент силы – векторная величина (М̅)

(векторный вид) М̅= |r̅*F̅|,r– расстояние от оси вращения, до точки приложения силы.

(вроде как скалярный вид) |М|=|F|*d

Вектор момента силы – совпадает с осью О 1 О 2 , его направление определяется првилом правого винта.Момент силы измеряется в ньютон-метрах . 1 Н м - момент силы, который производит сила 1 Н на рычаг длиной 1 м.

3.Что называется вектором: поворота, угловой скорости, углового ускорения. Куда они направлены, как определить это направление на практике?

Векторы – это псевдовекторы или аксиальные векторы, не имеющие определённую точку приложения: они откладываются на оси вращения из любой её точки.

    Угловое перемещение - это псевдовектор, модуль которого равен углу поворота, а направление совпадает с осью, вокруг которой тело поворачивается, и определяется правилом правого винта: вектор направлен в ту сторону, откуда поворот тела виден против хода часовой стрелки(измеряется в радианах)

    Угловая скорость - величина, характеризующая быстроту вращения твёрдого тела, равная отношению элементарного угла поворота и прошедшего времени dt, за который прошёл этот поворот.

Вектор угловой скорости направлен вдоль оси вращения по правилу правого винта, так же, как и вектор.

    Угловое ускорение - величина, характеризующая быстроту перемещения угловой скорости.

Вектор направлен вдоль оси вращения в сторону вектора при ускоренном вращении и противоположно вектору при замедленном вращении.

4.Чем полярный вектор отличается от аксиального?

Полярный вектор обладает полюсом, а аксиальный - нет.

5.Что называется моментом инерции материальной точки, твердого тела?

Момент инерции - величина, характеризующая меру инерции материальной точки при её вращательном движении вокруг оси. Численно она равна произведению массы на квадрат радиуса (расстояния до оси вращения). Для твердого тела момент инерции равен сумме моментов инерции её частей, и поэтому может быть выражена в интегральной форме:

6.От каких параметров зависит момент инерции твердого тела?

    От массы тела

    От геометрических размеров

    От выбора оси вращения

7.Теорема Штейнера (поясняющий рисунок).

Теорема: момент инерции тела относительно произвольной оси равен сумме момента инерции этого телаотносительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

Искомый момент инерции относительно параллельной оси

Известный момент инерции относительно оси, проходящей через центр масс тела

Масса тела

Расстояние между указанными осями

8. Момент инерции шара, цилиндра, стержня, диска.

Моментом инерции м.т. относительно полюса называют скалярную величину, равную произведению массы этой. точки на квадрат расстояния до полюса..

Момент инерции м.т. можно найти по формуле

Ось проходит через центр шара

Ось цилиндра

Ось перпендикулярна к цилиндру и проходит через его центр масс

9.Как определить направление момента силы?

Момент силы относительно некоторой точки - это векторное произведение силы накратчайшее расстояние от этой точки до линии действия силы.

[M ] = Ньютон · метр

M - момент силы (Ньютон · метр),F - Приложенная сила (Ньютон),r - расстояние от центра вращения до места приложения силы (метр),l - длина перпендикуляра, опущенного из центра вращения на линию действия силы (метр),α - угол, между вектором силыF и вектором положенияr

M = F·l = F·r·sin (α )

(м,F,r-векторные величины)

Момент силы - аксиальный вектор . Он направлен вдоль оси вращения.

Направление вектора момента силы определяется правилом буравчика, а величина его равнаM .

10.Как складываются момент сил, угловые скорости, моменты импульса?

Момент сил

Если на тело, которое может вращаться вокруг какой-либо точки, действует одновременно несколько сил, то для сложения моментов этих сил следует использовать правило сложения моментов сил.

Правило сложения моментов сил гласит - Результирующий вектор момента силы равен геометрической сумме составляющих векторов моментов с

Для правила сложения моментов сил различают два случая

1. Моменты сил лежат в одной плоскости, оси вращения параллельны . Их сумма определяется путем алгебраического сложения. Правовинтовые моменты входят в сумму со знаком минус . Левовинтовые - со знаком плюс

2. Моменты сил лежат в разных плоскостях, оси вращения не параллельны . Сумма моментов определяется путем геометрического сложения векторов.

Угловые скорости

Углова́я ско́рость(рад/с) - физическая величина, являющаяся аксиальным вектором и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения в единицу времени

направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Угловые скорости откладываются на оси вращения и могут складываться в том сллучае если они направлены в одну сторону, в противоположную - вычитаются

Момент импульса

В Международной системе единиц (СИ) импульс измеряется в килограмм-метр в секунду (кг·м/с).

Моме́нт и́мпульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Если имеется материальная точка массой, двигающаяся со скоростью и находящаяся в точке, описываемой радиус-вектором, то момент импульса вычисляется по формуле:

где - знак векторного произведения

11.Сформулируйте закон сохранения полной механической энергии применительно к телу, вращающемуся вокруг неподвижной оси.

потенциальная энергия максимальна в начальной точке движения маятника. Потенциальная энергия MgH переходит в кинетическую, которая максимальна в момент приземления маятника на землю.

Iо-момент инерции относительно оси для одного грузика (их у нас 4)

I= 4Iо=4ml^2 (Io=ml^2)

следовательно

12.Сформулируйте закон сохранения полной механической энергии применительно к телу, вращающемуся вокруг неподвижной оси.

Момент импульса вращающегося тела прямо пропорционален скорости вращения тела, его массе и линейной протяженности. Чем выше любая из этих величин, тем выше момент импульса.

В математическом представлении момент импульса L тела, вращающегося с угловой скоростьюω , равенL = Iω , где величинаI , называемаямоментом инерции

Момент импульса вращающегося тела

где – масса тела; – скорость; – радиус орбиты, по которой перемещается тело; – момент инерции; – угловая скорость вращающегося тела.

Закон сохранения момента импульса:

– для вращательного движения

13.Каким выражением определяется работа момента сил

= МОМЕНТ_СИЛЫ * УГОЛ

В системе СИ работа измеряется в Джоулях, момент силы в Ньютон* метр, а УГОЛ в радианах

Обычно известна угловая скорость в радианах в секунду и время действия МОМЕНТА.

Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

= МОМЕНТ_СИЛЫ * *

14.Получите формулу, определяющую мощность, развиваемую моментом сил.

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работ. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

= МОМЕНТ_СИЛЫ * УГЛОВАЯ_СКОРОСТЬ

В системе CИ мощность измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

Враща́тельное движе́ние - вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

Кинетические характеристики:

Вращение твердого тела, как целого характеризуется углом , измеряющегося в угловых градусах или радианах, угловой скоростью (измеряется в рад/с)и угловым ускорением(единица измерения - рад/с²).

При равномерном вращении (T оборотов в секунду):

Частота вращения - число оборотов тела в единицу времени.-

Период вращения - время одного полного оборота. Период вращения T и его частота связаны соотношением.

Линейная скорость точки, находящейся на расстоянии R от оси вращения

Угловая скорость вращения тела

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) - векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы - по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Момент силы измеряется в ньютон-метрах. 1 Н·м - момент силы, который производит сила 1 Н на рычаг длиной 1 м. Сила приложена к концу рычага и направлена перпендикулярно ему.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Момент импульса замкнутой системы сохраняется

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) - один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

16.Уравнение динамики вращательного движения. Момент инерции.

Основное уравнение динамики вращательного движения материальной точки - угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.

М = E*J или E = M/J

Сравнивая полученное выражение со вторым законом Ньютона с поступательным законом, видим, что момент инерции J является мерой инертности тела во вращательном движении. Как и масса величина аддитивная.

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².Обозначение: I или J.

Различают несколько моментов инерции - в зависимости от многообразия, от которого отсчитывается расстояние точек.

Свойства момента инерции:

1.Момент инерции системы равен сумме момента инерции её частей.

2.Момент инерции тела является величиной, иманентно присущей этому телу.

Момент инерции твердого тела - это велина, характеризующая распределение массы в теле и являющаяся мерой инертности тела при вращательном движении.

Формула момента инерции:

Теорема Штейнера:

Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R - расстояние между осями.

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

Центральный момент инерции (или момент инерции относительно точки O) - это величина

.

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.


Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.



А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.




Вращающий момент (T) - это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).



Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы - или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.




Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила - любая сила - вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.


Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).




Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.





Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.


Приведем единицы измерения к общему виду.





Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.





Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.




Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.


Как образуется вращающий момент и частота вращения?


Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.


В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.




Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.


Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:



Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.





Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.




В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).


Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 0,746) = 14,92 кВт.


И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.


Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.





Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.


Графическое представление вращающего момента электродвигателя изображено на рисунке.




Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.


Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.


Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.


Блокировочный момент (Мблок): Максимальный вращающий момент - момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.


Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:


Постоянная мощность


Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.





Постоянный вращающий момент


Как видно из названия - «постоянный вращающий момент» - подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.





Переменный вращающий момент и мощность


«Переменный вращающий момент» - эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.


Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.


Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия , которые описывают соотношение между разностями давления и расходами.




Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.


Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.


В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.


Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.


Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.





На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения - мал, а потребный вращающий момент при высокой частоте вращения - велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность - кубу скорости вращения.





Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:


Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.





В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.


Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.


Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.





Если мы посмотрим на характеристику, то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.





Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.


Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.


Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.




Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.





Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:




tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке


n = частота вращения электродвигателя при полной нагрузке


Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.


Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.





Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.











Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.


Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.


При производстве насосов используются следующие обозначения этих трёх различных типов мощности.




P1 (кВт) Входная электрическая мощность насосов - это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.


P2 (кВт) Мощность на валу электродвигателя - это мощность, которую электродвигатель передает на вал насоса.


Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.


Р4 (кВт) Гидравлическая мощность насоса.

> Вращательный момент

Изучите вращательный момент в физике. Узнайте, что такое момент вращательного движения, силы и инерции, роль вектора, угловой скорости и углового движения.

Вращательный момент – сила, заставляющая объекты поворачиваться или вращаться вокруг своей оси.

Задача обучения

  • Описать воздействие вращательного момента на объект.

Основные пункты

  • Вращательный момент находят при помощи умножения активной силы на дистанцию к оси вращения (рычаг момента).
  • Вращательный момент смещается, потому что сила отображает движение.
  • Единица – Ньютон на метр.

Термины

  • Вектор – определенное количество, характеризующееся величиной и направлением (между двумя точками).
  • Угловая скорость – векторная величина, характеризующая объект в движении по кругу.
  • Угловое движение – смещение тела вокруг статичной точки или оси (вроде планет и маятника). Равняется углу, проходящему в точке или оси по линии, отображенной на теле.

Вращательный момент – тенденция силы поворачивать или вращать смещающийся объект. Ее можно измерить при помощи момента сила. Вращательный момент в угловом движении соответствует силе смещения. В результате получаем угловое ускорение или угловое торможение частички. Можно измерить при помощи уравнения:

Процесс вращения – особенный случай для углового движения. Момент вращательного движения вычисляется относительно оси, поэтому вектор r ограничивается перпендикулярным размещением относительно оси вращения. То есть, плоскость движения перпендикулярна оси вращения.

Вращательный момент – поперечная производная силы рычага момента. Он активируется каждый раз, когда объект пребывает во вращении. Также момент можно выразить через угловое ускорение объекта.

Вычислить направление вращательного момента намного легче, чем угловую скорость. Почему? Просто сам вращательный момент приравнивается к векторному произведению двух векторов, а угловая скорость – один из двух объектов векторного движения. Если мы знаем направление двух действующих объектов, то легко находим и направление вращательного момента.

Он зависит от силы, дистанции и оси вращения, поэтому единицей выступает ньютон на метр.