Большинство атомных ядер нестабильно. Рано или поздно они самопроизвольно (или, как говорят физики, спонтанно ) распадаются на более мелкие ядра и элементарные частицы, которые принято называть продуктами распада или дочерними элементами. Распадающиеся частицы принято именовать исходными материалами или родителями. У всех нам хорошо знакомых химических веществ (железо, кислород, кальций и т. п.) имеется хотя бы один стабильный изотоп. (Изотопами называются разновидности химического элемента с одним и тем же числом протонов в ядре — это число протонов соответствует порядковому номеру элемента, — но разным числом нейтронов.) Тот факт, что эти вещества нам хорошо известны, свидетельствует об их стабильности — значит, они живут достаточно долго, чтобы в значительных количествах накапливаться в природных условиях, не распадаясь на составляющие. Но у каждого из природных элементов имеются и нестабильные изотопы — их ядра можно получить в процессе ядерных реакций, но долго они не живут, поскольку быстро распадаются.

Распад ядер радиоактивных элементов или изотопов может происходить тремя основными путями, и соответствующие реакции ядерного распада названы тремя первыми буквами греческого алфавита. При альфа-распаде выделяется атом гелия, состоящий из двух протонов и двух нейтронов, — его принято называть альфа-частицей. Поскольку альфа-распад влечет за собой понижение числа положительно заряженных протонов в атоме на два, ядро, испустившее альфа-частицу, превращается в ядро элемента, отстоящую на две позиции ниже от нее в периодической системе Менделеева . При бета-распаде ядро испускает электрон, а элемент продвигается на одну позицию вперед по периодической таблице (при этом, по существу, нейтрон превращается в протон с излучением этого самого электрона). Наконец, гамма-распад — это распад ядер с излучением фотонов высоких энергий, которые принято называть гамма-лучами. При этом ядро теряет энергию, но химический элемент не видоизменяется.

Однако сам по себе факт нестабильности того или иного изотопа химического элемента отнюдь не означает, что, собрав воедино некоторое число ядер этого изотопа, вы получите картину их одномоментного распада. В реальности распад ядра радиоактивного элемента чем-то напоминает процесс жарки кукурузы при изготовлении поп-корна: зерна (нуклоны) отпадают от «початка» (ядра) по одному, в совершенно непредсказуемом порядке, пока не отвалятся все. Закон, описывающий реакцию радиоактивного распада, собственно, только констатирует этот факт: за фиксированный отрезок времени радиоактивное ядро испускает число нуклонов, пропорциональное числу нуклонов, остающихся в его составе. То есть чем больше зерен-нуклонов всё еще остается в «недожаренном» початке-ядре, тем больше их выделится за фиксированный интервал времени «жарки». При переводе этой метафоры на язык математических формул мы получим уравнение, описывающее радиоактивный распад:

dN = λN dt

где dN — число нуклонов, испускаемых ядром с общим числом нуклонов N за время dt , а λ — экспериментально определяемая константа радиоактивности исследуемого вещества. Вышеприведенная эмпирическая формула представляет собой линейное дифференциальное уравнение, решением которого является следующая функция, описывающая число нуклонов, остающихся в составе ядра на момент времени t :

N = N 0 e -λt

где N 0 — число нуклонов в ядре на начальный момент наблюдения.

Константа радиоактивности, таким образом, определяет, насколько быстро распадается ядро. Однако физики-экспериментаторы обычно измеряют не ее, а так называемое время полураспада ядра (то есть срок за который исследуемое ядро испускает половину содержащихся в нем нуклонов). У различных изотопов различных радиоактивных веществ время полураспада варьируется (в полном соответствии с теоретическими предсказаниями) от миллиардных долей секунды до миллиардов лет. То есть некоторые ядра живут практически вечно, а некоторые распадаются буквально моментально (тут важно помнить, что по истечении времени полураспада остается половина совокупной массы исходного вещества, по истечении двух сроков полураспада — четверть его массы, по истечении трех сроков полураспада — одна восьмая и т. д.).

Что касается возникновения радиоактивных элементов, то рождаются они по-разному. В частности, ионосфера (верхний разреженный слой атмосферы) Земли подвергается постоянной бомбардировке космическими лучами, состоящими из частиц с высокими энергиями (см. Элементарные частицы). Под их воздействием долгоживущие атомы и расщепляются на неустойчивые изотопы: в частности, из стабильного азота-14 в земной атмосфере постоянно образуется неустойчивый изотоп углерода-14 с 6 протонами и 8 нейтронами в ядре (см. Радиометрическое датирование).

Но вышеописанный случай — скорее экзотика. Гораздо чаще радиоактивные элементы образуются в цепи реакций ядерного деления. Так называют череду событий, в ходе которых исходное («материнское») ядро распадается на два «дочерних» (также радиоактивных), те, в свою очередь, — на четыре ядра-«внучки» и т. д. Процесс продолжается до тех пор, пока не будут получены стабильные изотопы. В качестве примера возьмем изотоп урана-238 (92 протона + 146 нейтронов) со временем полураспада около 4,5 млрд лет. Этот период, кстати, приблизительно равен возрасту нашей планеты, что означает, что примерно половина урана-238 из состава первичной материи формирования Земли по-прежнему находится в совокупности элементов земной природы. Уран-238 превращается в торий-234 (90 протонов + 144 нейтрона), время полураспада которого равно 24 суткам. Торий-234 превращается в палладий-234 (91 протон + 143 нейтрона) со временем полураспада 6 часов — и т. д. После десяти с лишним этапов распада получается, наконец, стабильный изотоп свинца-206.

О радиоактивном распаде можно говорить много, но особо отметить нужно несколько моментов. Во-первых, даже если мы возьмем в качестве исходного материала чистый образец какого-то одного радиоактивного изотопа, он будет распадаться на разные составляющие, и вскоре мы неизбежно получим целый «букет» различных радиоактивных веществ с различными ядерными массами. Во-вторых, естественные цепочки реакций атомного распада успокаивают нас в том смысле, что радиоактивность — явление природное, существовала она задолго до человека, и не нужно брать грех на душу и обвинять одну только человеческую цивилизацию в том, что на Земле имеется радиационный фон. Уран-238 существовал на Земле с самого ее зарождения, распадался, распадается — и будет распадаться, а атомные электростанции ускоряют этот процесс, фактически, на доли процента; так что никакого особо пагубного влияния дополнительно к тому, что предусмотрено природой, они на нас с вами не оказывают.

Наконец, неизбежность радиоактивного атомного распада сопряжена как с потенциальными проблемами, так и с потенциальными возможностями для человечества. В частности, в цепи реакций распада ядер урана-238 образуется радон-222 — благородный газ без цвета, запаха и вкуса, не вступающий ни в какие химические реакции, поскольку он не способен образовывать химические связи . Это инертный газ, и он буквально сочится из недр нашей планеты. Обычно он не оказывает на нас никакого действия — просто растворяется в воздухе и остается там в незначительной концентрации, пока не распадется на еще более легкие элементы. Однако если этот безвредный радон будет долго находиться в непроветриваемом помещении, то со временем там начнут накапливаться продукты его распада — а они для здоровья человека вредны (при вдыхании). Вот так мы получаем так называемую «радоновую проблему».

С другой стороны, радиоактивные свойства химических элементов приносят людям и значительную пользу, если подойти к ним с умом. Радиоактивный фосфор, в частности, теперь вводится в виде инъекций для получения радиографической картины костных переломов. Степень его радиоактивности минимальна и не причиняет вреда здоровью пациента. Поступая в костные ткани организма вместе с обычным фосфором, он излучает достаточно лучей, чтобы зафиксировать их на светочувствительной аппаратуре и получить снимки сломанной кости буквально изнутри. Хирурги, соответственно, получают возможность оперировать сложный перелом не вслепую и наугад, а заранее изучив структуру перелома по таким снимкам. Вообще же, применениям радиографии в науке, технике и медицине несть числа. И все они работают по одному принципу: химические свойства атома (по сути, свойства внешней электронной оболочки) позволяют отнести вещество к определенной химической группе; затем, используя химические свойства этого вещества, атом доставляется «в нужное место», после чего, используя свойство ядер этого элемента к распаду в строгом соответствии с установленным законами физики «графику», регистрируются продукты распада.

радиоактивный распад ссср, радиоактивный распад югославии
Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») - спонтанное изменение состава (заряда Z, массового числа A) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов. Процесс радиоактивного распада также называют радиоакти́вностью , а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.
  • 1 Теория
  • 2 История открытия
  • 3 Закон радиоактивного распада
  • 4 Виды частиц, испускаемых при радиоактивном распаде
  • 5 Альфа-распад
  • 6 Бета-распад
    • 6.1 Бета-минус-распад
    • 6.2 Позитронный распад и электронный захват
    • 6.3 Двойной бета-распад
    • 6.4 Общие свойства бета-распада
  • 7 Гамма-распад (изомерный переход)
  • 8 Специальные виды радиоактивности
  • 9 См. также
  • 10 Примечания
  • 11 Литература

Теория

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и некоторые более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, например индия, калия, рубидия или кальция, одни природные изотопы стабильны, другие же радиоактивны).

Естественная радиоактивность - самопроизвольный распад атомных ядер, встречающихся в природе.

Искусственная радиоактивность - самопроизвольный распад атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.

Ядро, испытывающее радиоактивный распад, и ядро, возникающее в результате этого распада, называют соответственно материнским и дочерним ядрами. Изменение массового числа и заряда дочернего ядра по отношению к материнскому описывается правилом смещения Содди.

Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада, когда в результате первого этапа распада возникает дочернее ядро в возбуждённом состоянии, затем испытывающее переход в основное состояние с испусканием гамма-квантов.

Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц - непрерывный.

В настоящее время, кроме альфа-, бета- и гамма-распадов, обнаружены распады с испусканием нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или β+-распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.

Некоторые изотопы могут испытывать одновременно два или более видов распада. Например, висмут-212 распадается с вероятностью 64 % в таллий-208 (посредством альфа-распада) и с вероятностью 36 % в полоний-212 (посредством бета-распада).

Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро. Последовательность таких распадов называется цепочкой распадов, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.

Ядра с одинаковым массовым числом A (изобары) могут переходить друг в друга посредством бета-распада. каждой изобарной цепочке содержится от 1 до 3 бета-стабильных нуклидов (они не могут испытывать бета-распад, однако не обязательно стабильны по отношению к другим видам радиоактивного распада). Остальные ядра изобарной цепочки бета-нестабильны; путём последовательных бета-минус- или бета-плюс-распадов они превращаются в ближайший бета-стабильный нуклид. Ядра, находящиеся в изобарной цепочке между двумя бета-стабильными нуклидами, могут испытывать и β−-, и β+-распад (или электронный захват). Например, существующий в природе радионуклид калий-40 способен распадаться в соседние бета-стабильные ядра аргон-40 и кальций-40:

История открытия

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей.

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом.

24 февраля 1896 года на заседании Французской академии наук он сделал сообщение «Об излучении, производимых фосфоресценцией». Но уже через несколько дней в интерпретацию полученных результатов пришлось внести корректировки. 26 и 27 февраля в лаборатории Беккереля был подготовлен очередной опыт с небольшими изменениями, но из-за облачной погоды он был отложен. Не дождавшись хорошей погоды, 1 марта Беккерель проявил пластинку, на которой лежала урановая соль, так и не облучённую солнечным светом. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился. Уже 2 марта Беккерель доложил об этом открытии на заседании Парижской Академии наук, озаглавив свою работу «О невидимой радиации, производимой фосфоресцирующими телами».

Впоследствии Беккерель испытал и другие соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу - урану.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.

Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

Но и после этого супруги Кюри мужественно делали своё дело. Достаточно сказать, что Мария Кюри умерла от лучевой болезни (дожив, тем не менее, до 66 лет).

В 1955 г. были обследованы записные книжки Марии Кюри. Они до сих пор излучают, благодаря радиоактивному загрязнению, внесённому при их заполнении. На одном из листков сохранился радиоактивный отпечаток пальца Пьера Кюри.

Закон радиоактивного распада

Симуляция распада многих идентичных атомов. Начиная с 4 атомов (слева) и 400 (справа). Сверху показано число периодов полураспада. Основная статья: Закон радиоактивного распада

Закон радиоактивного распада - закон, открытый Фредериком Содди и Эрнестом Резерфордом экспериментальным путём и сформулированный в 1903 году. Современная формулировка закона:

что означает, что число распадов за интервал времени t в произвольном веществе пропорционально числу N имеющихся в образце радиоактивных атомов данного типа.

В этом математическом выражении λ - постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеет размерность с−1. Знак минус указывает на убыль числа радиоактивных ядер со временем. Закон выражает независимость распада радиоактивных ядер друг от друга и от времени: вероятность распада данного ядра в каждую следующую единицу времени не зависит от времени, прошедшего с начала эксперимента, и от количества ядер, оставшихся в образце.

Этот закон считается основным законом радиоактивности, из него было извлечено несколько важных следствий, среди которых формулировки характеристик распада - среднее время жизни атома и период полураспада.

Константа распада радиоактивного ядра в большинстве случаев практически не зависит от окружающих условий (температуры, давления, химического состава вещества и т. п.). Например, твёрдый тритий T2 при температуре в несколько кельвинов распадается с той же скоростью, что и газообразный тритий при комнатной температуре или при температуре в тысячи кельвинов; тритий в составе молекулы T2 распадается с той же скоростью, что и в составе тритированного валина. Слабые изменения константы распада в лабораторных условиях обнаружены лишь для электронного захвата - доступные в лаборатории температуры и давления, а также изменение химического состава способны несколько изменять плотность электронного облака в окружении ядра, что приводит к изменению скорости распада на доли процента. Однако в достаточно жёстких условиях (высокая ионизация атома, высокая плотность электронов, высокий химический потенциал нейтрино, сильные магнитные поля), труднодостижимых в лаборатории, но реализующихся, например, в ядрах звёзд, другие типы распадов тоже могут изменять свою вероятность.

Постоянство константы радиоактивного распада позволяет измерять возраст различных природных и искусственных объектов по распаду входящих в их состав радиоактивных ядер и накоплению продуктов распада. Разработан ряд методов радиоизотопного датирования, позволяющих измерять возраст объектов в диапазоне от единиц до миллиардов лет; среди них наиболее известны радиоуглеродный метод, уран-свинцовый метод, уран-гелиевый метод, калий-аргоновый метод и др.

Виды частиц, испускаемых при радиоактивном распаде

Э. Резерфорд экспериментально установил (1899), что соли урана испускают лучи трёх типов, которые по-разному отклоняются в магнитном поле:

  • лучи первого типа отклоняются так же, как поток положительно заряженных частиц; их назвали α-лучами;
  • лучи второго типа обычно отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц, их назвали β-лучами (существуют, однако, позитронные бета-лучи, отклоняющиеся в противоположную сторону);
  • лучи третьего типа, которые не отклоняются магнитным полем, назвали γ-излучением.

Хотя в ходе исследований были обнаружены и другие типы частиц, испускающихся при радиоактивном распаде, перечисленные названия сохранились до сих пор, поскольку соответствующие типы распадов наиболее распространены.

При взаимодействии распадающегося ядра с электронной оболочкой возможно испускание частиц (рентгеновских фотонов, Оже-электронов, конверсионных электронов) из электронной оболочки. Первые два типа излучений возникают при появлении в электронной оболочке вакансии (в частности, при электронном захвате и при изомерном переходе с излучением конверсионного электрона) и последующем каскадном заполнении этой вакансии. Конверсионный электрон испускается в процессе изомерного перехода с внутренней конверсией, когда энергия, выделяющаяся при переходе между уровнями ядра, не уносится гамма-квантом, а передаётся одному из электронов оболочки.

При спонтанном делении ядро распадается на два (реже три) относительно лёгких ядра - так называемые осколки деления - и несколько нейтронов. При кластерном распаде (являющемся промежуточным процессом между делением и альфа-распадом) тяжёлым материнским ядром испускается относительно лёгкое ядро (14C, 16O и т. п.).

При протонном (двухпротонном) и нейтронном распаде ядро испускает соответственно протоны и нейтроны.

Во всех типах бета-распада (кроме предсказанного, но пока не открытого безнейтринного) ядром испускается нейтрино или антинейтрино.

Альфа-распад

Основная статья: Альфа-распад

Альфа-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).

Альфа-распад, как правило, происходит в тяжёлых ядрах с массовым числом А ≥ 140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера очень быстро (экспоненциально) уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.

Правило смещения Содди для α-распада:

Пример (альфа-распад урана-238 в торий-234):

В результате α-распада атом смещается на 2 клетки к началу таблицы Менделеева (то есть заряд ядра Z уменьшается на 2), массовое число дочернего ядра уменьшается на 4.

Бета-распад

Основная статья: Бета-распад

Бета-минус-распад

Беккерель доказал, что β-лучи являются потоком электронов. Бета-распад - это проявление слабого взаимодействия.

Бета-распад (точнее, бета-минус-распад, β−-распад) - это радиоактивный распад, сопровождающийся испусканием из ядра электрона и электронного антинейтрино.

Фейнмановская диаграмма бета-минус-распада: d-кварк в одном из нейтронов ядра превращается в u-кварк, испуская виртуальный W-бозон, который распадается в электрон и электронное антинейтрино.

Бета-распад является внутринуклонным процессом. Бета-минус-распад происходит вследствие превращения одного из d-кварков в одном из нейтронов ядра в u-кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:

Свободные нейтроны также испытывают β−-распад, превращаясь в протон, электрон и антинейтрино (см. Бета-распад нейтрона).

Правило смещения Содди для β−-распада:

Пример (бета-распад трития в гелий-3):

После β−-распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.

Позитронный распад и электронный захват

Фейнмановская диаграмма позитронного распада: u-кварк в одном из протонов ядра превращается в d-кварк, испуская виртуальный W-бозон, который распадается в позитрон и электронное нейтрино. Фейнмановская диаграмма электронного захвата: u-кварк в одном из протонов ядра превращается в d-кварк, испуская виртуальный W-бозон, который взаимодействует с электроном оболочки, превращая его в электронное нейтрино. Основная статья: Позитронный распад Основная статья: Электронный захват

Существуют также другие типы бета-распада. позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и электронное нейтрино. При β+-распаде заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева), то есть один из протонов ядра превращается в нейтрон, испуская позитрон и нейтрино (на кварковом уровне этот процесс можно описать как превращение одного из u-кварков в одном из протонов ядра в d-кварк; следует отметить, что свободный протон не может распасться в нейтрон, это запрещено законом сохранения энергии, т.к. нейтрон тяжелее протона; однако в ядре такой процесс возможен, если разность масс материнского и дочернего атома положительна). Позитронный распад всегда сопровождается конкурирующим процессом - электронным захватом; в этом процессе ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу. Однако обратное неверно: для многих нуклидов, испытывающих электронный захват (ε-захват), позитронный распад запрещён законом сохранения энергии. зависимости от того, с какой из электронных оболочек атома (K, L, M,…) захватывается электрон при ε-захвате, процесс обозначается как К-захват, L-захват, M-захват, …; все они, при наличии соответствующих оболочек и достаточности энергии распада, обычно конкурируют, однако наиболее вероятен К-захват, поскольку концентрация электронов K-оболочки вблизи ядра выше, чем более удалённых оболочек. После захвата электрона образовавшаяся вакансия в электронной оболочке заполняется путём перехода электрона из более высокой оболочки, этот процесс может быть каскадным (после перехода вакансия не исчезает, а смещается на более высокую оболочку), а энергия уносится посредством рентгеновских фотонов и/или оже-электронов с дискретным энергетическим спектром.

Правило смещения Содди для β+-распада и электронного захвата:

Пример (ε-захват бериллия-7 в литий-7):

После позитронного распада и ε-захвата элемент смещается на 1 клетку к началу таблицы Менделеева (заряд ядра уменьшается на единицу), тогда как массовое число ядра при этом не меняется.

Двойной бета-распад

Основная статья: Двойной бета-распад

Наиболее редким из всех известных типов радиоактивного распада является двойной бета-распад, он обнаружен на сегодня лишь для одиннадцати нуклидов, и период полураспада для любого из них превышает 1019 лет. Двойной бета-распад, в зависимости от нуклида, может происходить:

  • с повышением заряда ядра на 2 (при этом испускаются два электрона и два антинейтрино, 2β−-распад)
  • с понижением заряда ядра на 2, при этом испускаются два нейтрино и
    • два позитрона (двухпозитронный распад, 2β+-распад)
    • испускание одного позитрона сопровождается захватом электрона из оболочки (электрон-позитронная конверсия, или εβ+-распад)
    • захватываются два электрона (двойной электронный захват, 2ε-захват).

Предсказан, но ещё не открыт безнейтринный двойной бета-распад.

Общие свойства бета-распада

Все типы бета-распада сохраняют массовое число ядра, поскольку при любом бета-распаде общее количество нуклонов в ядре не изменяется, лишь один или два нейтрона превращаются в протоны (или наоборот).

Гамма-распад (изомерный переход)

Основная статья: Изомерия атомных ядер

Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра 1H, 2H, 3H и 3He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьё время жизни измеряется микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.

Специальные виды радиоактивности

  • Спонтанное деление
  • Кластерная радиоактивность
  • Протонный распад
  • Двухпротонная радиоактивность
  • Нейтронная радиоактивность

См. также

  • Единицы измерения радиоактивности
  • Банановый эквивалент

Примечания

  1. Физическая энциклопедия / Гл. ред. А. М. Прохоров. - М.: Советская энциклопедия, 1994. - Т. 4. Пойнтинга - Робертсона - Стримеры. - С. 210. - 704 с. - 40 000 экз. - ISBN 5-85270-087-8.
  2. Манолов К., Тютюнник В. Биография атома. Атом - от Кембриджа до Хиросимы. - Переработанный пер. с болг.. - М.: Мир, 1984. - С. 20-21. - 246 с.
  3. А.Н.Климов. Ядерная физика и ядерные реакторы. - Москва: Энергоатомиздат, 1985. - С. 352.
  4. Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчета ядерных энергетических реакторов. - Москва: Энергоатомиздат, 1982.
  5. I.R.Cameron, University of New Brunswick. Nuclear fission reactors. - Canada, New Brunswick: Plenum Press, 1982.
  6. И.Камерон. Ядерные реакторы. - Москва: Энергоатомиздат, 1987. - С. 320.

Литература

  • Сивухин Д. В. Общий курс физики. - 3-e издание, стереотипное. - М.: Физматлит, 2002. - Т. V. Атомная и ядерная физика. - 784 с. - ISBN 5-9221-0230-3.
п·о·р Частицы в физике (Список частиц · Список квазичастиц · Список барионов · Список мезонов)
Элементарные
частицы
Бозоны Калибровочные бозоны (γ · g · W± · Z0) Бозоны Хиггса (H0)
Гипотетические
Другие G · A0 · Дилатон · J · X · Y · W’ · Z’ · Стерильное нейтрино · Ду́хи · Хамелеон · Лептокварк · Преон · Планковская частица · Максимон
Составные
частицы Соединения
элементарных и/или
составных частиц Гипотетические Другие
классификации
частиц Квазичастицы Дроплетон · Солитон Давыдова · Экситон · Биэкситон · Магнон · Фонон · Плазмон · Поляритон · Полярон · Примесон · Ротон · Биротон · Дырка · Электрон · Куперовская пара · Орбитон · Трион · Фазон · Флуктуон · Энион · Холон и спинон

радиоактивный распад османской, радиоактивный распад римской, радиоактивный распад ссср, радиоактивный распад югославии

(от лат. Radio – «излучаю» radius – «луч» и activus – «действенный») – явление спонтанного превращения неустойчивого изотопа химического элемента в другой изотоп (обычно другого элемента) (радиоактивный распад) путем излучения гамма-квантов, элементарных частиц или ядерных фрагментов.
Символ, используемый для обозначения радиоактивных материалов Радиоактивность открыл в 1896 г. Антуан Анри Беккерель. Произошло это случайно. Ученый работал с солями урана и завернул свои образцы вместе с фотопластинки в непрозрачный материал. Фотопластинки оказались зажженными, хотя доступа света к ним не было. Беккерель сделал вывод о невидимом глазу излучение солей урана. Он исследовал это излучение и установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. То есть это свойство присуще не соединениям, а химическому элементу урана.
В 1898 г. Пьер Кюри и Мария Склодовская-Кюри открыли излучения тория, позднее были открыты полоний и радий. в 1903 году супругам Кюри была присуждена Нобелевская премия. На сегодня известно около 40 природных элементов, обладающих радиоактивностью.
Установлено, что все химические элементы с порядковым номером, большим 83 – радиоактивные.
Естественная радиоактивность – спонтанный распад ядер элементов, встречающихся в природе.
Искусственная радиоактивность – спонтанный распад ядер элементов, полученных искусственным путем, через соответствующие ядерные реакции.
Эрнест Резерфорд экспериментально установил (1899), что соли урана излучают 3 типа лучей, которые по-разному отклоняются в магнитном поле:
Спектры?-и?-излучений прерывистые («дискретные»), а спектр?-излучения – непрерывный.
?-распад
Беккерель доказал, что?-лучи представляют собой поток электронов. ?-распад – проявление слабого взаимодействия.
?-распад – внутришньонуклонний процесс, т.е. происходит превращение нейтрона в протон с вылетом электрона и антинейтрино с ядра:

+ ?.

После?-распада атомный номер элемента меняется и он смещается на одну клетку в таблице Менделеева.
?-распад
?-распадом называют самопроизвольный распад атомного ядра на ядро-продукт и?-частицу (ядро атома ).
?-распад является свойством тяжелых ядер с массовым числом А >= 200. Внутри таких ядер за счет свойства насыщения ядерных сил образуются обособления?-частицы, состоящие из двух протонов и двух нейтронов. Образована таким образом?-частица сильнее ощущает кулоновское отталкивание от других протонов ядра, чем отдельные протоны. Одновременно на?-частицу меньше влияет ядерное мижнуклонне притяжения за счет сильного взаимодействия, чем на остальные нуклонов.
Правило смещения Содди для?-распада:

В результате?-распада элемент смещается на 2 клетки к началу таблицы Менделеева. Дочернее ядро, образовавшееся в результате?-распада, обычно также оказывается радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивные ядро, которым чаще всего является ядра свинца или висмута.
?-распад
Гамма лучи это электромагнитные волны с длиной волны, меньше размеры атома. Они образуются обычно при переходе ядра атома из возбужденного состояния в основное состояние. При этом количество нейтронов или протонов в ядре не меняется, а значит ядро остается прежним элементом. Однако излучение гамма-лучей может сопровождать и другие ядерные реакции.
При радиоактивном распаде происходят превращения ядер атомов. Энергии частиц, которые при этом образуются, намного больше энергии, выделяемых в типичных химических реакциях. Поэтому эти процессы практически не зависят от химического окружения атома и от соединений, в которые этот атом входит. Радиоактивный распад происходит спонтанно. Это означает, что невозможно определить момент, когда распадется то или иное ядро. Однако для каждого типа распада является характерное время, за которое распадается половина всех радиоактивных ядер. Это время называется периодом полураспада. Для разных радиоактивных изотопов период полураспада может лежать в очень широких пределах – от наносекунд до миллионов лет. Изотопы с малым периодом полураспада очень радиоактивны, но быстро исчезают. Изотопы с большим периодом полураспада слабо радиоактивные, но эта радиоактивность сохраняется очень долгое время.

Детектирования радиоактивных излучения основано на его действия на вещество, в частности ее ионизации. Исторически впервые радиация была зарегистрирована благодаря почернение облученной фотопластинки. Фотоэмульсии, в которых под действием радиации происходят химические реакции, до сих пор остаются одним из методов детектирования. Другой принцип детектирования используется в счетчиках Гейгера – возникновение несамостоятельного электрического разряда в облученном газе. Дозиметры, которые регистрируют не отдельные акты пролета быстрой заряженной частицы, часто используют изменение свойств, например проводимости, облученного материала
Радиоктивнисть зависит от количества нестабильных изотопов и времени их жизни. Система СИ определяет единицей измерения активности Беккерель – такое количество радиоактивного вещества, в которой за секунду происходит один акт распада. Практически эта величина не очень удобна, поэтому чаще используют внесистемные единицы – Кюри. Иногда употребляется единица Резерфорд.
Относительно воздействия радиоактивного излучения на облученные вещества, то используются те же единицы, что и для рентгеновского излучения. Единицей измерения дозы поглощенного йонизуючи излучения в системе Си является Грей – такая доза, при которой в килограмме вещества выделяется один Джоуль энергии. Единицей биологического действия облучения в системе СИ является Зиверт. Внесистемная единица выделенной при облучении энергии – советов.
Такая единица, как рентген является мерой не выделенной энергии, а ионизации вещества при радиоактивном облучении. Для вимирювавння биологически действия облучения используется биологический эквивалент рентгена – бэр.
Для характеристики интенсивности облучения используют единицы, описывающие скорость набора дозы, например, рентген в час.
Радиоактивное облучение приводит к значительному повреждению ткани. Ионизация химических веществ в биологической ткани создает возможность химических реакций, которые несвойственны для биологических процессов, и к образованию вредных веществ. Повреждения радиацией ДНК вызывает мутации. Работа с радиоактивными веществами требует тщательного соблюдения правил техники безопасности. Радиоактивные вещества помечаются специальным символом, приведенным вверху страницы.
Радиоактивные вещества хранятся в специальных контейнерах, сконструированных таким образом, чтобы поглощать радиоактивное излучение. Большой проблемой является захоронение радиоактивных отходов атомной энергетики.
Радиоактивные вещества можно использовать для получения энергии в условиях, когда другие источники энергии недоступны, например, на космических аппаратах, предназначенных для полетов в отдаленных планет Солнечной системы. Энергия, выделяемая при радиоактивном распаде в таких устройствах может быть преобразована в электрическую с помощью термоэлементов.
В медицине радиоактивное облучение используется при лечении некоторых форм рака, рассчитывая на то, что раковые клетки, которые быстро делятся, чувствительны к облучению, а потому вражатимуться быстрее.
Метод меченых атомов позволяет провести анализ обмена веществ в организме и помогает при диагностике заболеваний.
Датировка за радиоактивными изотопами помогает установить возраст предметов и пород и применяется в геологии, археологии, палеонтологии.
Радиоактивность и радиоактивные вещества также широко используются в различных областях научных исследований.
Все виды радиоактивных излучений, сопровождающих радиоактивность, называют йонизуючи излучениями. Йонизуючи излучения – процесс возбуждения и ионизации атомов вещества при прохождении через них гамма-квантов и частиц, образовавшихся вследствие?-и?-распада. При прохождении, например, гамма-квантов сквозь вещество, кванты превращаются в пар электрон-позитрон при условии, что энергия гамма-кванта превышает энергию этих двух частиц (> 1 МэВ). ?-частицы быстро теряют всю энергию, поскольку возбуждают все атомы, которые встречаются на их пути (1-10 см на воздухе, 0,01-0,2 мм в жидкостях). ?-частицы менее эффективно взаимодействуют с веществами (2-3 м на воздухе, 1-10 мм в жидкостях). ?-кванты обладают наибольшей проникающей способностью. Нейтроны, не имеющие электрического заряда, непосредственно не йонизують атомы. Однако в результате взаимодействия нейтронов с ядрами возникают быстрые заряженные частицы и гамма-кванты, которые являются йонизуючи частицами. При длительному пребыванию человека в зоне радиоактивного излучения происходит ионизацию и возбуждение ее клеток. В результате клетки вступают в новые химические реакции и образуют новые химические вещества, нарушающие нормальное функционирование организма. Мерой действия йонизуючи излучений является поглощенная доза излучения (Грей), равный отношению переданной йонизуючи излучениями энергии к массе вещества (D = E / m). Мощность дозы излучения измеряется отношение поглощенной дозы излучения до времени (Pв = D / t). Радиоактивное излучение используют при рентгенологическом обследовании.

Ядерная физика - это раздел физики, в котором изучаются структура и свойства атомных ядер. Ядерная физика занимается также изучением взаимопревращения атомных ядер, совершающиеся как в результате радиоактивных распадов, так и в результате различных ядерных реакций. Основная ее задача связана с выяснением природы ядерных сил, воздействующих между нуклонами, и особенностей движения нуклонов в ядрах. Протоны и нейтроны - это основные элементарные частицы, из которых состоит ядро атома. Нуклон - это частица, обладающая двумя различными зарядовыми состояниями: протон и нейтрон. Заряд ядра - количество протонов в ядре, одинаковое с атомным номером элемента в периодической системе Менделеева. Изотопы - ядра, имеющие один и тот же заряд, если массовое число нуклонов различно.

Изобары - это ядра, обладающие одним и тем же числом нуклонов, при разных зарядах.

Нуклид - это конкретное ядро со значениями. Удельная энергия связи - это энергия связи, приходящаяся на один нуклон ядра. Ее определяют экспериментально. Основное состояние ядра - это состояние ядра, имеющего наименьшую возможную энергию, равную энергии связи. Возбужденное состояние ядра - это состояние ядра, имеющего энергию, большую энергии связи. Корпускулярно-волновой дуализм. Фотоэффект Свет имеет двойственную корпускулярно-волновую природу, т. е. корпускулярно-волновой дуализм: во-первых: он имеет волновые свойства; во-вторых: он выступает в роли потока частиц - фотонов. Электромагнитное излучение не только испускается квантами, но распространяется и поглощается в виде частиц (корпускул) электромагнитного поля - фотонов. Фотоны являются реально существующими частицами электромагнитного поля. Квантование - это метод отбора орбит электронов, соответствующих стационарным состояниям атома.

РАДИОАКТИВНОСТЬ

Радиоактивностью - называется способность атомного ядра самопроизвольно распадаться с испусканием частиц. Спонтанный распад изотопов ядер в условиях природной среды называют естественной радиоактивностью - это радиоактивность, которую можно наблюдать у существующих в природе неустойчивых изотопов. А в условиях лабораторий в результате деятельности человека искусственной радиоактивностью - это радиоактивность изотопов, приобретенных в результате ядерных реакций. Радиоактивность сопровождается

превращением одного химического элемента в другой и всегда сопровождается выделением энергии. Для каждого радиоактивного элемента установлены количественные оценки. Так, вероятность распада одного атома в одну секунду характеризуется постоянной распада данного элемента, а время, за которое распадается половина радиоактивного образца, называется периодом полураспада.Число радиоактивных распадов в образце за одну секунду называют активностью радиоактивного препарата. Единица активности в системе СИ – Беккерель (Бк): 1 Бк=1распад/1с.

Радиоактивный распад - это процесс, являющийся статическим, при котором ядра радиоактивного элемента распадаются независимо друг от друга. ВИДЫ РАДИОАКТИВНОГО РАСПАДА

Основными видами радиоактивного распада являются:

Альфа - распад

Альфа-частицы испускаются только тяжелыми ядрами, т.е. содержащими большое число протонов и нейтронов. Прочность тяжелых ядер мала. Для того, чтобы покинуть ядро, нуклон должен преодолеть ядерные силы, а для этого он должен обладать достаточной энергией. При объединении двух протонов и двух нейтронов в альфа-частицу ядерные силы в подобном сочетании являются наиболее крепкими, а связи с другими нуклонами слабее, поэтому альфа-частица способна "выйти" из ядра. Вылетевшая альфа-частица уносит положительный заряд в 2 единицы и массу в 4 единицы. В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше.То ядро, которое распадается, называют материнским, а образовавшееся дочерним. Дочернее ядро оказывается обычно тоже радиоактивным и через некоторое время распадается. Процесс радиоактивного распада происходит до тех пор, пока не появится стабильное ядро, чаще всего ядро свинца или висмута.

Бета-распад

Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускают электроны и элементарную частицу очень малой массы - антинейтрино. Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения. Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов. В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом.

Гамма - распад - не существует. В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома. Гамма излучение зачастую сопровождает явления альфа- или бета-распада. При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и, когда оно переходит в нормальное состояние, то испускает гамма-кванты. Так как радиоактивное излучение состоит из альфа-частиц, бета-частиц и гамма-квантов, то явление радиоактивности сопровождается потерей массы и энергии ядра, атома и вещества в целом.

γ-распад – испускание атомным ядром γ-квантов;

спонтанное деление – распад атомного ядра на два или три осколка сравнимой массы.

16 Химия - это одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы ), образуемые ими простые и сложные вещества (молекулы), их превращения и законы , которым подчиняются эти превращения.

Химия - наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо , и почему олово не ржавеет; что происходит с пищей в организме; почему раствор соли проводит электрический ток, а раствор сахара - нет; почему одни химические изменения происходят быстро, а другие - медленно.

Химия - Наука о составе, строении, изменениях и превращениях, а также об образовании новых простых и сложных веществ. Химию, говорит Энгельс, можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава.

Химия. - греч. наука о разложении и составлении веществ, тел, об отыскании неразлагаемых стихий, основ.

Химию довольно произвольно делят на несколько разделов, которые нельзя четко отграничить ни от других областей химии, ни от других наук (физики, геологии, биологии). Неорганическая химия занимается изучением химической природы элементов и их соединений, за исключением большинства соединений углерода.

Органическая химия изучает соединения, состоящие в основном из углерода и водорода. Поскольку атомы углерода могут соединяться друг с другом с образованием колец и длинных цепочек, как линейных, так и разветвленных, таких соединений существует сотни тысяч. Из органических соединений состоят уголь и нефть, они составляют основу живых организмов. Химики-органики научились получать из угля, нефти, растительных материалов синтетические волокна, пестициды, красители, лекарства, пластики и множество других полезных вещей

Радиохимия - это наука о химическом воздействии высокоэнергетического излучения на вещества; она занимается также изучением поведения радиоактивных изотопов Физическая химия использует физические методы для изучения химических систем. Большое место в ней занимают вопросы энергетики химических процессов; соответствующий раздел химии называется химической термодинамикой. К важнейшим направлениям относятся химическая кинетика и строение молекул. Электрохимия изучает химические процессы, протекающие под действием электрического тока, а также способы получения электричества химическими методами. Среди других направлений следует отметить коллоидную химию (она занимается исследованием поведения дисперсных систем), химию поверхностных явлений, статистическую механику.

Аналитическая химия - старейшая область химии. Она занимается разложением сложных веществ на более простые, анализом самих веществ и их составляющих. Сегодня в ней широко используются сложное физическое оборудование и компьютеры, позволяющие автоматизировать рутинные процессы, сбор и обработку данных.

Биохимия изучает сложнейшие химические процессы, протекающие в живых организмах. Биохимик должен детально знать органическую химию, владеть многими химическими и физическими методами анализа. К биохимии примыкают биофизика и молекулярная биология.

Геохимия занимается исследованием химических процессов, протекающих в земной коре. Она изучает образование минералов, метаморфоз скальных пород, образование нефти, пересекается с органической химией и биохимией, а также физикой и физической химией.

Химический элемент – это простое вещество, состоящее из одинаковых атомов.

Природа разных химических элементов различна, так например, многие химические элементы содержатся в природе в чистом виде, некоторые из химических элементов можно вычленить из сложного вещества путем разложения, а можно и вовсе синтезировать новый химический элемент искусственным путем.

Атомы химических элементов – это своего рода строительный материал, из которого выстраиваются все окружающие нас с вами тела.

В природе существует около ста различных химических элементов. И именно эта сотня элементов является фундаментом всего, что нас окружает. Атомы могут соединяться в молекулы, совершенно разнообразными способами, которым нет числа.

Кроме всего прочего, каждый химический элемент имеет свое название. Все, наверное, слышали такие названия как: сера, водород, ртуть, мышьяк и другие. Это и есть названия химических элементов. Но помимо своих русскоязычных наименований химические элементы имеют еще и международные стандартные обозначения. Например, водород обозначается, как H, кислород – O и т.д.

Вещества чаще всего классифицируют по двум самым важным показателям - их строению и составу.

молекулярные и немолекулярные . Молекулярных веществ, т. е. веществ, состоящих из молекул, - подавляющее большинство. В немолекулярных веществах атомы сразу образуют макроскопические тела, не объединяясь перед этим в молекулы.

Для веществ немолекулярного строения характерны только эмпирические формулы, показывающие, какие атомы и в каком количестве содержатся в повторяющемся фрагменте. В нашем примере эмпирическая формула вещества - SiO 2 , и это ни что иное, как самый обыкновенный песок.

органические и неорганические. Слово органи́ческий происходит от слова организм , т. е. живой, живущий. И действительно, вся живая материя на Земле состоит из огромного разнообразия органических веществ. Несколько столетий назад считали, что органические вещества могут содержаться только в растениях и животных, однако сегодня мы встречаемся с ними и далеко за пределами живой природы: это пластмассы, пластики, клеи, краски, синтетические ткани и многие другие материалы.

Органические вещества обязаны своему существованию одному единственному элементу - углероду. В отличие от остальных элементов, именно углерод обладает удивительным свойством: его атомы способны соединяться непосредственно друг с другом, образуя всевозможные цепи и кольца .

углеродная цепь углеродное кольцо

Вещества, основу которых составляют углеродные цепи и кольца, и называются органическими . Например, приведенная выше цепь может лечь в основу вот такой органической молекулы

Все остальные вещества, т. е. не содержащие углеродных цепей и колец, называются неорганическими . Однако, неправильно было бы думать, что они не могут входить в состав живых организмов. Так, вода - вещество, без которого жизнь вообще немыслима, является, очевидно, неорганическим. На схеме (рис. 2 ) видно, что неорганических веществ значительно меньше, чем органических: всего около 700 тысяч, при том, что они приходятся на долю всех остальных химических элементов. Неорганические вещества, в свою очередь, образуют две обширные группы: простые и сложные.

Простыми называются вещества, состоящие из атомов только одного элемента, например H 2 , O 2 , Fe, Au. Как правило, элемент и простое вещество, образованное им, имеют одно и то же название: водород, кислород, железо, золото. Простые вещества, а также соответствующие им химические элементы, делятся на два класса: металлы и неметаллы . Металлы отличаются от неметаллов хорошей тепло- и электропроводностью, ковкостью, характерным блеском (рис. 3) и рядом других свойств.

Сложными называются неорганические вещества, образованные атомами разных элементов. Сложные вещества, или, как их еще называют - химические соединения , - невероятно разнообразны по строению и свойствам. Они составляют основную часть неживой природы (рис. 4), хотя, как мы уже знаем, могут встречаться и в составе живых организмов.

Явление радиоактивности сопровождается превращением ядра одного химического элемента в ядро другого химического элемента, а также выделением энергии, которая "уносится" с альфа- бета- и гамма-излучениями.

Все радиоактивные элементы подвержены радиоактивным превращениям.
В некоторых случаях у радиоактивного элемента наблюдается альфа- и бета-излучения одновременно.
Чаще химическому элементу присуще или альфа-излучение, или бета-излучение.
Альфа- или бета- излучения часто сопровождаются гамма- излучением.

Испускание радиоактивных частиц называется радиоактивным распадом.
Различают альфа-распад (с испусканием альфа-частиц), бета-распад (с испусканием бета-частиц), термина "гамма-распад" не существует.
Альфа- и бета-распады – это естественные радиоактивные превращения.

Альфа - распад

Альфа-частицы испускаются только тяжелыми ядрами, т.е. содержащими большое число протонов и нейтронов. Прочность тяжелых ядер мала. Для того, чтобы покинуть ядро, нуклон должен преодолеть ядерные силы, а для этого он должен обладать достаточной энергией.
При объединении двух протонов и двух нейтронов в альфа-частицу ядерные силы в подобном сочетании (между нуклонами частицы) являются наиболее крепкими, а связи с другими нуклонами слабее, поэтому альфа-частица способна "выйти" из ядра. Вылетевшая альфа-частица уносит положительный заряд в 2 единицы и массу в 4 единицы.
В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше.

То ядро, которое распадается, называют материнским, а образовавшееся дочерним.
Дочернее ядро оказывается обычно тоже радиоактивным и через некоторое время распадается.
Процесс радиоактивного распада происходит до тех пор, пока не появится стабильное ядро, чаще всего ядро свинца или висмута.

Бета-распад

Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускают электроны и элементарную частицу очень малой массы - антинейтрино.
Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения.
Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов.

В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом.

Гамма - распад - не существует

В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома.


Гамма излучение зачастую сопровождает явления альфа- или бета-распада.
При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и, когда оно переходит в нормальное состояние, то испускает гамма-кванты (в оптическом или рентгеновском диапазоне волн).

Так как радиоактивное излучение состоит из альфа-частиц, бета-частиц и гамма-квантов (т.е. ядер атома гелия, электронов и гамма-квантов), то явление радиоактивности сопровождается потерей массы и энергии ядра, атома и вещества в целом.
Доказательством того, что радиоактивное излучение несет энергию, является опыт, показывающий, что при поглощении радиоактивного излучения вещество нагревается.


33. Виды бета-распада.

Явление β-распада состоит в том, что ядро(A,Z) самопроизвольно испускает лептоны 1-го поколения – электрон (позитрон) и электронное нейтрино (электронное антинейтрино), переходя в ядро с тем же массовым числом А, но с атомным номером Z, на единицу большим или меньшим. При e-захвате ядро поглощает один из электронов атомной оболочки (обычно из ближайшей к нему K-оболочки), испуская нейтрино.В литературе для e-захвата часто используется термин EC (Electron Capture).
Существуют три типа β-распада – β - -распад, β + -распад и е-захват.