Важнейшей частью статистического анализа является построение рядов распределения (структурной группировки) с целью выделения характерных свойств и закономерностей изучаемой совокупности. В зависимости от того, какой признак (количественный или качественный) взят за основу группировки данных, различают соответственно типы рядов распределения.

Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.).

Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным . Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу).

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд .

Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Частоты ряда f могут заменяться частостями w, выраженными в относительных числах (долях или процентах). Они представляют собой отношения частот каждого интервала к их общей сумме, т.е.:

При построении вариационного ряда с интервальными значениями прежде всего необходимо установить величину интервала i, которая определяется как отношение размаха вариации R к числу групп m:

где R = xmax - xmin ; m = 1 + 3,322 lgn (формула Стерджесса); n - общее число единиц совокупности.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода, или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном вариационном ряду.

Медиана (Ме) - это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда.

Для ранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 3, 6, 7, 9, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. пятая величина.

Для ранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин.

То есть для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формуле

где n - число единиц в совокупности.

Численное значение медианы определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений.

Численное значение медианы

где xМе - нижняя граница медианного интервала; i - величина интервала; S-1 - накопленная частота интервала, которая предшествует медианному; f - частота медианного интервала.

Модой (Мо) называют значение признака, которое встречается наиболее часто у единиц совокупности. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Чтобы найти конкретное значение моды, необходимо использовать формулу

где xМо - нижняя граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

Основной целью анализа вариационных рядов является выявление закономерности распределения, исключая при этом влияние случайных для данного распределения факторов. Этого можно достичь, если увеличивать объем исследуемой совокупности и одновременно уменьшать интервал ряда. При попытке изображения этих данных графически мы получим некоторую плавную кривую линию, которая для полигона частот будет являться некоторым пределом. Эту линию называют кривой распределения.

Иными словами, кривая распределения есть графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, которое функционально связано с изменением вариант. Кривая распределения отражает закономерность изменения частот при отсутствии случайных факторов. Графическое изображение облегчает анализ рядов распределения.

Известно достаточно много форм кривых распределения, по которым может выравниваться вариационный ряд, но в практике статистических исследований наиболее часто используются такие формы, как нормальное распределение и распределение Пуассона.

Нормальное распределение зависит от двух параметров: средней арифметической и среднего квадратического отклонения . Его кривая выражается уравнением

где у - ордината кривой нормального распределения; - стандартизованные отклонения; е и π - математические постоянные; x - варианты вариационного ряда; - их средняя величина; - cреднее квадратическое отклонение.

Если нужно получить теоретические частоты f" при выравнивании вариационного ряда по кривой нормального распределения, то можно воспользоваться формулой

где - сумма всех эмпирических частот вариационного ряда; h - величина интервала в группах; - cреднее квадратическое отклонение; - нормированное отклонение вариантов от средней арифметической; все остальные величины легко вычисляются по специальным таблицам.

При помощи этой формулы мы получаем теоретическое (вероятностное) распределение , заменяя им эмпирическое (фактическое) распределение , по характеру они не должны отличаться друг от друга.

Тем не менее в ряде случаев, если вариационный ряд представляет собой распределение по дискретному признаку, где при увеличении значений признака х частоты начинают резко уменьшаться, а средняя арифметическая, в свою очередь, равна или близка по значению к дисперсии (), такой ряд выравнивается по кривой Пуассона.

Кривую Пуассона можно выразить отношением

где Px - вероятность наступления отдельных значений х; - средняя арифметическая ряда.

При выравнивании эмпирических данных теоретические частоты можно определить по формуле

где f" - теоретические частоты; N - общее число единиц ряда.

Сравнивая полученные величины теоретических частот f" c эмпирическими (фактическими) частотами f, убеждаемся, что их расхождения могут быть весьма невелики.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия.

Для оценки близости эмпирических и теоретических частот применяются критерий согласия Пирсона, критерий согласия Романовского, критерий согласия Колмогорова.

Наиболее распространенным является критерий согласия К. Пирсона , который можно представить как сумму отношений квадратов расхождений между f" и f к теоретическим частотам:

Вычисленное значение критерия необходимо сравнить с табличным (критическим) значением . Табличное значение определяется по специальной таблице, оно зависит от принятой вероятности Р и числа степеней свободы k (при этом k = m - 3, где m - число групп в ряду распределения для нормального распределения). При расчете критерия согласия Пирсона должно соблюдаться следующее условие: достаточно большим должно быть число наблюдений (n 50), при этом если в некоторых интервалах теоретические частоты < 5, то интервалы объединяют для условия > 5.

Если , то расхождения между эмпирическими и теоретическими частотами распределения могут быть случайными и предположение о близости эмпирического распределения к нормальному не может быть отвергнуто.

В том случае, если отсутствуют таблицы для оценки случайности расхождения теоретических и эмпирических частот, можно использовать критерий согласия В.И. Романовского КРом, который, используя величину , предложил оценивать близость эмпирического распределения кривой нормального распределения при помощи отношения

где m - число групп; k = (m - 3) - число степеней свободы при исчислении частот нормального распределения.

Если вышеуказанное отношение < 3, то расхождения эмпирических и теоретических частот можно считать случайными, а эмпирическое распределение - соответствующим нормальному. Если отношение > 3, то расхождения могут быть достаточно существенными и гипотезу о нормальном распределении следует отвергнуть.

Критерий согласия А.Н. Колмогорова используется при определении максимального расхождения между частотами эмпирического и теоретического распределения, вычисляется по формуле

где D - максимальное значение разности между накопленными эмпирическими и теоретическими частотами; - сумма эмпирических частот.

По таблицам значений вероятностей -критерия можно найти величину , соответствующую вероятности Р. Если величина вероятности Р значительна по отношению к найденной величине , то можно предположить, что расхождения между теоретическим и эмпирическим распределениями несущественны.

Необходимым условием при использовании критерия согласия Колмогорова является достаточно большое число наблюдений (не меньше ста).

Практическое занятие 1

ВАРИАЦИОННЫЕ РЯДЫ РАСПРЕДЕЛЕНИЯ

Вариационным рядом или рядом распределения называют упорядоченное распределение единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существует 3 вида ряда распределения:

1) ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака; если численность единиц совокупности достаточно велика ранжированный ряд становится громоздким, и в таких случаях ряд распределения строится с помощью группировки единиц совокупности по значениям изучаемого признака (если признак принимает небольшое число значений, то строится дискретный ряд, а в противном случае – интервальный ряд);

2) дискретный ряд – это таблица, состоящая из двух столбцов (строк) – конкретных значений варьирующего признака X i и числа единиц совокупности с данным значением признака f i – частот; число групп в дискретном ряду определяется числом реально существующих значений варьирующего признака;

3) интервальный ряд – это таблица, состоящая из двух столбцов (строк) – интервалов варьирующего признака X i и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа в общей численности совокупностей (частостей).

Числа, показывающие, сколько раз отдельные варианты встречаются в данной совокупности, называются частотами или весами вариант и обозначаются строчной буквой латинского алфавита f . Общая сумма частот вариационного ряда равна объему данной совокупности, т. е.

где k – число групп, n – общее число наблюдений, или объем совокупности.

Частоты (веса) выражают не только абсолютными, но и от­носительными числами – в долях единицы или в процентах от общей численности вариант, составляющих данную совокуп­ность. В таких случаях веса называют относительными частотами или частостями. Общая сумма частностей равна единице

или
,

если частоты выражены в про­центах от общего числа наблюдений п. Замена частот частостями не обязательна, но иногда оказывается полезной и даже необхо­димой в тех случаях, когда приходится сопоставлять друг с дру­гом вариационные ряды, сильно отличающиеся по их объемам.

В зависимости от того, как варьирует признак – дискретно или непрерывно, в широком или узком диапазоне, – статистиче­ская совокупность распределяется в безынтервальный или интер­вальный вариационные ряды. В первом случае частоты относятся непосредственно к ранжированным значениям признака, которые приобретают положение отдельных групп или классов вариаци­онного ряда, во втором – подсчитывают частоты, относящиеся к отдельным промежуткам или интервалам (от – до), на которые разбивается общая вариация признака в пределах от минималь­ной до максимальной варианты данной совокупности. Эти проме­жутки, или классовые интервалы, могут быть равными и не рав­ными по ширине. Отсюда различают равно- и неравноинтервальные вариационные ряды. В неравноинтервальных рядах характер распределения час­тот меняется по мере изменения ширины классовых интервалов. Неравноинтервальную группировку в биологии применяют сравнительно редко. Как правило, биометрические данные рас­пределяются в равноинтервальные ряды, что позволяет не только выявлять закономерность варьирования, но и облегчает вычисле­ние сводных числовых характеристик вариационного ряда, сопо­ставление рядов распределения друг с другом.

Приступая к построению равноинтервального вариационного ряда, важно правильно наметить ширину классового интервала. Дело в том, что грубая группировка (когда устанавливают очень широкие классовые интервалы) искажает типичные черты варьи­рования и ведет к снижению точности числовых характеристик ряда. При выборе чрезмерно узких интервалов точность обобщающих числовых характеристик повышается, но ряд получается слишком растянутым и не дает четкой картины варьирования.

Для получения хорошо обозримого вариационного ряда и обеспечения достаточной точности вычисляемых по нему числовых характеристик следует разбить вариацию признака (в пределах от минимальной до максимальной варианты) на такое число групп или классов, которое удовлетворяло бы обоим требо­ваниям. Эту задачу решают делением размаха варьирования признака на число групп или классов, намечаемых при построе­нии вариационного ряда:

,

где h – величина интервала; X м a x и X min – максимальное и минимальное значения в совокупности; k – число групп.

При построении интервального ряда распределения необходимо выбирать оптимальное число групп (интервалов признака) и установливать длину (размах) интервала. Поскольку при анализе ряда распределения сравнивают частоты в разных интервалах, необходимо, чтобы длина интервалов была постоянной. Если приходится иметь дело с интервальным рядом распределения с неравными интервалами, то для сопоставимости нужно частоты или частости привести к единице интервала, полученное значение называется плотностью ρ , то есть
.

Оптимальное число групп выбирается так, чтобы достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределении, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.

Чаще всего число групп в ряду распределения определяют по формуле Стерждесса:

где n – численность совокупности.

Существенную помощь в анализе ряда распределения и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные по оси абсцисс, – это интервалы значений варьирующего признака, а высоты столбиков – частоты, соответствующие масштабу по оси ординат. Диаграмма такого типа называется гистограммой.

Если имеется дискретный ряд распределения или используются середины интервалов, то графическое изображение такого ряда называется полигоном , которое получается соединением прямыми точек с координатами X i и f i .

Если по оси абсцисс откладывать значения классов, а по оси ординат – накопленные частоты с последующим соединени­ем точек прямыми линиями, получается график, называемый кумулятой. Накопленные частоты находят последо­вательным суммированием, или кумуляцией частот в направлении от первого класса до конца вариационного ряда.

Пример . Имеются данные о яйценоскости 50 кур-несушек за 1 год, содер­жащихся на птицеферме (табл. 1.1).

Т а б л и ц а 1.1

Яйценоскость кур-несушек

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

Требуется построить интервальный ряд распределения и отобразить его графически в виде гистограммы, полигона и кумуляты.

Видно, что признак варь­ирует от 212 до 245 яиц, полученных от несушки за 1 год.

В нашем примере по формуле Стерждесса определим число групп:

k = 1 + 3,322lg 50 = 6,643 ≈ 7.

Рассчитаем длину (размах) интервала по формуле:

.

Построим интервальный ряд с 7 группами и интервалом 5 шт. яиц (табл. 1.2). Для построения графиков в таблице рассчитаем середину интервалов и накопленную частоту.

Т а б л и ц а 1.2

Интервальный ряд распределения яйценоскости

Группа кур-несушек по величине яйценоскости

X i

Число кур-несушек

f i

Середина интервала

Х i ’

Накопленная частота

f i

Построим гистограмму распределения яйценоскости (рис. 1.1).

Р и с. 1.1. Гистограмма распределения яйценоскости

Данные гистограммы показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже – крайние (малые и большие) значения признака. Форма этого распределения близка к нормальному закону распределения, которое образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего значения.

Полигон и кумулята распределения яйценоскости имеют вид (рис. 1.2 и 1.3).

Р и с. 1.2. Полигон распределения яйценоскости

Р и с. 1.3. Кумулята распределения яйценоскости

Технология решения задачи в табличном процессоре Microsoft Excel следующая.

1. Введите исходные данные в соответствии с рис. 1.4.

2. Ранжируйте ряд.

2.1. Выделите ячейки А2:А51.

2.2. Щелкните левой кнопкой мыши на панели инструментов на кнопке <Сортировка по возрастанию > .

3. Определите величину интервала для построения интервального ряд распределения.

3.1. Скопируйте ячейку А2 в ячейку Е53.

3.2. Скопируйте ячейку А51 в ячейку Е54.

3.3. Рассчитайте размах вариации. Для этого введите в ячейку Е55 формулу =E54-E53 .

3.4. Рассчитайте число групп вариации. Для этого введите в ячейку Е56 формулу =1+3,322*LOG10(50) .

3.5. Введите в ячейку Е57 округленное число групп.

3.6. Рассчитайте длину интервала. Для этого введите в ячейку Е58 формулу =E55/E57 .

3.7. Введите в ячейку Е59 округленную длину интервала.

4. Постройте интервальный ряд.

4.1. Скопируйте ячейку Е53 в ячейку В64.

4.2. Введите в ячейку В65 формулу =B64+$E$59 .

4.3. Скопируйте ячейку В65 в ячейки В66:В70.

4.4. Введите в ячейку С64 формулу =B65 .

4.5. Введите в ячейку С65 формулу =C64+$E$59 .

4.6. Скопируйте ячейку С65 в ячейки С66:С70.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.5).

5. Рассчитайте частоту интервалов.

5.1. Выполните команду Сервис , Анализ данных , щелкнув поочередно левой кнопкой мыши.

5.2. В диалоговом окне Анализ данных с помощью левой кнопки мыши установите: Инструменты анализа  <Гистограмма> (рис. 1.6).

5.3. Щелкните левой кнопкой мыши на кнопке <ОК>.

5.4. На вкладке Гистограмма установите параметры в соответствии с рис. 1.7.

5.5. Щелкните левой кнопкой мыши на кнопке <ОК>.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.8).

6. Заполните таблицу «Интервальный ряд распределения».

6.1. Скопируйте ячейки В74:В80 в ячейки D64:D70.

6.2. Рассчитайте сумму частот. Для этого выделите ячейки D64:D70 и щелкните левой кнопкой мыши на панели инструментов на кнопке <Автосумма > .

6.3. Рассчитайте середину интервалов. Для этого введете в ячейку Е64 формулу =(B64+C64)/2 и скопируйте в ячейки Е65:Е70.

6.4. Рассчитайте накопленные частоты. Для этого скопируйте ячейку D64 в ячейку F64. В ячейку F65 введите формулу =F64+D65 и скопируйте в ячейки F66:F70.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.9).

7. Отредактируйте гистограмму.

7.1. Щелкните правой кнопкой мыши на диаграмме на названии «карман» и на появившейся вкладке нажмите кнопку <Очистить>.

7.2. Щелкните правой кнопкой мыши на диаграмме и на появившейся вкладке нажмите кнопку <Исходные данные>.

7.3. В диалоговом окне Исходные данные измените подписи оси Х. Для этого выделите ячейки В64:С70 (рис. 1.10).

7.5. Нажмите клавишу .

Результаты выводятся на экран дисплея в следующем виде (рис. 1.11).

8. Постройте полигон распределения яйценоскости.

8.1. Щелкните левой кнопкой мыши на панели инструментов на кнопке <Мастер диаграмм > .

8.2. В диалоговом окне Мастер диаграмм (шаг 1 из 4) с помощью левой кнопки мыши установите: Стандартные  <График> (рис. 1.12).

8.3. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.4. В диалоговом окне Мастер диаграмм (шаг 2 из 4) установите параметры в соответствии с рис. 1.13.

8.5. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.6. В диалоговом окне Мастер диаграмм (шаг 3 из 4) введите названия диаграммы и ос Y (рис. 1.14).

8.7. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.8. В диалоговом окне Мастер диаграмм (шаг 4 из 4) установите параметры в соответствии с рис. 1.15.

8.9. Щелкните левой кнопкой мыши на кнопке <Готово>.

Результаты выводятся на экран дисплея в следующем виде (рис. 1.16).

9. Вставьте на графике подписи данных.

9.1. Щелкните правой кнопкой мыши на диаграмме и на появившейся вкладке нажмите кнопку <Исходные данные>.

9.2. В диалоговом окне Исходные данные измените подписи оси Х. Для этого выделите ячейки Е64:Е70 (рис. 1.17).

9.3. Нажмите клавишу .

Результаты выводятся на экран дисплея в следующем виде (рис. 1.18).

Кумулята распределения строится аналогично полигону распределения на основе накопленных частот.

Первым этапом статистического изучения вариации являются построение вариационного ряда - упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существуют три формы вариационного ряда: ранжированный, дискретный, интервальный. Вариационный ряд часто называют рядом распределения. Этот термин употребляется при изучении вариации как количественных, так и неколичественных признаков. Ряд распределения представляет собой структурную группировку (гл. 6).

Ранжированный ряд - это перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака.

Ниже приведены сведения о крупных банках Санкт-Петербурга, ранжированных по размерам собственного капитала на 01.10.1999 г.

Название банка Собственный капитал, млн руб.

Балтонэксим банк 169

Банк «Санкт-Петербург» 237

Петровский 268

Балтийский 290

Промстройбанк 1007

Если численность единиц совокупности достаточно велика, ранжированный ряд становится громоздким, а его построение, даже с помощью компьютера, занимает длительное время. В таких случаях вариационный ряд строится с помощью группировки единиц совокупности по значениям изучаемого признака.

Определение числа групп

Число групп в дискретном вариационном ряду определяется числом реально существующих значений варьирующего признака. Если признак принимает дискретные значения, но их число очень велико (например, поголовье скота на 1 января года в разных сельскохозяйственных предприятиях может составить от нуля до десятков тысяч голов), то строится интервальный вариационный ряд. Интервальный вариационный ряд строится и для изучения признаков, которые могут принимать любые, как целые, так и дробные значения в области своего существования. Таковы, например, рентабельность реализованной продукции, себестоимость единицы продукции, доход на одного жителя города, доля лиц с высшим образованием среди населения разных территорий и вообще все вторичные признаки, значения которых рассчитываются путем деления величины одного первичного признака на величину другого (см. гл. 3).

Интервальный вариационный ряд представляет собой таблицу, состоящую из двух граф (или строк) - интервалов признака, вариация которого изучается, и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа от общей численности совокупности (частостей).

Наиболее часто используются два вида интервальных вариационных рядов: равноинтервальный и равночастотный. Равноинтервальный ряд применяется, если вариация признака не очень сильна, т.е. для однородной совокупности, распределение которой по данному признаку близко к нормальному закону. (Такой ряд представлен в табл. 5.6.) Равночастотный ряд применяется, если вариация признака очень сильна, однако распределение не является нормальным, а, например, гиперболическим (табл. 5.5).

При построении равноинтервального ряда число групп выбирается так, чтобы в достаточной мере отразились разнообразие значений признака в совокупности и в то же время закономерность распределения, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.


Границы интервалов могут указываться разным образом: верхняя граница предыдущего интервала повторяет нижнюю границу следующего, как показано в табл. 5.5, или не повторяет.

В последнем случае второй интервал будет обозначен как 15,1-20, третий - как 20,1-25 и т.д., т.е. предполагается, что все значения урожайности обязательно округлены до одной десятой. Кроме того, возникает нежелательное осложнение с серединой интервала 15,1-20, которая, строго говоря, уже будет равна не 17,5, а 17,55; соответственно при замене округленного интервала 40-60 на 40,1-60 вместо округленного значения его середины 50 получим 50,5. Поэтому предпочтительнее оставить интервалы с повторяющейся округленной границей и договориться, что единицы совокупности, имеющие значение признака, равное границе интервала, включаются в тот интервал, где это точное значение впервые указывается. Так, хозяйство, имеющее урожайность, равную 15 ц/га, включается в первую группу, значение 20 ц/га - во вторую и т.д.

Равночастотный вариационный ряд необходим при очень сильной вариации признака потому, что при равноинтерваль-ном распределении большая часть единиц совокупности ока-

Таблица 5.5

Распределение 100 банков России по балансовой оценке активов на 01.01.2000 г.

Границы интервалов при равночастотном распределении - это фактические величины активов первого, десятого, одиннадцатого, двадцатого и так далее банков.

Графическое изображение вариационного ряда

Существенную помощь в анализе вариационного ряда и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные на оси абсцисс, - это интервалы значений варьирующего признака, а высота столбиков - частоты, соответствующие масштабу по оси ординат. Графическое изображение распределения хозяйств области по урожайности зерновых культур приведено на рис. 5.1. Диаграмма этого рода часто называется гистограммой (гр. histos - ткань).

Данные табл. 5.6 и рис. 5.1 показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже - крайние, малые и большие значения признака. Форма этого распределения близка к рассматриваемому в курсе математической статистики закону нормального распределения. Великий русский математик А. М. Ляпунов (1857-1918) доказал, что нор-

Таблица 5.6 Распределение хозяйств области по урожайности зерновых культур

мальное распределение образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего влияния. Случайное сочетание множества примерно равных факторов, влияющих на вариации урожайности зерновых культур, как природных, так и агротехнических, экономических, создает близкое к нормальному закону распределения распределение хозяйств области по урожайности.

Рис. 5.2. Кумулята и огива распределения хозяйств по урожайности

Такой ряд называется кумулятивным. Можно построить кумулятивное распределение «не меньше, чем», а можно «больше, чем». В первом случае график кумулятивного распределения называется кумулятой, во втором - огивой (рис. 5.2).

Плотность распределения

Если приходится иметь дело с вариационным рядом с неравными интервалами, то для сопоставимости нужно частоты, или частости, привести к единице интервала. Полученное отношение называется плотностью распределения:

Плотность распределения используется как для расчета обобщающих показателей, так и для графического изображения вариационных рядов с неравными интервалами.

Представляются в виде рядов распределения и оформляются в виде .

Ряд распределния является одним из видов группировок.

Ряд распределения — представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

  • Атрибутивными — называют ряды распределения, построенные по качественными признакам.
  • Ряды распределения, построенные в порядке возрастания или убывания значений количественного признака называются вариационными .
Вариационный ряд распределения состоит из двух столбцов:

В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются . Дискретная варианта — выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд.
Во втором столбце содержится количество конкретных вариант , выраженное через частоты или частости:

Частоты — это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака, которые обозначают . Сумма всех частот равна должна быть равна численности единиц всей совокупности.

Частости () — это частоты выраженные в процентах к итогу. Сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:
  • Полигона
  • Гистограммы
  • Кумуляты
  • Огивы

Полигон

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) — частоты или частости.

Полигон на рис. 6.1 построен по данным микропереписи населения России в 1994 г.

6.1. Распределение домохозяйств по размеру

Условие : Приводятся данные о распределении 25 работников одного из предприятий по тарифным разрядам:
4; 2; 4; 6; 5; 6; 4; 1; 3; 1; 2; 5; 2; 6; 3; 1; 2; 3; 4; 5; 4; 6; 2; 3; 4
Задача : Построить дискретный вариационный ряд и изобразить его графически в виде полигона распределения.
Решение :
В данном примере вариантами является тарифный разряд работника. Для определения частот необходимо рассчитать число работников, имеющих соответствующий тарифный разряд.

Полигон используется для дискретных вариационных рядов.

Для построения полигона распределения (рис 1) по оси абсцисс (X) откладываем количественные значения варьирующего признака — варианты, а по оси ординат — частоты или частости.

Если значения признака выражены в виде интервалов, то такой ряд называется интервальным.
Интервальные ряды распределения изображают графически в виде гистограммы, кумуляты или огивы.

Статистическая таблица

Условие : Приведены данные о размерах вкладов 20 физических лиц в одном банке (тыс.руб) 60; 25; 12; 10; 68; 35; 2; 17; 51; 9; 3; 130; 24; 85; 100; 152; 6; 18; 7; 42.
Задача : Построить интервальный вариационный ряд с равными интервалами.
Решение :

  1. Исходная совокупность состоит из 20 единиц (N = 20).
  2. По формуле Стерджесса определим необходимое количество используемых групп: n=1+3,322*lg20=5
  3. Вычислим величину равного интервала: i=(152 — 2) /5 = 30 тыс.руб
  4. Расчленим исходную совокупность на 5 групп с величиной интервала в 30 тыс.руб.
  5. Результаты группировки представим в таблице:

При такой записи непрерывного признака, когда одна и та же величина встречается дважды (как верхняя граница одного интервала и нижняя граница другого интервала), то эта величина относится к той группе, где эта величина выступает в роли верхней границы.

Гистограмма

Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

На рис. 6.2. изображена гистограмма распределения населения России в 1997 г. по возрастным группам.

Рис. 6.2. Распределение населения России по возрастным группам

Условие : Приводится распределение 30 работников фирмы по размеру месячной заработной платы

Задача : Изобразить интервальный вариационный ряд графически в виде гистограммы и кумуляты.
Решение :

  1. Неизвестная граница открытого (первого) интервала определяется по величине второго интервала: 7000 — 5000 = 2000 руб. С той же величиной находим нижнюю границу первого интервала: 5000 — 2000 = 3000 руб.
  2. Для построения гистограммы в прямоугольной системе координат по оси абсцисс откладываем отрезки, величины которых соответствуют интервалам варицонного ряда.
    Эти отрезки служат нижним основанием, а соответствующая частота (частость) — высотой образуемых прямоугольников.
  3. Построим гистограмму:

Для построения кумуляты необходимо рассчитать накопленные частоты (частости). Они определяются путем последовательного суммирования частот (частостей) предшествующих интервалов и обозначаются S. Накопленные частоты показывают, сколько единиц совокупности имеют значение признака не больше, чем рассматриваемое.

Кумулята

Распределение признака в вариационном ряду по накопленным частотам (частостям) изображается с помощью кумуляты.

Кумулята или кумулятивная кривая в отличие от полигона строится по накопленным частотам или частостям. При этом на оси абсцисс помещают значения признака, а на оси ординат — накопленные частоты или частости (рис. 6.3).

Рис. 6.3. Кумулята распределения домохозяйств по размеру

4. Рассчитаем накопленные частоты:
Наколенная частота первого интервала рассчитывается следующим образом: 0 + 4 = 4, для второго: 4 + 12 = 16; для третьего: 4 + 12 + 8 = 24 и т.д.

При построении кумуляты накопленная частота (частость) соответствующего интервала присваивается его верхней границе:

Огива

Огива строится аналогично кумуляте с той лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения признака — на оси ординат.

Разновидностью кумуляты является кривая концентрации или график Лоренца. Для построения кривой концентрации на обе оси прямоугольной системы координат наносится масштабная шкала в процентах от 0 до 100. При этом на оси абсцисс указывают накопленные частости, а на оси ординат — накопленные значения доли (в процентах) по объему признака.

Равномерному распределению признака соответствует на графике диагональ квадрата (рис. 6.4). При неравномерном распределении график представляет собой вогнутую кривую в зависимости от уровня концентрации признака.

6.4. Кривая концентрации

Первым этапом статистического изучения вариации являются построение вариационного ряда - упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существуют три формы вариационного ряда: ранжированный ряд, дискретный ряд, интервальный ряд. Вариационный ряд часто назы-вают рядом распределения. Этот термин используется при изучении вариации как количественных, так и неколичественных признаков. Ряд распределения представляет собой структурную группировку (см. гл. 6).

Ранжированный ряд - это перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака.

Примером ранжированного ряда может служить табл. 5.5.

Таблица 5.5

Крупные банки Санкт-Петербурга, ранжированные по размерам собственного капитала на 01.07.96

Если численность единиц совокупности достаточно велика, ранжированный ряд становится громоздким, а его построение, даже с помощью ЭВМ, занимает длительное время. В таких случаях вариационный ряд строится с помощью группировки единиц совокупности по значениям изучаемого признака.

Если признак принимает небольшое число значений, строится дискретный вариационный ряд. Примером такого ряда является распределение футбольных матчей по числу забитых мячей (табл. 5.1). Дискретный вариационный ряд - это таблица, состоящая из двух строк или граф: конкретных значений варьирующего признака х i и числа единиц совокупности с данным значением признака f i частот (f - начальная буква англ. слова frequency).

Определение числа групп

Число групп в дискретном вариационном ряду определяется числом реально существующих значений варьирующего признака. Если же признак может принимать хотя и дискретные значения, но их число очень велико (например, поголовье скота на 1 января года в разных сельхозпредприятиях может составлять от нуля до десятков тысяч голов), тогда строится интервальный вариационный ряд. Интервальный вариационный ряд строится и для изучения признаков, которые могут принимать любые, как целые, так и дробные, значения в области своего существования. Таковы, например, рентабельность реализованной продукции, себестоимость единицы продукции, доход на 1 жителя города, доля лиц с высшим образованием среди населения разных территорий и вообще все вторичные признаки, значения которых рассчитываются путем деления величины одного первичного признака на величину другого (см. гл. 3).

Интервальный вариационный ряд представляет собой таблицу, (состоящую из двух граф (или строк) - интервалов признака, вариация которого изучается, и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа от общей численности совокупности (частостей).

При построении интервального вариационного ряда необходимо выбрать оптимальное число групп (интервалов признака) и установить длину интервала. Поскольку при анализе вариационного ряда сравнивают частоты в разных интервалах, необходимо, чтобы величина интервала была постоянной. Оптимальное число групп выбирается так, чтобы в достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределения, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.

Чаще всего число групп в вариационном ряду устанавливают, придерживаясь формулы, рекомендованной американским статистиком Стерджессом (Sturgess ):

где k - число групп; n - численность совокупности.

Эта формула показывает, что число групп - функция объема данных.

Предположим, необходимо построить вариационный ряд распределения предприятий области по урожайности зерновых культур за какой-то год. Число сельхозпредприятий, имевших посевы зерновых культур, составило 143; наименьшее значение урожайности равно 10,7 ц/га, наибольшее - 53,1 ц/га. Имеем:

Так как число групп целое, следовательно, рекомендуется построить 8 или 9 групп.

Определение величины интервала

Зная число групп, рассчитывают величину интервала:

В нашем примере величина интервала составляет:

а) при 8 группах

б) при 9 группах

Для построения ряда и анализа вариации значительно лучше иметь по возможности округленные значения величины интервала и его границ. Поэтому наилучшим решением будет построение вариационного ряда с 9 группами с интервалом, равным 5 ц/га. Этот вариационный ряд приведен в табл. 5.6, а его графическое изображение дано на рис. 5.1.

Границы интервалов могут указываться разным образом: верхняя граница предыдущего интервала повторяет нижнюю границу следующего, как показано в табл. 5.6, или не повторяет.

В последнем случае второй интервал будет обозначен как 15,1-20, третий как 20,1-25 и т.д., т.е. предполагается, что все значения урожайности обязательно округлены до одной десятой. Кроме того, возникает нежелательное осложнение с серединой интер- вала 15,1-20, которая, строго говоря, уже будет равна не 17,5, а 17,55; соответственно при замене округленного интервала 40-60 на 40,1-6,0 вместо округленного значения его середины 50 получим 50,5, Поэтому предпочтительнее оставить интервалы с повторяющейся округленной границей и договориться, что единицы совокупности, имеющие значение признака, равное границе интервала, включаются в тот интервал, где это точное значение впервые указывается. Так, хозяйство, имеющее урожайность, равную 15 ц/га, включается в первую группу, значение 20 ц/га -во вторую и т. д.

Рис. 5.1. Распределение хозяйств по урожайности

Таблица 5.6

Распределение хозяйств области по урожайности зерновых культур

Группы хозяйств по урожайности,

ц/га х j

Число хозяйств

Середина интервала,

ц/га х j "

Накопленная частота f ’ j

Графическое изображение вариационного ряда

Существенную помощь в анализе вариационного ряда и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные на оси абсцисс, - это интервалы значений варьирующего признака, а высоты столбиков - частоты, -соответствующие масштабу по оси ординат. Графическое изображение распределения хозяйств области по урожайности зерновых культур приведено на рис. 5.1. Диаграмма этого рода часто называется гистограммой (от греческого слова «гистос» - ткань, строение).

Данные табл. 5.5 и рис. 5.1 показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже - крайние; малые и большие значения признака. Форма этого распределения близка к рассматриваемому в курсе математической статистики закону нормального распределения. Великий русский математик А. М. Ляпунов (1857 - 1918) доказал, что нормальное распределение образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего влияния. Случайное сочетание множества примерно равных факторов, влияющих на вариацию урожайности зерновых культур, как природных, так и агротехнических, экономических, создает близкое к нормальному закону распределения распределение хозяйств области по урожайности.

Если имеется дискретный вариационный ряд или используются середины интервалов, то графическое изображение такого вариационного ряда называется полигоном (от греч. слова - многоугольник). Каждый из вас легко построит этот график, соединяя прямыми точки с координатами х, и /.

Отношение высоты полигона или диаграммы к их основанию рекомендуется в пропорции примерно 5:8.

Понятие частости

Если в табл. 5.6 число хозяйств с тем или иным уровнем урожайности выразить в процентах к итогу, принимая все число хозяйств (143) за 100%, то средняя урожайность может быть вычислена так:

где w - частость 7-й категории вариационного ряда;

Кумулятивное распределение

Преобразованной формой вариационного ряда является ряд накопленных частот, приведенный в табл. 5.6, графа 5. Это ряд значений числа единиц совокупности с меньшими и равными нижней границе соответствующего интервала значениями признака. Такой ряд называется кумулятивным. Можно построить кумулятивное распределение «не меньше, чем», а можно «больше, чем». В первом случае график кумулятивного распределения называется кумулятой, во втором - огивой (рис. 5.2).

Плотность, распределения

Если приходится иметь дело с вариационным рядом с неравными интервалами, то для сопоставимости нужно частоты или частости привести к единице интервала. Полученное отношение называется плотностью распределения:

Плотность распределения используется как для расчета обобщающих показателей, так и для графического изображения вариационных рядов с неравными интервалами.

Рис. 5.2. Огива и кумулята распределения по урожайности

5.7. Структурные характеристики вариационного ряда

Медиана распределения

При изучении вариации применяются такие характеристики вариационного ряда, которые описывают количественно его структуру, строение. Такова, например, медиана- величина варьирующего признака, делящая совокупность на две равные части ~ со значениями признака меньше медианы И со значениями признака больше медианы (третьего банка из пяти в табл. 5.5, т.е. 196 млрд руб.).

На примере табл. 5.5 видно принципиальное различие между медианой и средней величиной. Медиана не зависит от значений признака на краях ранжированного ряда. Если бы даже капитал крупнейшего банка Санкт-Петербурга был вдесятеро больше, величина медианы не изменилась бы. Поэтому часто медиану используют как более надежный показатель типичного значения признака, нежели арифметическая средняя, если ряд значений неоднороден, включает резкие отклонения от средней. В данном ряду средняя величина собственного капитала, равная 269 млрд руб., сложилась под большим влиянием наибольшей варианты. 80% банков имеют капитал меньше среднего и лишь 20% - больше. Вряд ли такую среднюю можно считать типичной величиной. При четном числе единиц совокупности за медийну принимают арифметическую среднюю величину из двух центральных вариант, например при десяти значениях признака - среднюю из пятого и шестого значений в ранжированном ряду.

В интервальном вариационном ряду для нахождения медианы применяется формула (5.14).

где Me - медиана;

х 0 - нижняя граница интервала, в котором находится медиана;

f M е-1 - накопленная частота в интервале, предшествующем медианному;

f Me - частота в медианном интервале;

i - величина интервала;

k - число групп.

В табл. 5,6 медианным является среднее из 143 значений, т.е. семьдесят-второе от начала ряда значение урожайности. Как видно из ряда накопленных частот, оно находится в четвертом интервале. Тогда

При нечетном числе единиц совокупности номер медианы, как видим, равен не , как в формуле (5.14), a , но это различие несущественно и обычно игнорируется на практике.

В дискретном вариационном ряду медианой следует считать значение признака в той группе, в которой накопленная частота;

превышает половину численности совокупности. Например, для, данных табл. 5.1 медианой числа забитых за игру мячей будет 2.

Квартили распределения

Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные по числу единиц части. Эти величины называются квартилями и обозначаются заглавной латинской" буквой Q с подписным значком номера квартиля. Ясно, что Q 2 совпадает с Me. Для первого и третьего квартилей приводим формулы и расчет по данным табл. 5.6.

Так как Q 2 = Me = 29,5 ц/га, видно, что различие между первым квартилем и медианой меньше, чем между медианой и третьим квартилем. Этот факт свидетельствует о наличии некоторой несимметричности в средней области распределения, что заметно и на рис. 5.1.

Значения признака, делящие ряд на пять равных частей, называют квинтилями, на десять частей - децилями, на сто частей -перцентилями. Поскольку эти характеристики применяются лишь при необходимости подробного изучения структуры вариационного ряда, приводить их формулы и расчет не будем.

Мода распределения

Бесспорно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду, в совокупности чаще всего. Такую величину принято называть модой и обозначать Мо. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Например, по данным табл. 5.1 чаще всего за футбольный матч было забито 2 мяча - 71 раз. Модой является число 2. Обычно встречаются ряды с одним модальным значением признака. Если два или несколько равных (и даже несколько различных, но больших, чем соседние) значений признака имеются в вариационном ряду, он считается соответственно бимодальным («верблюдообразным») либо мультимодальным. Это говорит о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами.

Так и в толпе туристов, приехавших из разных стран, вместо одной, преобладающей среди местных жителей модной одежды можно встретить смесь разных «мод», принятых у разных народов мира.

В интервальном вариационном ряду, тем более при непрерывной вариации признака, строго говоря, каждое значение признака встречается только один раз. Модальным интервалом является интервал с наибольшей частотой.. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения, т.е. число единиц совокупности, приходящееся на единицу измерения варьирующего признака, достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда имеем обычно применяемую формулу (5.15):

где x 0 - нижняя граница модального интервала;

f Mo - частота в модальном интервале;

f Mo -1 - частота в предыдущем интервале;

f Mo +1 - частота в следующем интервале за модальным;

i - величина интервала.

По данным табл. 5.6 рассчитаем моду:

Вычисление моды в интервальном ряду весьма условно. Приближенно Мо может быть определена графически (см. рис. 5.1).

К изучению структуры вариационного ряда средняя арифметическая величина тоже имеет отношение, хотя основное значение этого обобщающего показателя другое. В ряду распределения хозяйств по урожайности (табл. 5.6) средняя величина урожайности вычисляется как взвешенная по частоте середина интервалов х (по формуле (5.2)):

Соотношение между средней величиной, медианой и модой

Различие между средней арифметической величиной, медианой и модой в данном распределении невелико. Если распределение по форме близко к нормальному закону, то медиана находится между, модой и средней величиной, причем ближе к средней, чем к моде.

При правосторонней асимметриих ̅ > Me > Mo;

при левосторонней асимметрии х ̅ < Me < Mo.

Для умеренно асимметричных распределений справедливо равенство:

5.8. Показатели размера и интенсивности вариации

Абсолютные средние размеры вариации

Следующим этапом изучения вариации признака в совокупности является измерение характеристик силы, величины вариации. Простейшим из них может служить размах или амплитуда вариации - абсолютная разность между максимальным и минимальным значениями признака из имеющихся в изучаемой совокупности значений. Таким образом, размах вариации вычисляется по формуле

Поскольку величина размаха характеризует лишь максимальное различие значений признака, она не может измерять закономерную силу его вариации во всей совокупности. Предназначенный для данной цели показатель должен учитывать и обобщать все различия значений признака в совокупности без исключения. Число таких различий равно числу сочетаний по два из всех единиц совокупности; по данным табл. 5.6 оно составит: С^ = 10 153. Однако нет необходимости рассматривать, вычислять и осреднять все отклонения. Проще использовать среднюю из отклонений отдельных значений признака от среднего арифметического значения признака, а таковых всего 143. Но среднее отклонение значений признака от средней арифметической величины согласно известному свойству последней равно нулю. Поэтому показателем силы вариации выступает не алгебраическая средняя отклонений, а средний модуль отклонений:

По данным табл. 5.6 средний модуль, или среднее линейное отклонение, по абсолютной величине вычисляется как взвешенное по частоте отклонение по модулю середин интервалов от средней арифметической величины, т.е. по формуле

Это означает, что в среднем урожайность в изучаемой совокупности хозяйств отклонялась от средней урожайности по области на 6,85 ц/га. Простота расчета и интерпретации составляют положительные стороны данного показателя, однако математические свойства модулей «плохие»: их нельзя поставить в соответствие с каким-либо вероятностным законом, в том числе и с нормальным распределением, параметром которого является не средний модуль отклонений, а среднее квадратическое отклонение (в англоязычных программах для ЭВМ называемое «the standard deviation», сокращенно «s.d.» или просто « s », в русскоязычных - СКО). В статистической литературе среднее квадратическое отклонение от средней величины принято обозначать малой (строчной) греческой буквой сигма (ст) или s (см. гл. 7):

для ранжированного ряда

для интервального ряда

По данным табл. 5.6 среднее квадратическое отклонение урожайности зерновых составило:

Следует указать, что некоторое округление средней величины и середин интервалов, например до целых, мало отражается на величине σ, которая составила бы при этом 8,55 ц/га.

Среднее квадратическое отклонение по величине в реальных совокупностях всегда больше среднего модуля отклонений. Соотношение (у: а зависит от наличия в совокупностях резких, выделяющихся отклонений и может служить индикатором «засоренности» совокупности неоднородными с основной массой элементами: чем это соотношение больше, тем сильнее подобная «засоренность». Для нормального закона распределения σ : а = 1,2.

Понятие дисперсии

Квадрат среднего квадратического отклонения дает величину дисперсии σ 2 . Формула дисперсии:

простая (для несгруппйрованных данных):

взвешенная (для сгруппированных данных):

На дисперсии основаны практически все методы математической статистики. Большое практическое значение имеет правило сложения дисперсий (см. гл. 6).

Другие меры вариации

Еще одним показателем силы вариации, характеризующим ее не по всей совокупности, а лишь в ее центральной части, служит среднее квартцлъное расстояние, т.е. средняя величина разности между квартилями, обозначаемое далее как q:

Для распределения сельхозпредприятий по урожайности в табл. 5.2

q = (36,25 - 25,09): 2 = 5,58 ц/га. Сила вариации в центральной части совокупности, как правило, меньше, чем в целом по всей совокупности. Соотношение между средним модулем отклонений и средним квартальным отклонением также служит для изучения структуры вариации: большое значение такого соотношения говорит о наличии слабоварьирующего «ядра» и сильно рассеянного вокруг этого ядра окружения, или «гало» в изучаемой совокупности. Для данных табл. 5.6 соотношение а: q = 1,23, что говорит о небольшом различии силы вариации в центральной части совокупности и на ее периферии.

Для оценки интенсивности вариации и для сравнения ее в разных совокупностях и тем более для разных признаков необходимы относительные показатели вариации. Они вычисляются как отношения абсолютных показателей силы вариации, рассмотренных ранее, к средней арифметической величине признака. Получаем следующие показатели:

1) относительный размах вариации р:

2) относительное отклонение по модулю т:

3) коэффициент вариации как относительное квадратическое отклонение v :

4) относительное квартальное расстояние d:

где q - среднее квартильное расстояние.

Для вариации урожайности по данным табл. 5,6 эти показатели составляют:

ρ = 42,4: 30,3 = 1,4, или 140%;

т = 6,85: 30,3 = 0,226, или 22,6%;

v = 8,44: 30,3 = 0,279,или 27,9%;

d = 5,58: 30,3 = 0,184,или 18,4%.

Оценка степени интенсивности вариации возможна только для каждого отдельного признакам совокупности определенного состава. Так, для совокупности сельхозпредприятий вариация урожайности в одном и том же природном регионе может быть оценена как слабая, если v < 10%, умеренная при 10% < v < 25% и сильная при v > 25%.

Напротив, вариация роста в совокупности взрослых мужчин или женщин уже при коэффициенте, равном 7%, должна быть оценена и воспринимается людьми как сильная. Таким образом, оценка интенсивности вариации состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив. Мы привыкли к тому, что урожайность, заработок или доход на душу, число жилых комнат в здании могут различаться в несколько и даже десятки раз, но различие роста людей хотя бы в полтора раза уже воспринимается как очень сильное.

Различная сила, интенсивность вариации обусловлены объективными причинами. Например, цена продажи доллара США в коммерческих банках Санкт-Петербурга на 24 января 1997 г. варьировала от 5675 до 5640 руб. при средней цене 5664 руб. Относительный размах вариации ρ = 35:5664 = 0,6%. Такая малая вариация вызвана тем, что при значительном различии курса доллара немедленно произошел бы отлив покупателей из «дорогого» банка в более «дешевые». Напротив, цена килограмма картофеля или говядины в разных регионах России варьирует очень сильно - на десятки процентов и более. Это объясняется разными затратами на доставку товара из региона-производителя в регион-потребитель, т.е. пословицей «телушка за морем - полушка, да рубль перевоз».

5.9. Моменты распределения и показатели его формы

Центральные моменты распределения

Для дальнейшего изучения характера вариации используются средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины. Эти показатели получили название центральных моментов распределения порядка, соответствующего степени, в которую возводятся отклонения (табл. 5.7), или просто моментов (нецентральные моменты используются редко и здесь не будут рассматриваться). Величина третьего момента ц-, зависит, как и его знак, от преобладания положительных кубов отклонений над отрицательными кубами либо наоборот. При нормаль- ном и любом другом строго симметричном распределении сумма положительных кубов строго равна сумме отрицательных кубов.

Показатели асимметрии

На основе момента третьего порядка можно построить показатель, характеризующий степень асимметричности распределения:

As называют коэффициентом асимметрии. Он может быть рассчитан как по сгруппированным, так и по несгруппированным данным. По данным табл. 5.6 показатель асимметрии составил:

т.е. асимметрия незначительна. Английский статистик К. Пирсон на основе разности между средней величиной и модой предложил другой показатель асимметрии

Таблица 5.7

Центральные моменты

По данным табл. 5.6 показатель Пирсона составил:

Показатель Пирсона зависит от степени асимметричности в средней части ряда распределения, а показатель асимметрии, основанный на моменте третьего порядка, - от крайних значений признака. Таким образом, в нашем примере в средней части распределения асимметрия более значительна, что видно и по графику (рис. 5.1). Распределения с сильной правосторонней и левосторонней (положительной и отрицательной) асимметрией показаны на рис. 5.3.

Характеристика эксцесса распределения

С помощью момента четвертого порядка характеризуется еще более сложное свойство рядов распределения, чем асимметрия, называемое эксцессом.


Рис. 5.3. Асимметрия, распределения

Показатель эксцесса рассчитывается по формуле

(5.30)

Часто эксцесс интерпретируется как «крутизна» распределения, но это неточно и неполно. График распределения может выглядеть сколь угодно крутым в зависимости от силы вариации признака: чем слабее вариация, тем круче кривая распределения при данном масштабе. Не говоря уже о том, что, изменяя масштабы по оси абсцисс и по оси ординат, любое распределение можно искусствен но сделать «крутым» и «пологим». Чтобы показать, в чем состоит эксцесс распределения, и правильно его интерпретировать, нужно сравнить ряды с одинаковой силой вариации (одной и той же величиной σ) и разными показателями эксцесса. Чтобы не смешать эксцесс с асимметрией, все сравниваемые ряды должны быть симметричными. Такое сравнение изображено на рис. 5.4.

Рис.5.4. Эксцесс распределений

Для вариационного ряда с нормальным распределением значе- i ний признака показатель эксцесса, рассчитанный по формуле (5.30), j равен трем.

Однако такой показатель не следует называть термином «эксцесс», что в переводе означает «излишество». Термин «эксцесс» следует применять не к самому отношению по формуле (5.30), а к сравнению такого отношения для изучаемого распределения с величиной данного отношения нормального распределения, т.е. с величиной 3. Отсюда окончательные формулы показателя эксцесса, т.е. излишества в сравнении с нормальным распределением при той же силе вариации, имеют вид:

для ранжированного ряда

для интервального и дискретного вариационного ряда

Наличие положительного эксцесса, как и ранее отмеченного значительного различия между малым квартальным расстоянием и большим средним квадратическим отклонением, означает, что в изучаемой массе явлений существует слабо варьирующее по данному признаку «ядро», окруженное рассеянным «гало». При существенном отрицательном эксцессе такого «ядра» нет совсем.

По значениям показателей асимметрии и эксцесса распределения можно судить о близости распределения к нормальному, что бывает существенно важно для оценки результатов корреляционного и регрессионного анализа, возможностей вероятностной оценки прогнозов (см. главы 7,8,9). Распределение можно считать нормальным, а точнее говоря - не отвергать гипотезу о сходстве фактического распределения с нормальным, если показатели асимметрии и эксцесса не превышают своих двукратных средних квадратических отклонений Стц. Эти средние квадратические отклонения вычисляются по формулам:

5.10. Предельно возможные значения показателей вариации и их применение

Применяя любой вид статистических показателей, полезно знать, каковы предельно возможные значения данного показателя для изучаемой системы и каково отношение фактически наблюдаемых значений к предельно возможным. Особенно актуальна эта проблема при изучении вариации объемных показателей, таких, как объем производства определенного вида продукции, наличие определенных ресурсов, распределение капиталовложений, доходов, прибыли. Рассмотрим теоретически и практически данный вопрос на примере распределения производства овощей между сельхозпредприятиями в районе.

Очевидно, что минимально возможное значение показателей вариации достигается при строго равномерном распределении объемного признака между всеми единицами совокупности, т. е. при одинаковом объеме производства в каждом из сельхозпредприятий. В таком предельном (конечно, весьма маловероятном на практике) распределении вариация отсутствует и все показатели, вариации равны нулю.

Максимально возможное значение показателей вариации достигается при таком распределении объемного признака в совокупности, при котором весь его объем сосредоточен в одной единице совокупности; например, весь объем производства овощей - в одном сельхозпредприятий района при отсутствии их производства в остальных хозяйствах. Вероятность такого предельно возможного сосредоточения объема признака в одной единице совокупности не столь уж мала; во всяком случае она гораздо больше вероятности строго равномерного распределения.

Рассмотрим показатели вариации при указанном предельном случае ее максимальности. Обозначим число единиц совокупности п, среднюю величину признака х ̅ , тогда общий объем признака в совокупности выразится как х ̅ п. Весь этот объем сосредоточен у одной единицы совокупности, так что х max = х ̅ п. х min = 0, откуда следует, что максимальное значение амплитуды (размаха вариации) равно:

Для вычисления максимальных значений средних отклонений по модулю и квадратического построим таблицу отклонений (табл. 5.8).

Таблица5.8

Модули и квадраты отклонений от средней при максимально возможной вариации

Номера единиц совокупности

Значения признака

Отклонения от средней

x i - x ̅

Модули отклонений

|x i - x ̅|

Квадраты отклонений

i - х ̅ ) 2

х ̅ п

х ̅ (п - 1)

-x ̅

-x ̅

-x ̅

х ̅ (п - 1)

х ̅

х ̅

х ̅

х ̅ 2 (п - 1) 2

х ̅ 2

х ̅ 2

х ̅ 2

х ̅ п

2х ̅ (п - 1)

х ̅ 2 [(п - 1) 2 +(n-1 )]

Исходя из выражений, стоящих в итоговой строке табл. 5.8, получаем следующие максимально возможные значения показателей вариации.

Средний модуль отклонений, или среднее линейное отклонение:

Среднее квадратическое отклонение:

Относительное модульное (линейное) отклонение:

Коэффициент вариации:

Что касается квартального расстояния, то система с максимально возможной вариацией обладает вырожденной структурой распределения признака, в которой не существуют («не работают») характеристики структуры: медиана, квартили и им подобные.

Исходя из полученных формул максимально возможных значений основных показателей вариации, прежде всего следует вывод о зависимости этих значений от объема совокупности п. Эта зависимость обобщена в табл. 5.9.

Наиболее узкие пределы изменения и слабую зависимость от численности совокупности обнаруживают средний модуль и относительное линейное отклонение. Напротив, среднее квадратическое отклонение и коэффициент вариации сильно зависят от численности единиц совокупности. Эту зависимость следует учитывать при сравнении силы интенсивности вариации в совокупностях разной численности. Если в совокупности шести предприятий коэффициент вариации объема продукции составил 0,58, а в совокупности из 20 предприятий он составил 0,72, то справедливо ли делать вывод о большей неравномерности объема продукции во второй совокупности? Ведь в первой, меньшей, он составил 0,58: 2,24 = 25,9% максимально возможного, т.е. предельного, уровня концентрации производства в одном предприятии из шести, а во второй, большей совокупности, наблюдаемый коэффициент вариации составил только 0,72: 4,36 = 16,5% максимально возможного.

Таблица 5.9

Предельные значения показателей вариации объемного признака при разных численностях совокупности

Численность совокупностей

Максимальные значения показателей

х ̅

х ̅

1,5 х ̅

1,73 х ̅

1,67 х ̅

2,24 х ̅

1,80 х ̅

3 х ̅

1,90 х ̅

4,36 х ̅

1,96 х ̅

7 х ̅

1,98 х ̅

9,95 х ̅

2 х ̅

Имеет практическое значение и такой показатель, как отношение фактического среднего модуляотклонений к предельно возможному. Так, для совокупности шести предприятий это соотношение составило: 0,47: 1,67 = 0,281, или 28,1%. Интерпретация полученного показателя такова: для перехода от наблюдаемого распределения объема продукции между предприятиями, к равномерному распределению потребовалось бы перераспределить

, или 23,4% общего объема продукции в совокупности. Если степень фактической концентрации производства (фактическая величина σ или v ) составляет некоторую долю предельного значения при монополизации производства на одном предприятии, то отношение фактического показателя к предельному может характеризовать степень концентрации (или монополизации) производства.

Отношения фактических значений показателей вариации или изменения структуры к предельно возможным используются также при анализе структурных сдвигов (см. главу 11).

1. Джини К. Средние величины. - М.: Статистика, 1970.

2. Кривенкова Л. Н., Юзбашев М. М. Область существования показателей вариации и ее применение // Вестник статистики. - 1991. - №6. - С. 66-70.

3. Пасхавер И. С. Средние величины в статистике. - М.: Статистика. 1979.

4. Шураков В. В., Дайитбегов Д. М. и др. Автоматизированное рабочее место статистической обработки данных (Глава 4. Предварительная статистическая обработка данных). - М.: Финансы и статистика, 1990.