Теория основана на хорошо известном факте «превращения» фотона с энергий 1 МэВ в пару электрон – позитрон. Необходимо предупредить, что имеется замечательное совпадение: энергия фотона почти точно соответствует существующему определению классического радиуса электрона:

R e = ξ (e 0 2 / m e c 2) = 2,81794334·10 –15 [m ],

а энергия m e c 2 ≈ 0,5MeV . Совпадение порождает естественное подозрение на использование автором тавтологии, не имеющей физического смысла. Но это не так в силу опытного факта превращения фотона в пару электрон – позитрон. В статье получена электрическая безмассовая структура физического вакуума с дипольным расстоянием r e = 1,3987632·10 –15 [m ] и предельно возможная деформация диполя Δr rb = 1,02072687·10 –17 [m ], удвоенная сумма которых точно равна классическому радиусу электрона. Причина в том, что энергия фотона «красной границы» для вакуума в 2 раза больше энергии масс электрона и позитрона.

Другим важным обстоятельством гипотезы о природе гравитации есть то, что причиной притяжения всех тел друг к другу является слабая разность элементарных зарядов (+) и (–) в диполе. По законам индукции Фарадея и сил Кулона все тела притягиваются друг к другу поляризуемым зарядом дипольной структуры среды, а свойства инерции заключается в свойстве среды сопротивляться любым ускорениям материальных тел.

Эта исключительно важная среда существования вещества в природе позволила опубликовать статью , которую можно принять как частную программу развития физических знаний об устройстве природы.

Модель атома водорода по Н. Бору

Обратимся к истокам начал квантовой механики, положенным Н. Бором (1885...1962) в форме модели атома водорода, которая получила блестящее подтверждение в спектральных исследованиях излучения водорода. Кратко напомним основные положения работы Н. Бора.

Энергия Е электрона в атоме, исходя из классической физики, складывается из кинетической энергии Т и потенциальной электрической энергии U : Е = Т + U . Отметим, что в область микромира вторглась классическая физика, которой в настоящее время приписывается множество «грехов». Потенциальная энергия U = (–e 0)V ; заряд ядра Ze 0 ; Для кругового движения:

Полная энергия отрицательна. Разрешенные радиусы:

Отметим интересное обстоятельство появления отрицательной энергии электронов в атомах. Это понятие возникло исключительно из-за отрицательного знака заряда электрона, который носит условный характер, определенный человеком. Указанные формулы написаны в системе СГС. Перевод формул в менее запутанную систему СИ дает следующее написание:

где r 1 – радиус первой орбиты в атоме водорода, n = 1, 2, 3, ... – квантовые числа, соответствующие номерам стационарных орбит у водорода.

Везде в формулах оказалась электрическая константа

ξ = 8,98755179·10 9 [m 3 kg ·a –2 s –4 ],

которая есть обратная величина привычной электрической проницаемости вакуума.

Итак, модель атома Бора пришла в противоречие с существовавшей тогда классической физикой.

  1. Согласно классике, электрон, двигающийся с центростремительным ускорением, обязан излучать электромагнитную энергию.
  2. В атоме существуют стационарные круговые орбиты, на которых не происходит излучение электронов, и они не падают на ядро в результате расхода энергии.

Сделан вывод, что рожденная таким образом квантовая механика противоречит классической физике в микро мире. Сложилась странная ситуация, в результате которой появился барьер в физике, изучающей единую и неделимую природу. Квантовая механика находит правила устройства микромира и не отвечает на такие вопросы, – что мешает излучению электронов, находящихся на стационарных орбитах? Излучение или поглощение электромагнитных волн электронами в атомах происходит только при их переходах между стационарными орбитами.

Посмотрим, что дает среда существования вещества классической физике и квантовой механике – физический вакуум, имеющий электрическую структуру, погруженную в магнитный (массовый) континуум. В основных чертах эта среда отвечает механической модели, использованной гениальным Максвеллом при выводе своих формул, безотказно работающих до сего времени. Важным элементом понимания сущности инерции является ее возникновение как сопротивление дипольной среды ускоренному движению:

f = b Δr a ~ ma ,

где b = ξ (e 0 2 / Δr rb r e 2) = 1,155406·10 19 [kg ·s –2 ] – электрическая упругость диполя структуры вакуума, r a – деформация диполя структуры под действием силы инерции тела массы m и ускорения а . Знак пропорциональности «~» использован из понимания того, что тело взаимодействует не с одним диполем структуры, а с некоторым кластером или доменом структуры вакуума. Для того, чтобы устранить кажущееся противоречие между классической физиков и КМ, необходим логический вывод: на стационарных орбитах электроны движутся без инерции . Нет центробежной и нет центростремительной сил, создающих классическое ускорение. Существуют такие орбиты или пути движения частиц (электронов) в структуре вакуума, которые не обладают сопротивлением ускоренному движению. В этом отношении круговое движение электронов, обладающих зарядом (электрической напряженностью) и собственным магнитным моментом, а также магнитным моментом вращательного движения, подобно вращению генератора Рощина – Година , в котором все указанные элементы существуют. На опыте генератора происходило уменьшение инерции и веса ротора.

Перейдем к параметрам вакуума. Наиболее важным является то, что константа Планка полностью определяется основными параметрами структуры среды:

h = 2π e 0 2 α –1 √(ξ / η) [J ·s ].

Здесь появилась магнитная константа вакуума

η = 1·10 7 [m –1 kg ·a 2 s 2 ]

как обратная величина магнитной проницаемости и постоянная тонкой структуры

α –1 = 137,035999.

Подстановка h в формулу для первой орбиты водорода дает:

r 1 = (1/η)·(e 0 2 α –2 / m e ).

Орбита зависит от элементарного заряда структуры среды, ее магнитной константы и наиболее фундаментальной величины нашей Вселенной – постоянной тонкой структуры. Массу электрона можно заменить на другие параметры среды:

m e = (1/η)·[e 0 2 / 2(r e + Δr rb )];

в результате получим, что:

r 1 = 2α –2 (r e + Δr rb ) = 5,29177245·10 –11 [m ].

Радиус первой орбиты определяется только величиной постоянной тонкой структуры и основными метрическими характеристиками среды. Очевидно, совпадение R e = 2(r e + Δr rb ), однако могут быть отклонения величины Δr от Δr rb , так как их полная идентичность не установлена. Выше было дано замечание о совпадении классического радиуса с выводами из равенства энергий фотона и электрона – позитрона.

При каких условиях сопротивление среды ускорению равно нулю? Возможно только одно: в условии инерции f = b Δr a ~ ma отсутствует ускорение и Δr a = 0. Это означает, что движение частиц вообще и электрона в частности может происходить так, что частица не взаимодействует с решеткой вакуума, двигаясь строго по существующему точному кругу или сфере зарядов одного знака (для электрона «–»). При этом нет ни гравитации, ни инерции. Гравитация и инерция возникают только при движении частиц и макро тел с пересечением электронной структуры вакуума. Для частиц, двигающихся от заряда к заряду одинакового знака, в общем случае характерна криволинейная траектория в отличие от движения частиц по избранным круговым траекториям. Круговые траектории располагаются на сфере, проходящей через заряды диполей одного знака. Задача нахождения сфер в решетке вакуума разрешима на основе обычной геометрии в пространстве. Криволинейные пути частиц ассоциируются с волнами Де Бройля λ = h / mV и наиболее простой формой траектории будет винтообразное движение с малой амплитудой.

Выход из тупика был найден датским ученым Нильсом Бором в 1913 году, получившим Нобелевскую премию в 1922 году.

Бор высказал предположения, которые были названы постулатами Бора .

· Первый постулат (постулат стационарных состояний ): электроны движутся только по определенным (стационарным ) орбитам. При этом , даже двигаясь с ускорением , они не излучают энергию.

· Второй постулат (правило частот ): излучение и поглощение энергии в виде кванта света (h n ) происходит лишь при переходе электрона из одного стационарного состояния в другое. Величина светового кванта равна разности энергий тех стационарных состояний , между которыми совершается скачок электрона: .

Отсюда следует, что изменение энергии атома, связанное с излучением при поглощении фотона, пропорционально частоте ν:

Правило квантования орбит : из всех орбит электрона возможны только те , для которых момент импульса равен целому кратному постоянной Планка:

, (6.3.2)

где n = 1, 2, 3,… – главное квантовое число.

Получим выражение для энергии электрона в атоме.

Рассмотрим электрон (рис. 6.6,а), движущийся со скоростью в поле атомного ядра с зарядом Ze (при Z = 1 – атом водорода).

а б

Уравнение движения электрона имеет вид:

. (6.3.3)

Из формулы (6.3.3) видно, что центробежная сила равна кулоновской силе, где .

Подставим значение υ из (6.3.2) в (6.3.3) и получим выражение для радиусов стационарных орбит (рис.6.6,б):

. (6.3.4)

Радиус первой орбиты водородного атома называют боровским радиусом . При n =1, Z = 1 для водорода имеем:

Å = 0,529·10 –10 м.

Внутренняя энергия атома слагается из кинетической энергии электрона (ядро неподвижно) и потенциальной энергией взаимодействия электрона с ядром:

.

Из уравнения движения электрона следует, что , т.е. кинетическая энергия равна потенциальной. Тогда можно записать:

.

Подставим сюда выражение для радиуса первой орбиты и получим:

. (6.3.5)

Здесь учтено, что постоянная Планка , т.е. .

Для атома водорода при Z = 1 имеем:

. (6.3.6)

Из формулы (6.3.6) видно, что принимает только дискретные значения энергии, т.к. n = 1, 2, 3….

Схема энергетических уровней, определяемых уравнением (6.3.6) показана на рис. 6.1 и 6.7.

При переходе электрона в атоме водорода из состояния n в состояние k излучается фотон с энергией:

.

Частота излучения:

.

Получена обобщенная формула Бальмера, которая хорошо согласуется с экспериментом. Выражение перед скобками, как уже было сказано, носит название постоянной Ридберга :

.

Серьезным успехом теории Бора явилось вычисление постоянной Ридберга для водородоподобных систем и объяснение структуры их линейчатых спектров. Бору удалось объяснить линии спектра ионизованного гелия. Он теоретически вычислил отношение массы протона к массе электрона , что находилось в соответствии с экспериментом, является важным подтверждением основных идей, содержащихся в его теории. Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913–1925) были сделаны важные открытия, навсегда вошедшие в сокровищницу мировой науки.

Однако, наряду с успехами, в теории Бора с самого начала обнаружились существенные недостатки. Главнейшим из них была внутренняя противоречивость теории: механическое соединение классической физики с квантовыми постулатами. Теория не могла объяснить вопрос об интенсивностях спектральных линий. Серьезной неудачей являлась абсолютная невозможность применить теорию для объяснения спектров атома гелия, содержащего два электрона на орбите и тем более для многоэлектронных атомов (рис. 6.8).

Стало ясно, что теория Бора является лишь переходным этапом на пути создания более общей и правильной теории. Такой теорией и явилась квантовая механика.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

А́том (от др.-греч. ἄτομος - неделимый) - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов - изотопу этого элемента.

Хотя слово атом в первоначальном значении обозначало частицу, которая не делится на меньшие части, согласно научным представлениям он состоит из более мелких частиц, называемых субатомными частицами. Атом состоит из электронов, протонов, все атомы, кроме водорода-1, содержат также нейтроны.

Электрон является самой лёгкой из составляющих атом частиц с массой 9,11·10−31 кг, отрицательным зарядом и размером, слишком малым для измерения современными методами. Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726·10−27 кг). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929·10−27 кг). При этом масса ядра меньше суммы масс составляющих его протонов и нейтронов из-за эффекта дефекта массы. Нейтроны и протоны имеют сравнимый размер, около 2,5·10−15 м, хотя размеры этих частиц определены плохо.

Постулаты Бора - основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется: , где - натуральные числа, а - постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии, где - энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома. В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Атом водорода - физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входить протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a0 = 0,529 Å.

Атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике, поскольку для него проблема двух тел имеет точное или приближенное аналитическое решения. Эти решения применимы для разных изотопов водорода, с соответствующей коррекцией.

В квантовой механике атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Также упрощенно рассматривается как электрон в электростатическом поле бесконечно тяжёлого атомного ядра, не участвующего в движении (или просто в кулоновском электростатическом потенциале вида 1/r). В этом случае атом водорода описывается редуцированной одночастичной матрицей плотности или волновой функцией.

В 1913 году Нильс Бор предложил модель атома водорода, имеющую множество предположений и упрощений, и вывел из неё спектр излучения водорода. Предположения модели не были полностью правильны, но тем не менее приводили к верным значениям энергетических уровней атома.

Результаты расчётов Бора были подтверждены в 1925-1926 годах строгим квантово-механическим анализом, основанном на уравнении Шрёдингера. Решение уравнения Шрёдингера для электрона в электростатическом поле атомного ядра выводится в аналитической форме. Оно описывает не только уровни энергии электрона и спектр излучения,

Квантование энергии электрона в атоме Некоторые физические величины, относящиеся к микрообъектам, изменяются не непрерывно, а скачкообразно. О величинах, которые могут принимать только вполне определенные, то есть дискретные значения (латинское "дискретус" означает разделенный, прерывистый), говорят, что они квантуются.

В 1900 г. немецкий физик М. Планк, изучавший тепловое излучение твердых тел, пришел к выводу, что электромагнитное излучение испускается в виде отдельных порций - квантов - энергии. Значение одного кванта энергии равно ΔE = hν,

где ΔE - энергия кванта, Дж; ν - частота, с-1; h - постоянная Планка (одна из фундаментальных постоянных природы), равная 6,626·10−34 Дж·с.

Кванты энергии впоследствии назвали фотонами.

Идея о квантовании энергии позволила объяснить происхождение линейчатых атомных спектров, состоящих из набора линий, объединенных в серии.

Вернемся в 1911 год. К этому времени дискретность микромира проявилась наиболее ярко в атомных спектрах. Оказалось, что атомы поглощают и испускают свет только определенной длины волны, причем спектральные линии группируются в так называемые серии (рис. 3.1).

Рис. 3.1. Длины волн, излучаемые атомом водорода: спектр состоит из серий (показаны три первые) -
последовательностей линий, сгущающихся к некоторому (своему для каждой серии) предельному минимальному
значению ; только четыре линии серии Бальмера лежат в видимом диапазоне


Рис. 3.2. (a) Линейчатые спектры излучения газообразных водорода, ртути и гелия: (b) спектр поглощения водорода

Рис. 3.3. Непрерывные спектры излучения дают нагретые твёрдые и жидкие вещества, сильно сжатые газы, высокотемпературная плазма

Для спектра водорода, простейшего из атомов, была установлена (не выведена, а угадана!) несложная формула

Здесь - длина волны излучения атома водорода, n и k > n - целые числа, R - так называемая постоянная Ридберга (, где - внесистемная единица энергии «Ридберг», равная половине атомной единице энергии). Оказалось, что серия Лаймана описывается этой формулой при значениях , серия Бальмера - при , серия Пашена - при и т. д. Предельные (минимальные) значения для длин волн получаются из (3.1) при :

Рис. 3.4. Йоханнес Роберт Ридберг (1854–1919)

Рис. 3.5. Теодор Лайман (1874–1954)


Рис. 3.6. Спектральная серия Лаймана

Рис. 3.7. Иоганн Якоб Бальмер (1825–1898)

Рис. 3.8. Видимые линии излучения водорода в серии Бальмера. Hα - красная линия справа, имеющая длину волны 656,3 нм. Самая левая линия - Hε, соответствует излучению уже в ультрафиолетовой области спектра на длине волны 397,0 нм

Рис. 3.9. Луис Карл Генрих Фридрих Пашен (1865–1947)

Рис. 3.10. Все линии серии Пашена расположены в инфракрасном диапазоне

Кроме того, в результате изучения свойств газов к тому времени было известно, что размеры атомов приблизительно
равны . Поэтому теория, объясняющая спектр и размеры атомов, должна была включать в себя какой-то параметр, позволяющий построить величину с размерностью длины (постоянных e и m - заряда и массы электрона - для этого недостаточно). Такого параметра в классической теории не было. Им могла бы стать постоянная Ридберга, но ее происхождение было темно и загадочно.

В 1911 году Э. Резерфорд опубликовал теоретическую работу (Rutherford E., Philosophical Magazine, v. 21, p. 669–688 , 1911), в которой на базе анализа экспериментов, выполненных в 1908–1909 годах его учениками - стажером Гансом Гейгером и аспирантом Эрнстом Марсденом - (Geiger H., Marsden T., Proceedings of the Royal Society of London, Series A, v. 82, p. 495–499 , 1909) утверждал наличие внутри атома положительно заряженного ядра, в котором сосредоточена практически вся масса атома.

Рис. 3.11. Эрне́ст Ре́зерфорд (1871–1937)

Видео 3.2. Немного истории. Черная шляпа и модель рассеяния.

В последствии, в одной из своих лекций сам Э. Резерфорд вспоминал о тех временах следующим образом (цитируется по книге Дж. Тригг, Решающие эксперименты в современной физике, Москва, «МИР», 1974, стр. 77): «…Я помню… ко мне пришел очень взволнованный Гейгер и сказал: «Мы, кажется, получили несколько случаев рассеяния - частиц назад…». Это самое невероятное событие, которое было в моей жизни. Это почти также невероятно, как если бы вы выстрелили 15-дюймовым снарядом в папиросную бумагу и он, отразившись от неё, попал бы в вас. При анализе этого я понял, что такое рассеяние назад должно быть результатом однократного столкновения и, проведя расчеты, увидел, что это никоим образом невозможно, если не предположить, что подавляющая часть массы атома сконцентрирована в крошечном ядре. Именно тогда у меня и зародилась идея об атоме с крошечным массивным центром, в котором сосредоточен заряд». От себя добавим, что слова «рассеяние назад» фактически означали рассеяние на 150 градусов, рассеяние на большие углы не позволяла наблюдать конструкция использованной в тот момент установки.

Принципиальная схема опытов Резерфорда представлена на рис. 3.12. Схему реальной установки можно найти в цитированной выше книге Дж. Тригга.


Рис. 3.12. Схема опыта Резерфорда по рассеянию - частиц

Видео 3.3. Натурный опыт Резерфорда на лабораторной установке. Видео 3.4. Опыт Резерфорда «изнутри» (лабораторная установка). Видео 3.5. Компьютерная модель опыта Резерфорда.

От радиоактивного источника, заключенного в свинцовый контейнер, частицы направлялись на тонкую фольгу Ф из исследуемого металла. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных частиц в опыте Резерфорда можно было проводить под различными углами к первоначальному направлению пучка. Было обнаружено, что большинство частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30° . Очень редкие частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к . Очевидно, что частица может быть отброшена назад, только если положительный заряд атома и его масса сосредоточены в очень малом объеме внутри атома. Таким образом, было открыто атомное ядро - тело малых по сравнению с атомом размеров, в котором сосредоточен весь положительный заряд и практически вся его масса. Размеры ядра были оценены Э. Резерфордом в работе 1911 года, оценка дала меньше или порядка .

Видео 3.6. Прицельный параметр и форма траектории. Видео 3.7. Заряд рассеиваемой частицы и форма траектории. Видео 3.8. Энергия рассеиваемой частицы и форма траектории. Видео 3.9. Заряд ядра и форма траектории.

Рис. 3.13. Схема рассеяния альфа-частиц на ядре атома золота


Рис. 3.14. Схема рассеяния потока альфа-частиц в тонкой золотой фольге

Возникла планетарная модель атома водорода: протон с электроном на орбите. Физики любят единые модели, а здесь так красиво в малом повторялось большое, в атоме - Солнечная система.

Рис. 3.15. Схема ядерной (планетарной) модели атома Резерфорда

Проблема состояла в том, что электрон, совершающий финитное, а следовательно - ускоренное движение около ядра, должен упасть на ядро. Дело в том, что электрон заряжен и при ускоренном движении должен испускать электромагнитное излучение, то есть стационарное движение невозможно. Классическая электродинамика предсказывает, что, быстро потеряв свою энергию и момент импульса орбитального движения, электрон должен упасть на ядро примерно за . Свет за это время проходит около 1.5 см (получается, что мы видим лишь «мертвые» атомы, но это не так!). Резерфорд понимал проблему, но сознательно концентрировался на факте существования ядра, полагая, что вопрос об устойчивости атома будет решен при исследовании поведения атомных электронов. Это суждено было сделать в 1913 г. Н. Бору , предложившему новую теорию атома.

Рис. 3.16. Неустойчивость модели атома Резерфорда

Постулаты Бора

Первый постулат Бора

Здесь прослеживается «насильственное» введение дискретности (разрешены не все орбиты), а также типичное для физики «заметание проблемы под ковер»: если чему-то не находится объяснений, принимают это как данность и изучают следствия в надежде, что когда-нибудь поймут и причину.

Рис. 3.17. Иллюстрация первому постулату Бора

Второй постулат Бора

Этот постулат отражает сохранение энергии и соотношение Планка – Эйнштейна .

Рис. 3.18. Иллюстрация ко второму постулату Бора

Третий постулат Бора

Неизбежное следствие: так как остальные орбиты для электрона запрещены, переход осуществляется скачком; о пути и энергии электрона между орбитами говорить не имеет смысла: законы механики там не применимы.

Четвертый постулат Бора

Постоянная Планка ħ имеет размерность момента количества движения и вместе с зарядом электрона е и его массой m позволяет образовать параметр размерности длины. Это приводит к возможности вычислить размеры атома.

Рис. 3.19. Нильс Хе́нрик Дави́д Бор (1885–1962)

Применение постулатов Бора

Классическая механика для электрона, вращающегося по круговой орбите радиусом R со скоростью v вокруг ядра с зарядом Ze , дает уравнение движения

Поэтому энергия Е и момент импульса L электрона выражаются через радиус орбиты R :

Если к последнему выражению применение условие квантования Бора L=nħ (n=1, 2, 3, … ), то получатся следующие результаты.

Рис. 3.20. Модель атома Бора

Характеристики водородоподобного атома

Радиусы разрешенных орбит

Энергия электрона на стационарной орбите

Константа а В , имеющая размерность длины, называется радиусом Бора: . Смысл числа - номер разрешенной орбиты. Радиус Бора - радиус низшей орбиты в атоме водорода .

Формула (3.3) определяет дискретные значения энергии, которые может иметь электрон в атоме водорода, или, как говорят, энергетические уровни. Отрицательные значения соответствуют связанным состояниям электрона в атоме, то есть движениям в ограниченной области пространства (аналог в классической физике - движение планет по эллипсам в отличие от гиперболических и параболических траекторий, уходящих на бесконечность).

При решении задач о поведении электрона в атоме обычно возникают выражения, включающие квадрат электрического заряда электрона в комбинации с электрической постоянной . Весьма полезно ввести безразмерную комбинацию фундаментальных мировых постоянных - так называемую постоянную тонкой структуры :

которая, совместно с атомным номером и номером орбиты , определяет масштаб релятивистских эффектов в атоме. Для того, чтобы это было лучше видно, перепишем формулу (3.3) так, чтобы в её правую часть входила постоянная тонкой структуры:

Из-за множителя характерные для атома энергии оказываются на четыре порядка меньше энергии покоя электрона. Это проявление нерелятивизма достаточно легких атомных систем. Как видно из последнего выражения в приведенной выше формуле, релятивистские эффекты перестают быть малыми поправками для ближних к ядру электронов в тяжелых атомах.

Пример 1. Определим скорость электрона на n -й орбите атома Бора. Радиус n-й орбиты определяется формулой

где а В - радиус Бора. Скорость электрона v можно выразить через момент импульса L=nħ:

Выражение для радиуса Бора упростим, используя введенную постоянную тонкой структуры:

Подставляя это выражение в полученную выше формулу для скорости электрона, получаем для n орбиты

Рис. 3.21. Схема энергетических уровней и переходов в атоме водорода по теории Бора:
сплошные линии (переходы сверху вниз) - излучение, пунктирные линии (переходы снизу вверх) - поглощение.
Показаны границы (пределы) серий , которым соответствуют переходы с уровня с
- границы между континуумом и дискретным спектром

Экспериментальное подтверждение утверждение Бора о дискретности энергетического спектра атомов нашло в опытах Франка - Герца, которые заключались в бомбардировке паров ртути электронами в вакуумной трубке и измерении зависимости анодного тока от ускоряющей разности потенциалов. Схема опыта приведена на рис. 3.22.


Рис. 3.22. Схема опыта Франка - Герца

В трубке, заполненной парами ртути под небольшим давлением (около 1 мм. рт. ст.), имеются три электрода: анод, катод и сетка. Электроны, вылетающие с поверхности подогретого катода вследствие термоэлектронной эмиссии, ускоряются напряжением U , приложенным между катодом и сеткой. Это напряжение можно менять с помощью потенциометра П . Между анодом и сеткой приложено слабое обратное поле с разностью потенциалов порядка 0,5ВВ , тормозящее движение электронов к аноду. Определялась зависимость тока I в цепи анода от приложенного напряжения U . Полученные результаты приведены на рис. 3.23.


Рис. 3.23. Зависимость тока I в цепи анода от приложенного напряжения U в опыте Франка - Герца

Сила тока сначала монотонно возрастает, достигает максимума при напряжении 4,9 В , после чего с ростом U резко падает, достигает минимума и снова начинает расти. Максимумы силы тока повторяются при напряжениях 9,8 В , 14,7 В и т. д. Чередование максимумов на равном расстоянии друг от друга доказало дискретность изменения энергии атома.

Видео 3.10. Опыт Франка и Герца. Демонстрационная установка. Видео 3.11. Опыт Франка и Герца. Сравнение ВАХ для неона и гелия. Видео 3.12. Опыт Франка и Герца. Лабораторная установка 1. Видео 3.12. Опыт Франка и Герца. Лабораторная установка 2.

Атомный номер элемента - целое число, так что после округления получаем Z = 2 , что соответствует гелию.

Как отмечалось выше, еще до появления теории Бора был изучен спектр водородного атома и эмпирически установлена формула (3.1). Но при наблюдении спектра Солнца были замечены линии, казалось бы, нарушающие эту формулу, так как они соответствовали полуцелым значениям n и k . После появления теории Бора стало ясно, что квантовые числа n и k все-таки должны быть целыми, а кажущиеся полуцелые значения можно объяснить по-другому. Действительно, из формулы (3.6) для частот, испускаемых водородоподобным атомом,следует, что

то есть наблюдавшиеся линии принадлежат иону элемента с Z = 2 . Как известно, этот элемент носит «солнечное» имя - гелий.

Ко времени создания теории Бора об атоме водорода имелись следующие экспериментальные сведения. Атом водорода состоит из ядра (протона), несущего положительный заряд, равный по величине заряду электрона, и одного электрона, который согласно планетарной модели Резерфорда, движется вокруг ядра по круговой или эллиптической орбите. Размеры атома водорода определяются диаметром орбиты электрона и составляют несколько больше 10 -10 м .

Ядерная модель атома в сочетании с классической механикой и электродинамикой оказалась неспособной объяснить ни устойчивость атома, ни характер атомного спектра. Выход из создавшегося тупика был найден в 1913 г. датским физиком Нильсом Бором, правда, ценой введения предположений, противоречащих классическим представлениям. Допущения, сделанные Бором, содержатся в двух высказанных им постулатах.

Первый постулат Бора (постулат стационарных состояний ) гласит:

из бесконечного множества электронных орбит, возможных с точки зрения классической механики, осуществляются в действительности только некоторые дискретные орбиты, удовлетворяющие определенным квантовым условиям. Электрон, находящийся на одной из этих орбит, несмотря на то, что он движется с ускорением, не излучает электромагнитных волн (света).

Согласно первому постулату атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию. Стационарным состояниям соответствуют стационарные орбиты, по которым электрон может вращаться вокруг ядра неопределенно долго, не излучая энергию. Энергия атома может измениться лишь при скачкообразном переходе электрона из одного энергетического состояния в другое.

Второй постулат Бора (правило частот ) формулируется следующим образом: излучение испускается или поглощается в виде светового кванта энергии при переходе электрона из одного стационарного (устойчивого) состояния в другое (рис. 4.4). Величина светового кванта равна разности энергий тех стационарных состояний, между которыми совершается квантовый переход электрона:

. (4.3)

Отсюда следует, что изменение энергии атома, связанное с излучением при

поглощении фотона, пропорционально частоте ν:

, (4.4)

т.е. частота излучаемого света может быть представлена в виде разности двух величин, характеризующих энергию излучающей системы.

Второй постулат Бора также противоречит электродинамике Максвелла. По Бору частота излучения определяется только изменением энергии атома и никак не зависит от характера движения электрона. А согласно Максвеллу (т.е. с точки зрения классической электродинамики) частота излучения зависит от характера движения электрона. Согласно теории Бора энергия электрона в атоме водорода , находящегося на n-м энергетическом уровне, равна:


Важную роль в развитии планетарной модели сыграли эмпирические закономерности, полученные для линейчатого спектра атома водорода.

В 1858 г. швейцарский физик И. Бальмер установил, что частоты девяти линий в видимой области спектра водорода удовлетворяют соотношению

. (4.5)

Здесь – частота световой волны, – постоянная, получившая название постоянной Ридберга, m =3,4, 5, …, 11.

Открытие водородной серии Бальмера (4.5) послужило толчком для обнаружения других серий в спектре атома водорода в начале 20 века.

Из формулы (4.5) видно, что по мере увеличения m частота линий спектра возрастает, при этом интервалы между соседними частотами уменьшаются, так что при частота . Максимальное значение частоты в серии Бальмера, полученное при , называется границей серии Бальмера, за пределами которой находится непрерывный спектр.

В ультрафиолетовой области спектра водорода находится серия Лаймана:

, m =2,3,4… (4.6)

В инфракрасной области расположены еще четыре серии:

Серия Пашена, , m = 4,5,6…

Серия Брэкета , m = 5,6,7… (4.7)

Серия Пфунда , m = 6,7,8…

Серия Хэмфри , m = 7,8,9…

Как уже отмечалось, частоты всех линий спектра атома водорода представляются одной формулой (4.2).

Частота линии в каждой серии стремится к предельному (максимальному) значению , которое называется границейсерии. Спектральные серии Лаймана и Бальмера обособлены, остальные серии частично перекрываются. Например, границы (длины волн) первых трех серий (Лаймана, Бальмера, Пашена) соответственно равны 0,0912 мкм, 0,3648 мкм, 0, 8208 мкм (λ min = c /ν max).

Бором было введено правило квантования орбит , которое гласит: в стационарном состоянии атома электрон, двигаясь по круговой орбите радиуса r , должен иметь дискретные, т.е. квантованные, значения момента импульса, удовлетворяющие условию

n =1, 2, 3…, (4.8)

где n  главное квантовое число.

Рассмотрим электрон (рис. 4.5), движущийся со скоростью V в поле атомного ядра с зарядом Ze. Квантовая система, состоящая из ядра и только одного электрона, называется водородноподобным атомом. Таким образом, термин «водородноподобный атом» применим, помимо атома водорода, у которого Z = 1, к однократно ионизированному атому гелия + , к двукратно ионизированному атому лития Li +2 и т. д.

На электрон, движущийся по круговой стационарной орбите, действует электрическая, т.е. кулоновская сила притяжения со стороны ядра

. (4.9)

В соответствии со вторым законом Ньютона запишем:

, (4.10)

т.е. кулоновская сила притяжения компенсируется центробежной силой.

Подставив в формулу (4.10) выражение для скорости из (4.8) и решив полученное уравнение относительно r n , получим набор дискретных значений радиусов орбит электрона в водородоподобных атомах:

, (4.11)

где n = 1,2,3… .

С помощью формулы (4.11) определяют радиусы разрешенных стационарных орбит в боровской полуквантовой модели атома. Число n = 1 соответствует ближайшей к ядру орбите, поэтому для атома водорода (Z =1) радиус первой орбиты

м , (4.12)

а соответствующая этой орбите скорость электрона

.

Наименьший радиус орбиты называется первым боровским радиусом

(). Из выражения (4.11) видно, что радиусы более далеких от ядра орбит для водородоподобных атомов увеличиваются пропорционально квадрату числа n (рис. 4.6)

(4.13)

Теперь рассчитаем для каждой из разрешенных орбит полную энергию электрона, которая состоит из его кинетической и потенциальной энергий:

. (4.14)

Напомним, что потенциальная энергия электрона в поле положительно заряженного ядра является величиной отрицательной. Подставляя в выражение (4.14) значение скорости v из (4.8), а затем, используя формулу (4.13) для r , получаем ():

, n = 1, 2, 3 … (4.15)

Отрицательный знак в выражении (4.15) для энергии атома обусловлен тем, что за нулевое значение потенциальной энергии электрона принято считать то, которое соответствует удалению электрона на бесконечность от ядра.

Орбита с самым малым радиусом соответствует наименьшему значению энергии и называется К - орбитой, за ней следует L - орбита, М – орбита и т.д. При движении электронов по этим орбитам атом находится в устойчивом состоянии.

Схема энергетических уровней для спектральных серий атома водорода, определяемых уравнением (4.15), изображена на рис. 4.7.

Горизонтальные линии соответствуют энергиям стационарных состояний.

Расстояния между энергетическими уровнями пропорциональны квантам энергий, испускаемых атомом при соответствующих переходах электрона (изображены стрелками). При поглощении атомом квантов энергии направления стрелок следует изменить на противоположные.

Из выражения (4.14) видно, что в планетарной модели Бора энергетические состояния атома водорода характеризуются бесконечной последовательностью энергетических уровней E n . Значения E n обратно пропорциональны квадрату числа n , которое называется главным квантовым числом . Энергетическое состояние атома с n =1 называется основным или нормальным, т.е. невозбужденным состоянием, которое соответствует минимальному значению энергии. Если n > 1 состояние атома является возбужденным ().

Энергия E 1 основного состояния атома водорода из (4.15) равна│

– 13,53 эВ .

Энергия ионизации атома водорода,т.е. E i = │E 1 - E ∞ │= 13,53 эВ, равна работе, совершаемой при перемещении электрона из основного состояния (n =1) в бесконечность без сообщения ему кинетической энергии.