До сдачи ЕГЭ по математике остается все меньше времени. Обстановка накаляется, нервы у школьников, родителей, учителей и репетиторов натягиваются все сильнее. Снять нервное напряжение вам помогут ежедневные углубленные занятия по математике. Ведь ничто, как известно, так не заряжает позитивом и не помогает при сдаче экзаменов, как уверенность в своих силах и знаниях. Сегодня репетитор по математике расскажет вам о решении систем логарифмических и показательных неравенств, заданий, традиционно вызывающих трудности у многих современных старшеклассников.

Для того, чтобы научиться решать задачи C3 из ЕГЭ по математике как репетитор по математике рекомендую вам обратить внимание на следующие важные моменты.

1. Прежде чем приступить к решению систем логарифмических и показательных неравенств, необходимо научиться решать каждый из этих типов неравенств в отдельности. В частности, разобраться с тем, как находится область допустимых значений, проводятся равносильные преобразования логарифмических и показательных выражений. Некоторые связанные с этим тайны вы сможете постичь, изучив статьи « » и « ».

2. При этом необходимо осознавать, что решение системы неравенств не всегда сводится к решению отдельно каждого неравенства и пересечению полученных промежутков. Иногда, зная решение одного неравенства системы, решение второго значительно упрощается. Как репетитор по математике, занимающийся подготовкой школьников к сдаче выпускных экзаменов в формате ЕГЭ, раскрою в этой статье парочку связанных с этим секретов.

3. Необходимо четко уяснить для себя разницу между пересечением и объединением множеств. Это одно из важнейших математических знаний, которое опытный профессиональный репетитор старается дать своему ученику уже с первых занятий. Наглядное представление о пересечении и объединении множеств дают так называемые «круги Эйлера».

Пересечением множеств называется множество, которому принадлежат только те элементы, которые есть у каждого из этих множеств.

пересечением

Изображение пересечения множеств с помощью «кругов Эйлера»

Объяснение на пальцах. У Дианы в сумочке находится «множество», состоящее из {ручки , карандаша , линейки , тетрадки , расчески }. У Алисы в сумочке находится «множество», состоящее из {записной книжки , карандаша , зеркальца , тетрадки , котлеты по-киевски }. Пересечением этих двух «множеств» будет «множество», состоящее из {карандаша , тетрадки }, поскольку оба этих «элемента» есть и у Дианы, и у Алисы.

Важно запомнить! Если решением неравенства является промежуток а решением неравенства является промежуток то решением систем:

является промежуток то есть пересечение исходных промежутков. Здесь и далее под подразумевается любой из знаков title="Rendered by QuickLaTeX.com" height="17" width="93" style="vertical-align: -4px;">а под — ему противоположный знак.

Объединением множеств называется множество, которое состоит из всех элементов исходных множеств.

Другими словами, если даны два множества и то их объединением будет являться множество следующего вида:

Изображение объединения множеств с помощью «кругов Эйлера»

Объяснение на пальцах. Объединением «множеств», взятых в предыдущем примере будет «множество», состоящее из {ручки , карандаша , линейки , тетрадки , расчески , записной книжки , зеркальца , котлеты по-киевски }, поскольку оно состоит из всех элементов исходных «множеств». Одно уточнение, которое может оказаться не лишним. Множество не может содержать в себе одинаковых элементов.

Важно запомнить! Если решением неравенства является промежуток а решением неравенства является промежуток то решением совокупности:

является промежуток то есть объединение исходных промежутков.

Перейдем непосредственно к примерам.

Пример 1. Решите систему неравенств:

Решение задачи C3.

1. Решаем сперва первое неравенств. Используя замену переходим к неравенству:

2. Решаем теперь второе неравенство. Область его допустимых значений определяется неравенством:

Title="Rendered by QuickLaTeX.com">

В области допустимых значений с учетом того, что основание логарифма title="Rendered by QuickLaTeX.com" height="18" width="52" style="vertical-align: -4px;"> переходим к равносильному неравенству:

Исключая решения, не входящие в область допустимых значений, получаем промежуток

3. Ответом к системе неравенств будет пересечение

Полученные промежутки на числовой прямой. Решение — их пересечение

Пример 2. Решите систему неравенств:

Решение задачи C3.

1. Решаем сперва первое неравенство. Умножаем обе части на title="Rendered by QuickLaTeX.com" height="14" width="55" style="vertical-align: 0px;"> и делаем замену в результате чего приходим к неравенству:

Переходим к обратной подстановке:

2.

Title="Rendered by QuickLaTeX.com">

Графическое изображение полученных промежуток. Решение системы — их пересечение

Пример 3. Решите систему неравенств:

Решение задачи C3.

1. Решаем сперва первое неравенство. Умножаем обе его части на title="Rendered by QuickLaTeX.com" height="18" width="61" style="vertical-align: -4px;"> после чего получаем неравенство:

Используя подстановку переходим к следующему неравенству:

Переходим к обратной подстановке:

2. Решаем теперь второе неравенство. Определим сначала область допустимых значений этого неравенства:

ql-right-eqno">

Обращаем внимание, что

Тогда с учетом области допустимых значений получаем:

3. Находим общее решения неравенств. Сравнение полученных иррациональных значений узловых точек — задача в данном примере отнюдь не тривиальная. Сделать это можно следующим образом. Так как

Title="Rendered by QuickLaTeX.com">

то и окончательный ответ к системе имеет вид:

Пример 4. Решите систему неравенств:

Решение задачи С3.

1. Решим сперва второе неравенство:

2. Первое неравенство исходной системы представляет собой логарифмическое неравенство с переменным основанием. Удобный способ решения подобных неравенств описан в статье «Сложные логарифмические неравенства », в его основе лежит простая формула:

Вместо знака может быть подставлен любой знак неравенства, главное, чтобы он был один и тот же в обоих случаях. Использование данной формулы существенно упрощает решение неравенства:

Определим теперь область допустимых значений данного неравенства. Она задается следующей системой:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Легко видеть, что одновременно этот промежуток будет являться и решением нашего неравенства.

3. Окончательным ответом исходной системы неравенств будет пересечение полученных промежутков, то есть

Пример 5. Решите систему неравенств:

Решение задания C3.

1. Решаем сперва первое неравенство. Используем подстановку Переходим к следующему квадратному неравенству:

2. Решаем теперь второе неравенство. Область его допустимых значений определяется системой:

Title="Rendered by QuickLaTeX.com">

Данное неравенство равносильно следующей смешанной системе:

В области допустимых значений, то есть при title="Rendered by QuickLaTeX.com" height="18" width="53" style="vertical-align: -4px;"> используя равносильные преобразования переходим к следующей смешанной системе:

С учетом области допустимых значений получаем:

3. Окончательным решением исходной системы является

Решение задачи C3.

1. Решаем сперва первое неравенство. Равносильными преобразованиями приводим его к виду:

2. Решаем теперь второе неравенство. Область его допустимых значений определяется промежутком: title="Rendered by QuickLaTeX.com" height="14" width="68" style="vertical-align: 0px;"> Используя замену переменной переходим к следующему квадратичному неравенству:

Этот ответ целиком принадлежит области допустимых значений неравенства.

3. Пересечением полученных в предыдущих пунктах промежутков получаем окончательный ответ к системе неравенств:

Сегодня мы с вами решали системы логарифмических и показательных неравенств. Задания подобного рода предлагались в пробных вариантах ЕГЭ по математике в течение всего ныне идущего учебного года. Однако, как репетитор по математике, имеющий опыт подготовки к ЕГЭ, могу сказать, что это вовсе не означает, что аналогичные задания будут в реальных вариантах ЕГЭ по математике в июне.

Позволю себе высказать одно предостережение, адресованное в первую очередь репетиторам и школьным учителям, занимающимся подготовкой старшеклассников к сдаче ЕГЭ по математике. Весьма опасно готовить школьников к экзамену строго по заданным темам, ведь в этом случае возникает риск полностью «завалить» его даже при незначительном изменении ранее заявленного формата заданий. Математическое образование должно быть полным. Уважаемые коллеги, пожалуйста, не уподобляйте роботам своих учеников так называемым «натаскиванием» на решение определенного типа задач. Ведь нет ничего хуже формализации мышления человека.

Всем удачи и творческих успехов!


Сергей Валерьевич

Если пробовать, то есть два варианта: получится или не получится. Если не пробовать — всего один.
© Народная мудрость

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .

Основные свойства показательной функции y = a x :

График показательной функции

Графиком показательной функции является экспонента :

Графики показательных функций (экспоненты)

Решение показательных уравнений

Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

Title="Rendered by QuickLaTeX.com">

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

Title="Rendered by QuickLaTeX.com">

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Ответ: x = 6.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение: представим исходное неравенство в виде:

Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Воспользуемся подстановкой:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t :

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

t , находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.


Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Иррациональные неравенства

Под иррациональным неравенством понимается неравенство, в котором неизвестные величины стоят под знаком радикала. Решение таких неравенств обычно состоит в том, что с помощью некоторых преобразований их заменяют равносильными им рациональными уравнениями, неравенствами или системами уравнений и неравенств (зачастую смешанными системами, т.е. такими, в которые входят как уравнения, так и неравенства), и дальнейшее решение может идти по шагам, изложенным выше. Этими преобразованиями является, кроме замены переменных (введение новых переменных) и разложения на множители, еще и возвышение обеих частей неравенства в одну и ту же степень. Однако, при этом надо следить за равносильностью переходов от одного неравенства к другому. При бездумном возведении в степень корни неравенства могут одновременно и теряться, и приобретаться. Например, возведя в квадрат верное неравенство -1<2, мы получим верное неравенство 1<4; из верного неравенства -5<2 получается уже неверное неравенство 25<4;из неверного неравенства 1<-2 получим верное неравенство 1<4; наконец, из неверного неравенства 5<2 получим неверное неравенство 25<4. Вы видите, что возможны все комбинации верных и неверных неравенств!

Однако верно основное используемое здесь утверждение: если обе части неравенства неотрицательны, то оно равносильно неравенству, полученному из него почленным возведением в степень.

При решении неравенств таким способом нужно следить, чтобы не приобрести посторонних решений. Поэтому полезно там, где это возможно, находить область определения неравенства, а также область возможных значений решений.

Показательные и логарифмические неравенства

Решению показательных и логарифмических неравенств предшествует изучение свойств соответствующих функций; выполнение множества заданий на преобразования показательных и логарифмических выражений; решение уравнений, содержащих логарифмы и переменные в показателе степени. Решение простейших неравенств, которыми считаются

где означает одно из неравенств <,>,.

Дело в том, что обычно данная тема вводится как абсолютно новая, опирающаяся лишь на изученные ранее свойства этих функций. Целесообразно, на мой взгляд, связывать её и с решением неравенств в целом (т.е. с уже известным алгоритмом). Стоит заметить, что на прямую метод интервалов использовать нельзя. Но решение разнообразных показательных и логарифмических неравенств производится на основе следующих правил:

Если a>1, то,

Если 0

Если a>1, то

Если 0

Где знак означает противоположный по значению знаку.

Пользуясь которыми показательные и логарифмические неравенства обычно сводят к рациональным, которые уже можно решать описанным выше методом интервалов.

Неравенства, содержащие тригонометрические функции

Данная тема плохо освещена в учебной литературе, а в некоторых учебниках вообще вынесена за рамки изучаемого курса (о чем уже говорилось в I главе данной работы). Из тригонометрических неравенств рассматриваются, как правило, только простейшие типа

Тогда как задания, представленные в практической части, относящейся к данному пункту, встречаются в сборниках конкурсных задач, в сборниках для абитуриентов и материалах для вступительных экзаменов на технические факультеты ВУЗов. Т.е. данный материал не входит в обязательный для изучения в основной и старшей школе, но является полезным.

Метод интервалов особенно эффективен при решении неравенств, содержащих тригонометрические функции. При решении этим методом чисто тригонометрических неравенств вместо числовой оси удобно использовать числовую окружность, которая корнями соответствующих тригонометрических уравнений (числителя и знаменателя) разбивается на дуги, играющие ту же роль, что и интервалы на числовой оси. На этих дугах тригонометрическое выражение, соответствующее решаемому неравенству, имеет постоянные знаки, для определения которых можно использовать правило отдельной «удобной» точки и свойство кратности корней. Часто для определения самих дуг вовсе не надо находить все (бесконечное) множество корней соответствующих уравнений; достаточно из этих уравнений найти значения основных тригонометрических функций (синуса, косинуса, тангенса, котангенса) и на числовой окружности отметить точки, соответствующие этим значениям.

Использовать числовую окружность непосредственно для решения исходного тригонометрического неравенства метод интервалов можно, если все функции, через которые записано неравенство, имеют основной (наименьший положительный) период или, где m - некоторое целое положительное число. Если основной период этих функций больше или, то следует сначала произвести замену переменных, а затем использовать числовую окружность.

Если неравенство содержит как тригонометрические, так и другие функции, то для решения его методом интервалов следует использовать числовую ось.

приложение №3

Урок 225. Рациональные, иррациональные, показательные и тригонометрические неравенства.

Дата проведения:

Тип урока: урок обобщения и систематизации знаний по данной теме.

Цели урока:

обобщение знаний о способах решения показательных неравенств. Подготовка к ЕГЭ;

формирование у учащихся адекватной самооценки и взаимооценки при работе в группе;

развитие математической речи при комментировании решения, при составлении алгоритмов выполнения задания; умения преодолевать трудности умения работать со справочной литературой.

воспитание взаимопомощи.

Знания, умения, навыки и качества, которые актуализируют/приобретут/закрепят/др. обучающиеся в ходе урока:

систематизируют свои знания по данной теме;

закрепят теоретические знания по данной теме;

применят знания в нестандартной ситуации.

Необходимое оборудование и материалы:

Ноутбуки для индивидуального тестирования, мультимедиа проектор;

презентация к уроку;

письменные принадлежности, раздаточный материал, листы самооценки.

Методы обучения: технология проблемно-ситуативного обучения с применением кейс-стадии.

Этапы урока:

1.Орг момент - 1 минута

2. формулировка темы и целей урока 1 минута

3. Актуализация опорных знаний. Блиц-опрос.(3 мин.)

4. Результаты блиц опроса - 2 минуты

5. Проверка домашнего задания. Выставление оценок. 3 минуты

6.Домашнее задание дифференцированного характера с правом выбора. 1 мин

7.Повторение теории и индуктор (нацеливание на выполнение) 2 мин

8. Отработка навыков решения. Работа со справочной литературой. 5 неравенств 10 мин

9. Афиширование 2 минуты

10. Разрыв. Незнакомые задачи – 2 мин

11. решение этих задач 4 минуты

12. Афиширование решения новых задач 4 мин

13. Рефлексия – 2 мин

14. Самооценка 1 минута

Перед началом урока учащиеся рассаживаются в соответствии с тремя уровнями подготовки на определённые ряды. Отметим, что навыки по рассматриваемой теме не относятся к обязательным требованиям к подготовке учащихся, поэтому, у меня её изучают только более подготовленные учащиеся (1 и 2 группа).

Цель урока. Разобрать способы решения иррациональных неравенств среднего и повышенного уровня сложности, разработать опорные схемы.

1 этап урока - организационный (1мин.)

Учитель сообщает учащимся тему урока, цель и поясняет назначение раздаточного материала, который находится на партах.

2 этап урока (5мин.)

Устная работа на повторение по решению простейших задач по теме «Степень с рациональным показателем»

Учитель предлагает учащимся по очереди отвечать на вопросы, комментируя свой ответ с ссылкой на соответствующий теоретический факт.

Степень с рациональным показателем

Упростить: 1) 12m 4 /3m 8

2) 6с 3/7 + 4 (с 1/7) 3

3) (32х 2) 1/5 · х 3/5

4) 2 4,6а · 2 -1,6а

5) 2х 0,2 · х -1,2

6) 4х 3/5 · х 1/10

8) 2х 4/5 · 3х 1/5

9) (3х 2/5) 2 + 2х 4/5

10) 3х 1/2 · х 3/2

Вычислить: 11) 4 3,2 m · 4 -1,2 m , при m =1/4

12) 6 -5,6а · 6 3,6а, при а = 1/2

13) 5 · 27 2/3 - 16 1/4

14) 3 4,4с · 3 -6,4с, при с =1/2

15) 3х 2/5 · х 3/5 , при х = 2

3 этап урока - изучение новой темы (20мин.), лекция

Учитель предлагает 3 группе учащихся приступить к работе над повторением с карточками - консультантами по теме «Простейшие тригонометрические уравнения» (т.к. изучаемый материал повышенного уровня сложности и к обязательному не относится). Учащиеся 3 группы - это, как правила учащиеся со слабой математической подготовкой, педагогически запущенные школьники. После выполнения задания происходит обмен карточками внутри группы. Более подготовленные учащиеся приступают к разбору новой темы.

Перед разбором способов решений иррациональных неравенств учащимся необходимо напомнить основные теоретические факты, на основе которых будут строится опорные схемы для равносильных переходов. В зависимости от уровня подготовки учащихся это могут быть либо устные ответы на вопросы учителя, либо совместная работа учителя и учащихся, но в любом случае на уроке должно прозвучать следующее.

Определение 1. Неравенства, имеющие одно и то же множество решений, называют равносильными.

При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

Например, неравенство (х - 3)/(х 2 + 1) равносильны, т.к. имеют одно и то же множество решений: х. Неравенства 2х/(х - 1) 1 и 2х х - 1 не равносильны, т.к. решениями первого являются решения х 1, а решениями второго - числа х -1.

Определение 2. Область определения неравенства - это множество таких значений х, при которых имеют смысл обе части неравенства.

Мотивация. Неравенства сами по себе представляют интерес для изучения, т.к. именно с их помощью на символическом языке записываются важнейшие задачи познания реальной действительности. Часто неравенство служит важным вспомогательным средством, позволяющим доказать или опровергнуть существование каких-либо объектов, оценить их количество провести классификацию. Поэтому, с неравенствами приходится сталкиваться не менее часто, чем с уравнениями.

Определение. Неравенство, содержащие переменную под знаком корня, называется иррациональным.

Пример 1. √(5 - х)

Какова область определения неравенства?

При каком условии при возведении в квадрат обеих частей получится равносильное неравенство?

√(5 - х) 5 - х -11

Пример 2. √10 + х - х 2 ≥ 2 10 + х - х 2 ≥ 0 10 + х - х 2 ≥ 4

10 + х - х 2 ≥ 4

т.к. каждое решение второго неравенства системы является решением первого неравенства.

Пример 3. Решить неравенства

б) √2х 2 + 5х - 3 ≤ 0 2х 2 + 5х - 3 = 0

Разберём три типичных примера, из которых будет видно, как при решении неравенств делать равносильные переходы, когда напрашивающееся преобразование равносильным не является.

Пример 1. √1 - 4х х + 11.

Хотелось бы, конечно, возвести обе части в квадрат, чтобы получить квадратное неравенство. При этом мы можем получить не равносильное неравенство. Если рассматривать только те х для которых обе части не отрицательны (левая неотрицательно заведомо), то возведение в квадрат будет всё таки возможным. Но что же делать с теми х, для которых правая часть отрицательна? А ничего не делать, поскольку ни одно их этих х решением неравенства не будет: ведь для всякого решения неравенства правая часть больше левой, являющейся неотрицательным числом, и, стало быть, сама не отрицательна. Итак, следствием нашего неравенства будет такая система

1 - 4х (х + 11) 2

Тем не менее, эта система не обязана быть равносильной исходному неравенству. Областью определения полученной системы является вся числовая прямая, в то время как исходное неравенство определено лишь для тех х, для которых 1 - 4х ≥ 0. Значит если мы хотим, чтобы наша система была равносильна неравенству надо приписать это условие:

Ответ: (- 6; ¼]

Предлагается сильному ученику провести рассуждение в общем виде, получится вот, что

√f (х) g (х) f (х) (g (х)) 2

g (х) ≥ 0

f (х) ≥ 0.

Если бы в исходном неравенстве стоял знак ≤ вместо f (х) ≤ (g (х)) 2 .

Пример 2. √х х - 2

Здесь опять можно возвести в квадрат для тех х, для которых выполнено условие х - 2 ≥ 0. Однако теперь уже нельзя отбросить те х, для которых правая часть отрицательна: ведь в этом случае правая часть будет меньше заведомо не отрицательной левой, так что все такие х будут решениями неравенств. Впрочем, не все, а те которые входят в область определения неравенства, т.е. для которых х ≥ 0. Какие случаи следует рассмотреть?

1 случай: если х - 2 ≥ 0, то из нашего неравенства следует система

2 случай: если х - 2

При разборе случаев возникает составное условие под названием «совокупность». Получим равносильную неравенству совокупность двух систем

Сильному учащемуся предлагается провести рассуждение в общем, виде, то получится вот, что:

√f (х) g (х) f (х) (g (х)) 2

g (х) ≥ 0

f (х) ≥ 0

g (х) .

Если бы в исходном неравенстве стоял знак ≥ вместо, то в качестве первого неравенства этой системы надо было взять f (х) ≥ (g (х)) 2 .

Пример 3. √х 2 - 1 √х + 5.

Какие значения принимают выражения стоящие в левой и правой части?

Можно ли возвести в квадрат?

Какова область определения неравенств?

Получим х 2 - 1 х + 5

Какое условие лишнее?

Таким образом, получим, что данное неравенство равносильно системе

Сильному учащемуся предлагается провести рассуждение в общем виде, то получится вот, что:

√f (х) √g (х) f (х) g (х)

g (х) ≥ 0.

Подумайте, что изменится, если вместо в исходном неравенстве будет стоять знак ≥, ≤ или

На доске вывешиваются 3 схемы решения иррациональных неравенства, ещё раз обсуждается принцип их построения.

4 этап - закрепление знаний (5мин.)

Учащимся 2 группы предлагается указать, какой системе или их совокупности равносильно неравенство № 167 (Алгебра и начала анализа 10-11 кл. М, Просвещение, 2005, Ш.А.Алимов)

Двум наиболее подготовленным учащимся из этой группы предлагается решить на доске неравенства: № 1. √х 2 - 1 1

№ 2. √25 - х 2

Учащиеся 1 группы получают аналогичное задание, но более высокого уровня сложности № 170 (Алгебра и начала анализа 10-11 кл. М, Просвещение, 2005, Ш.А.Алимов)

одному наиболее подготовленному учащемуся из этой группы предлагается решить на доске неравенство: √4х - х 2

При этом всем учащимся разрешается пользоваться конспектом.

В это время учитель работает с учащимися 3 группы: отвечает на их вопросы при необходимости помогает; и контролирует решение задач на доске.

По истечению времени каждой группе выдаётся для проверки лист ответов (можно показать ответы на экране, используя мультимедийную систему).

5 этап урока - обсуждение решений задач, представленных на доске (7мин.)

Учащиеся, выполнявшие задачи у доски, комментируют свои решения, а остальные вносят при необходимости коррективы и выполняют записи в тетрадях.

6 этап урока - подведение итогов урока, комментарии по домашнему заданию (2мин.)

3 группа обмен карточками внутри группы.

2 группа № 168 (3, 4)

1 группа № 169 (5), № 170 (6)