5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г. Лекция 6. Сравнение двух выборок 6-1. Гипотеза о равенстве средних. Парные выборки 6-2.Доверительный интервал для разности средних. Парные выборки 6-3. Гипотеза о равенстве дисперсий 6-4. Гипотеза о равенстве долей 6-5. Доверительный интервал для разности долей


2 Иванов О.В., 2005 В этой лекции… В предыдущей лекции мы проверяли гипотезу о равенстве средних двух генеральных совокупностей и построили доверительный интервал для разности средних для случая независимых выборок. Теперь мы рассмотрим критерий проверки гипотезы о равенстве средних и построим доверительный интервал для разности средних в случае парных (зависимых) выборок. Затем в секции 6-3 будет проверяться гипотеза о равенстве дисперсий, в секции 6-4 – гипотеза о равенстве долей. В заключение мы построим доверительный интервал для разности долей.


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве средних. Парные выборки Постановка проблемы Гипотезы и статистика Последовательность действий Пример


4 Иванов О.В., 2005 Парные выборки. Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух генеральных совокупностей. Выборки являются парными (зависимыми). 2. Обе выборки имеют объем n 30. Если нет, то обе выборки взяты из нормально распределенных генеральных совокупностей. Что мы хотим Проверить гипотезу о разности средних двух генеральных совокупностей:


5 Иванов О.В., 2005 Статистика для парных выборок Для проверки гипотезы используется статистика: где - разность между двумя значениями в одной паре - генеральное среднее для парных разностей - выборочное среднее для парных разностей - стандартное отклонение разностей для выборки - число пар


6 Иванов О.В., 2005 Пример. Тренинг студентов Группа из 15 студентов прошла тест до тренинга и после. Результаты теста в таблице. Проверим гипотезу для парных выборок на отсутствие влияния тренинга на подготовку студентов на уровне значимости 0,05. Решение. Подсчитаем разности и их квадраты. СтудентДоПосле Σ= 21 Σ= 145


7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145. 2,145."> 2,145."> 2,145." title="7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145."> title="7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145.">




9 Иванов О.В., 2005 Решение Статистика принимает значение: Шаг 5. Сравним полученное значение с критической областью. 1,889


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Доверительный интервал для разности средних. Парные выборки Постановка задачи Метод построения доверительного интервала Пример


11 Иванов О.В., 2005 Описание проблемы Что мы имеем Имеем две случайные парные (зависимые) выборки объема n из двух генеральных совокупностей. Генеральные совокупности имеют нормальный закон распределения с параметрами 1, 1 и 2, 2 либо объемы обеих выборок 30. Что мы хотим Оценить среднее значение парных разностей для двух генеральных совокупностей. Для этого построить доверительный интервал для среднего в виде:






5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве дисперсий Постановка проблемы Гипотезы и статистика Последовательность действий Пример


15 Иванов О.В., 2005 В ходе исследования… Исследователю может понадобиться проверить предположение, о равенстве дисперсий двух изучаемых генеральных совокупностей. В случае, когда эти генеральные совокупности имеют нормальное распределение, для этого существует F-критерий, называемый также критерием Фишера. В отличие от Стьюдента, Фишер не работал на пивном заводе.


16 Иванов О.В., 2005 Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух нормально распределенных генеральных совокупностей. 2. Выборки являются независимыми. Это значит, что между субъектами выборок нет связи. Что мы хотим Проверить гипотезу о равенстве дисперсий генеральных совокупностей:














23 Иванов О.В., 2005 Пример Исследователь-медик хочет проверить, есть ли различие между частотой биения сердца курящих и некурящих пациентов (кол-во ударов в минуту). Результаты двух случайно отобранных групп приведены ниже. Используя α = 0,05, выясните, прав ли медик. КурящиеНе курящие


24 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для количества степеней свободы числителя 25 и знаменателя 17 находим критическое значение f = 2,19 и критическую область: f > 2,19. Шаг 4. По выборке вычисляем значение статистики: 2,19. Шаг 4. По выборке вычисляем значение статистики:">




5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве долей Постановка проблемы Гипотезы и статистика Последовательность действий Пример


27 Иванов О.В., 2005 Вопрос Из 100 случайно отобранных студентов социологического факультета 43 посещают спецкурсы. Из 200 случайно отобранных студентов-экономистов 90 посещают спецкурсы. Отличается ли доля студентов, посещающих спецкурсы, на социологическом и экономическом факультетах? Похоже, что существенно не отличается. Как это проверить? Доля посещающих спецкурсы – доля признака. 43 – количество «успехов». 43/100 – доля успехов. Терминология такая же, как в схеме Бернулли.


28 Иванов О.В., 2005 Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух нормально распределенных генеральных совокупностей. Выборки являются независимыми. 2. Для выборок выполнено np 5 и nq 5. Это означает, что, по крайней мере, 5 элементов выборки имеют изучаемое значение признака, и, по крайней мере, 5 не имеют. Что мы хотим Проверить гипотезу о равенстве долей признака в двух генеральных совокупностях:






31 Иванов О.В., 2005 Пример. Спецкурсы двух факультетов Из 100 случайно отобранных студентов социологического факультета 43 посещают спецкурсы. Из 200 студентов-экономистов 90 человек посещают спецкурсы. На уровне значимости = 0,05, проверьте гипотезу о том, что нет различия между долей посещающих спецкурсы на двух этих факультетах. 33 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице нормального распределения находим критические значения z = – 1,96 и z = 1,96 строим критическую область: z 1,96. Шаг 4. По выборке вычисляем значение статистики.


34 Иванов О.В., 2005 Решение Шаг 5. Сравним полученное значение с критической областью. Полученное значение статистики не попало в критическую область. Шаг 6. Формулируем вывод. Нет оснований отвергнуть основную гипотезу. Доля посещающих спецкурсы не отличается статистически значимо.


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Доверительный интервал для разности долей Постановка задачи Метод построения доверительного интервала Пример





Пусть требуется проверить нулевую гипотезу о нормальном законе распределения случайной величины. Уровень значимости принять =0,001 .

Обычно точные параметры гипотетического нормального закона нам неизвестны, поэтому нулевую гипотезу (Н0) словесно можно сформулировать следующим образом: F(х) является функцией нормального распределения с параметрами М(X) =а = и D(X) = .

Для проверки этой нулевой гипотезы найдем точечные оценки математического ожидания и среднего квадратического отклонения нормально распределенной случайной величины:

При проверке гипотезы о нормальном распределении генеральной совокупности сравниваются эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормальности распределения) частоты. Для этого используются статистика 2 - Пирсона с =k-r-1 степенями свободы (k - число групп, r - число оцениваемых параметров, в настоящем примере оценивались математическое ожидание и среднее квадратическое отклонение, следовательно, r = 2). Если 2расч. 2кр., то нулевая гипотеза отвергается и считается, что предположение о нормальности распределения не согласуется с опытными данными. В противном случае (2расч. < 2кр.) нулевая гипотеза принимается.

Вычисляются теоретические вероятности рi, попадания СВ ХN в частичные интервалы , содержащая β=1–α площади под кривой t ν –распределения (табл.10).

2. Вычисляется по формуле (24) опытное значение Z on статистики Z, для чего вместо X 1 и Y 1 подставляются значения x 1 и y 1 конкретных выборок, а также их выборочные средние и .

3. Если Z on D, то гипотеза Н 0 считается не противоречащей опытным данным и принимается.

Если Z on D, то принимается гипотеза Н 1 .

Если гипотеза Н 0 верна, то Z подчиняется известному t ν –распределению с нулевым средним и с высокой вероятностью β=1–α попадает в D-область принятия гипотезы Н 0 . Когда наблюдаемое, опытное значение Z on попадает в D. Мы рассматриваем это как свидетельство в пользу гипотезы Н 0 .

Когда жe Z 0 n лежит за пределами D (как говорят, лежит в критической области К), что естественно, если верна гипотеза Н 1 , но маловероятно, если верна Н 0 , то нам остается отклонить гипотезу Н 0 , приняв H 1 .

Пример 31.

Сравниваются две марки бензина: А и В. На 11 автомашинах одинаковой мощности по кольцевому шассе испытан по разу Бензин марки А и В. Одна машина в пути вышла из строя н для нее данные по бензину В отсутствуют.

Расход бензина в пересчете на 100 км пути

Таблица 12

i
X i 10,51 11,86 10,5 9,1 9,21 10,74 10,75 10,3 11,3 11,8 10,9 n=11
У i 13,22 13,0 11,5 10,4 11,8 11,6 10,64 12,3 11,1 11,6 - m=10

Дисперсия расхода бензина марок А и В неизвестна и предполагается одинаковой. Можно ли при уровне значимости α=0,05 принять гипотезу о том, что истинные средние расходы μ А и μ В этих видов бензина одинаковы?

Решение. Проверку гипотезы Н 0: μ А -μ В =0 при конкурирующей. Н 1:μ 1 μ 2 делаем по пунктам:

1. Находим выборочные средние и сумму квадратов откло­нений Q.

;

;

2. Вычисляем опытное значение статистики Z

3. Находим из таблицы 10 t-распределения предел t β,ν , для числа степеней свободы ν=m+n–2=19 и β=1–α=0.95. В таблице 10 есть t 0.95.20 =2,09 и t 0.95.15 =2,13, но нет t 0.95.19 . Находим интерполяцией t 0.95.19 =2,09+ =2,10.

4. Проверяем, в какой из двух областей D или К лежит число Z on . Zon=-2,7 D=[-2,10; -2,10].

Поскольку наблюденное значение Z on лежит в критической области, К=R\D, то отбрасываем. Н 0 и приникаем гипотезу Н 1 . В этом случае про и говорят, что их разность значима. Если бы при всех условиях этого примера изменилось бы лишь Q, скажем, Q вдвое возросло, то изменился бы и наш вывод. Увеличение Q вдвое привело бы к уменьшению в раза величины Z on и тогда число Zon попало бы в допустимую область D, так что гипотеза H 0 выдержала бы проверку и была принята. В этом случае расхождение между и объяснялось бы естественным разбросом данных, а не тем, что μ А μ В.

Теория проверки гипотез весьма обширна, гипотезы могут быть о виде закона распределения, об однородности выборок, о независимости сл.величины и т.д.

КРИТЕРИЙ c 2 (ПИРСОНА)

Самый распространенный на практике критерий проверки простой гипотезы. Применяется, когда закон распределения неизвестен. Рассмотрим случайную величину X, над которой проведено n независимых испытаний. Получена реализация x 1 , x 2 ,...,x n . Необходимо проверить гипотезу о законе распределения этой случайной величины.

Рассмотрим случай простой гипотезы. Простая гипотеза проверяет согласование выборки с генеральной совокупностью, имеющей нормальное распределение (известное). По выборкам строим вариационный ряд x (1) , x (2) , ..., x (n) . Интервал разбиваем на подинтервалы. Пусть этих интервалов r. Тогда найдем вероятность попадания X в результате испытания в интервал Di, i=1 ,..., r в случае истинности проверяемой гипотезы.

Критерий проверяет не истинность плотности вероятности, а истинность чисел

С каждым интервалом Di свяжем случайное событие A i - попадание в этот интервал (попадание в результате испытания над X ее результата реализации в Di). Введем случайные величины. m i - количество испытаний из n проведенных, в которых произошло событие A i . m i распределены по биномиальному закону и в случае истинности гипотезы

Dm i =np i (1-p i)

Критерий c 2 имеет вид

p 1 +p 2 +...+p r =1

m 1 +m 2 +...+m r =n

Если проверяемая гипотеза верна, то m i представляет частоту появления события, имеющего в каждом из n проведенных испытаний вероятность p i , следовательно, мы можем рассматривать m i как случайную величину, подчиняющуюся биномиальному закону с центром в точке np i . Когда n велико, то можно считать, что частота распределена асимптотически нормально с теми же параметрами. При правильности гипотезы следует ожидать, что будут асимптотически нормально распределены

связанные между собой соотношением

В качестве меры расхождения данных выборки m 1 +m 2 +...+m r с теоретическими np 1 +np 2 +...+np r рассмотрим величину

c 2 - сумма квадратов асимптотически нормальных величин, связанных линейной зависимостью. Мы ранее встречались уже с аналогичным случаем и знаем, что наличие линейной связи привело к уменьшению на единицу числа степеней свободы.

Если проверяемая гипотеза верна, то критерий c 2 имеет распределение, стремящееся при n®¥ к распределению c 2 с r-1 степенями свободы.

Допустим, что гипотеза неверна. Тогда существует тенденция к увеличению слагаемых в сумме, т.е. если гипотеза неверна, то эта сумма будет попадать в некую область больших значений c 2 . В качестве критической области возьмем область положительных значений критерия


В случае неизвестных параметров распределения каждый параметр уменьшает на единицу количество степеней свободы для критерия Пирсона