Является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией .

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха , когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

C x 0 - безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) - площадь поперечного сечения;
  • для крыльев и оперения - площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов - либо площадь лопастей, либо ометаемая площадь винта;
  • для продолговатых тел вращения ориентированных вдоль потока (фюзеляж, оболочка дирижабля) - приведённая волюметрическая площадь, равная V 2/3 , где V - объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости.

Индуктивное сопротивление

Индуктивное сопротивление (англ. lift-induced drag ) - это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение во-первых сопровождается образованием подъёмной силы, а во-вторых - приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления.

На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы, но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей - вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ , плотности среды ρ и квадрату скорости V:

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X 0 + X i

Так как сопротивление при нулевой подъёмной силе X 0 пропорционально квадрату скорости, а индуктивное X i - обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости, X 0 растёт, а X i - падает, и график зависимости суммарного сопротивления X от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X 0 и X i , при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит наивысшим аэродинамическим качеством .


Wikimedia Foundation . 2010 .

В результате многочисленных опытов, исследований и теоретических обобщений установлена формула для подсчёта силы сопротивления воздуха

где S - площадь поперечного сечения пули,

с - масса воздуха при данных атмосферных условиях;

Скорость пули;

- опытный коэффициент, зависящий от формулы пули и числа который берётся из заранее составленных таблиц.

Величина силы сопротивления зависит от следующих факторов:

Площади поперечного сечения пули. Следовательно, сила сопротивления воздуха прямо пропорциональна площади поперечного сечения пули;

- плотности воздуха. Из формулы видно, что сила сопротивления воздуха прямо пропорциональна плотности воздуха. Таблицы стрельбы составлены для нормальных атмосферных условий. В случае отклонения фактической температуры и давления от нормальных значений необходимо вносить поправки при пользовании таблицами стрельбы;

- скорости пули. Зависимость силы сопротивления воздуха от скорости пули выражается сложным законом. В формулу входят члены V 2 и, устанавливающие зависимость силы сопротивления воздуха от скорости. Для изучения этой зависимости рассмотрим график, показывающий, как влияет скорость пули на силу сопротивления воздуха (рис. 8).

График 1 - Зависимость силы сопротивления от скорости пули

Похожие по виду графики получаются и для артиллерийских снарядов. Из графика следует, что сила сопротивления воздуха возрастает с увеличением скорости пули. Возрастание силы сопротивления до скорости 240 м/сек идёт сравнительно медленно. При скорости, близкой к скорости звука, сила сопротивления воздуха резко растет. Это объясняется образованием баллистической волны и увеличением в связи с этим разности давлений воздуха на головную и дольную части пули;

- формы пули. Форма пули существенно сказывается на функции входящей в формулу. Вопрос о наивыгоднейшей форме пули чрезвычайно сложен и не может решаться на базе одной только внешней баллистики. Очень важным фактором при выборе формы пули является: назначение пули, способ её ведения по нарезам, калибр и вес пули, устройство оружия, для которого она предназначена и др.

Для уменьшения влияния избыточного давления воздуха приходится заострять и удлинять головную часть пули. Это вызывает некоторый поворот фронта головной волны, благодаря чему уменьшается избыточное давление воздуха на головную часть пули. Такое явление можно объяснить тем, что по мере заострения головной части уменьшается скорость, с которой частицы воздуха отталкиваются в стороны от поверхности пули.

Опыт показывает, что форма головной части пули играет второстепенную роль в сопротивлении воздуха. Основным фактором является высота головной части и способ её сопряжения с ведущей частью. Обычно за образующею головной части пули принимают дугу окружности, центр которой находится либо на основании головной части, либо несколько ниже его (рис. 9). Хвостовую часть чаще всего выполняют в виде усечённого конуса с углом наклона образующей (рис. 10).

Рисунок 8 - Форма оживальной части пули

Рисунок 9 - Форма донной части пули

Обтекание воздуха при конусной хвостовой части происходит значительно лучше. Область низкого давления почти отсутствует и вихреобразование значительно менее интенсивно. Ведущею часть пули с точки зрения внешней баллистики выгодно делать, возможно, более короткой. Но при короткой ведущей части затрудняется правильное влияние пули по нарезам ствола: возможен демонтаж оболочки пули. Необходимо заметить, что о наивыгоднейшей форме пули можно говорить лишь для определённой скорости, так как для каждой скорости существует своя наивыгоднейшая форма.

На рис. 9 изображены наивыгоднейшие формы снарядов для различных скоростей. По горизонтальной оси отложены скорости снарядов, по вертикальной - высоты снарядов в калибрах.


Рисунок 9 - Зависимость относительной длины снаряда от скорости

Как видно, с ростом скорости длина головной части, и общая длина снаряда увеличиваются, а хвостовая часть уменьшается. Такая зависимость объясняется тем, что при больших скоростях основная доля силы сопротивления воздуха приходится на головную часть. Поэтому основное внимание уделяется уменьшению сопротивления головной части, что достигается её заострением и удлинением. Хвостовая часть снаряда в этом случае делается короткой, чтобы снаряд не был слишком длинным.

При малых скоростях снаряда давление воздуха на головную часть невелико и разряжение за данной частью хотя и меньше, чем при больших скоростях, но составляет значительную долю всей силы сопротивления воздуха. Поэтому необходимо делать сравнительно длинную коническую хвостовую часть снаряда для уменьшения действия разряженного пространства. Головная часть может быть более короткой, так как её длинна, имеет в этом случае меньшее значение. Заострение хвостовой части особенно велико для снарядов, скорость которых меньше скорости звука. В этом случае наиболее выгодной является каплеобразная форма. Такая форма придаётся минам и авиабомбам.

Опыты по определению

Начиная с 1860 г. В разных странах производились опыты со снарядами различных калибров и форм с целью определения.

График 2 - Кривые для различных форм снарядов: 1, 2, 3 - близкие по форме; 4 - легкая пуля

Рассматривая кривые для снарядов сходной формы, можно убедится, что они имеют также сходный вид. Это даёт возможность приближенно выразить для некоторого снаряда через другого снаряда, принятого как бы за эталон, при помощи постоянного множителя i:

Этот множитель, или отношение данного снаряда к другого снаряда, принятого за эталон, называется коэффициентом формы снаряда. Для определения коэффициента формы какого-либо снаряда надо опытным путём найти для него силу сопротивления воздуха для какой-либо скорости. Тогда по формуле можно найти

Деля полученное выражение на получаем коэффициент формы

Разные учёные дали различные математические выражения для подсчёта Например, Сиачи (график 3) выразил закон сопротивления следующей формулой


где F(V) - функция сопротивления.


График 3 - Закон сопротивления

Функция сопротивления Н.В. Маиевского и Н.А. Забудского меньше, чем функция сопротивления Сиаччи. Переводной множитель от закона сопротивления Сиаччи к закону сопротивления Н.В. Майевского и Н.А. Забудского в среднем равен 0,896.

В Военно-инженерной артиллерийской академии им. Ф.Э. Дзержинского выведен закон сопротивления воздуха для дальнобойных снарядов. Этот закон получен на основании обработки результатов специальных стрельб дальнобойными снарядами и пулями. Функции сопротивления в этом законе выбраны такими, чтобы при баллистических расчётах для дальнобойных снарядов, а также для пуль и оперённых снарядов (мин), коэффициент формы получился по возможности близким к единице. Функция для скоростей, меньших 256 м/сек или больших 1410 м/сек может быть выражена одночленом Определим коэффициент

Для V < 256 м/ сек

Для V > 1410 м/ сек

При задании коэффициента формы всегда следует указывать, по отношению, к какому закону сопротивления он дан. В формуле для определения силы сопротивления воздуха, заменяя получаем на, получаем

Среднее значение коэффициента формы для закона сопротивления Сиаччи приведены в табл. 3.

Таблица 3 - значения i для различных снарядов и пуль

Формирование силы сопротивления воздуха. На рис. 78 и 81 показаны потоки воздуха, образуемые при движении легкового и грузового автомобилей. Сила сопротивления воздуха P w состоит из нескольких составляющих, основной из которых является сила лобового сопротивления. Последняя возникает вследствие того, что при движении автомобиля (см. рис. 78) впереди него создается избыточное давление +АР воздуха, а сзади - пониженное -АР (в сравнении с атмосферным давлением). Подпор воздуха впереди автомобиля создает сопротивление движению вперед, а разрежение воздуха сзади автомобиля образует силу, которая стремится переместить автомобиль назад. Поэтому чем больше разница давлений впереди и сзади автомобиля, тем больше сила лобового сопротивления, а разница давлений, в свою очередь, зависит от размеров, формы автомобиля и скорости его движения.

Рис. 78.

Рис. 79.

На рис. 79 приведены значения (в условных единицах) лобового сопротивления в зависимости от формы тела. Из рисунка видно, что при обтекаемой передней части лобовое сопротивление воздуха снижается на 60%, а при придании обтекаемости задней части - только на 15%. Это свидетельствует о том, что создаваемый впереди автомобиля подпор воздуха оказывает большее влияние на формирование силы лобового сопротивления воздуха, чем разряжение сзади автомобиля. Об обтекаемости задней части автомобиля можно судить по заднему стеклу - при хорошей аэродинамической форме оно не бы-

вает грязным, а при плохой обтекаемости заднее стекло присасывает к себе пыль.

В общем балансе сил сопротивления воздуха на силу лобового сопротивления приходится приблизительно 60%. Среди других составляющих следует выделить: сопротивление, возникающее от прохождения воздуха через радиатор и подкапотное пространство; сопротивление, создаваемое выступающими поверхностями; сопротивление трения воздуха о поверхность и другие дополнительные сопротивления. Значения всех этих составляющих одного порядка.

Суммарная сила сопротивления воздуха P w сосредоточена в центре парусности, представляющем собой центр наибольшей площади сечения тела в плоскости, перпендикулярной к направлению движения. В общем случае центр парусности не совпадает с центром масс автомобиля.

Сила лобового сопротивления воздуха - это произведение площади поперечного сечения тела на скоростной напор воздуха с учетом обтекаемости формы:

где с х - безразмерный коэффициент лобового (аэродинамического ) сопротивления, учитывающий обтекаемость; /’-лобовая площадь или площадь фронтальной проекции, м 2 ; q = 0,5p B v a 2 - скоростной напор воздуха, Н/м 2 . Как видно из размерности, скоростной напор воздуха представляет собой удельную силу, действующую на единицу площади.

Подставив выражение скоростного напора в формулу (114), получим

где v a - скорость автомобиля; р в - плотность воздуха, кг/м 3 .

Лобовая площадь

где а - коэффициент заполнения площади; а = 0,78...0,80 для легковых автомобилей и а = 0,75...0,90 - для грузовых; H a , В а - наибольшие значения соответственно ширины и высоты автомобиля.

Силу лобового сопротивления воздуха рассчитывают также по формуле

где k w = 0,5с х р в - коэффициент сопротивления воздуха, имеющий размерность плотности воздуха - кг/м 3 или Н с 2 /м 4 . На уровне моря, где плотность воздуха р в = 1,225 кг/м 3 , k w = 0,61 с х, кг/м 3 .

Физический смысл коэффициентов k w и с х состоит в том, что они характеризуют свойства обтекаемости автомобиля.

Аэродинамические испытания автомобиля. Аэродинамические характеристики автомобиля исследуют в аэродинамической трубе, одна из которых построена в Российском научно-исследовательском центре по испытаниям и доводке автомототехники. Рассмотрим разработанную в этом центре методику испытаний автомобиля в аэродинамической трубе.

На рис. 80 изображена система осей координат и направления действия составляющих полной аэродинамической силы. При испытаниях определяют следующие силы и моменты: силу лобового аэродинамического сопротивления Р х, боковую силу Р, подъемную силу P v момент крена М х, опрокидывающий момент М у, поворачивающий момент M v

Рис. 80.

В процессе испытаний автомобиль устанавливают на шестикомпонентных аэродинамических весах и закрепляют на платформе (см. рис. 80). Автомобиль должен быть заправлен, укомплектован и загружен в соответствии с технической документацией. Давление воздуха в шинах должно соответствовать заводской инструкции по эксплуатации. Испытаниями управляет ЭВМ в соответствии с программой автоматизированного проведения типовых весовых испытаний. В процессе испытаний специальным вентилятором создаются потоки воздуха, движущиеся со скоростью от 10 до 50 м/с с интервалом 5 м/с. Могут создаваться различные углы натекания воздуха на автомобиль относительно продольной оси. Значения сил и моментов, показанных на рис. 80 и 81, регистрирует и обрабатывает ЭВМ.

При испытаниях измеряют также скоростной (динамический) напор воздуха q. По результатам измерений ЭВМ рассчитывает коэффициенты перечисленных выше сил и моментов, из которых приведем формулу для расчета коэффициента лобового сопротивления:

где q - динамический напор; F - лобовая площадь.

Остальные коэффициенты (с у, c v с тх, с ту, c mz) рассчитываются аналогично с подстановкой в числитель соответствующей величины.

Произведение ^называют фактором аэродинамического сопротивления или фактором обтекаемости.

Значения коэффициента сопротивления воздуха k w и с х для автомобилей разных типов приведены ниже.

Способы снижения силы сопротивления воздуха. Чтобы снизить лобовое сопротивление, улучшают аэродинамические свойства автомобиля или автопоезда: в легковых автомобилях изменяют форму кузова (в основном), а в грузовых - используют обтекатели, тент, лобовое стекло с наклоном.

Антенна, зеркало внешнего вида, багажник над крышей, дополнительные фары и другие выступающие детали или открытые окна увеличивают сопротивление воздуха.

Сила сопротивления воздуха автопоезда зависит не только от формы отдельных звеньев, но и от взаимодействия воздушных потоков, обтекающих звенья (рис. 81). В промежутках между ними образуются дополнительные завихрения, увеличивающие суммарное сопротивление воздуха передвижению автопоезда. У магистральных автопоездов, перемещающихся по автотрассам с высокой скоростью, расход энергии на преодоление сопротивления воздуха может достигать 50% мощности автомобильного двигателя. Чтобы снизить ее, на автопоездах устанавливают дефлекторы, стабилизаторы, обтекатели и другие приспособления (рис. 82). По данным проф. А.Н. Евграфова, применение комплекта навесных аэродинамических элементов снижает коэффициент с х седельного автопоезда на 41%, прицепного - на 45%.

Рис. 81.

Рис. 82.

При скорости до 40 км/ч сила P w меньше силы сопротивления качению на асфальтированной дороге, вследствие чего ее не учитывают. Свыше 100 км/ч сила сопротивления воздуха представляет собой основную составляющую потерь тягового баланса.

Инструкция

Найдите силу сопротивления движению, которая действует на равномерно прямолинейно движущееся тело. Для этого при помощи динамометра или другим способом измерьте силу, которую необходимо приложить к телу, чтобы оно двигалось равномерно и прямолинейно. По третьему закону Ньютона она будет численно равна силе сопротивления движения тела.

Определите силу сопротивления движению тела, которое перемещается по горизонтальной поверхности. В этом случае сила трения прямо пропорциональна силе реакции опоры, которая, в свою очередь равна силе тяжести, действующей на тело. Поэтому сила сопротивления движению в этом случае или сила трения Fтр равна произведению массы тела m, которая измеряется весами в килограммах, на ускорение свободного падения g≈9,8 м/с² и коэффициент пропорциональности μ, Fтр=μ∙m∙g. Число μ называется коэффициентом трения и зависит от поверхностей, входящих в контакт при движении. Например, для трения стали по дереву этот коэффициент равен 0,5.

Рассчитайте силу сопротивления движению тела, движущегося по . Кроме коэффициента трения μ, массы тела m и ускорения свободного падения g, она зависит от угла наклона плоскости к горизонту α. Чтобы найти силу сопротивления движению в этом случае, нужно найти произведения коэффициента трения, массы тела, ускорения свободного падения и косинуса угла, под которым плоскость к горизонту Fтр=μ∙m∙g∙сos(α).

При движении тела в воздухе на невысоких скоростях сила сопротивления движению Fс прямо пропорциональна скорости движения тела v, Fc=α∙v. Коэффициент α зависит от свойств тела и вязкости среды и рассчитывается отдельно. При движении на высоких скоростях, например, при падении тела со значительной высоты или движении автомобиля, сила сопротивления прямо пропорциональна квадрату скорости Fc=β∙v². Коэффициент β дополнительно рассчитывается для высоких скоростей.

Источники:

  • 1 Общая формула для силы сопротивления воздуха На рисунке

Для определения силы сопротивления воздуха создайте условия, при которых тело начнет под действием силы тяжести двигаться равномерно и прямолинейно. Рассчитайте значение силы тяжести, оно будет равно силе сопротивления воздуха. Если тело движется в воздухе, набирая скорость, сила его сопротивления находится при помощи законов Ньютона, также силу сопротивления воздуха можно найти из закона сохранения механической энергии и специальных аэродинамических формул.

Вам понадобится

  • дальномер, весы, спидометр или радар, линейка, секундомер.

Инструкция

Перед измерением сопротивления б/у резистора обязательно выпаяйте его из старой платы или блока. Иначе он может быть шунтирован другими деталями схемы, и вы получите неправильные показания его сопротивления .

Видео по теме

Чтобы найти электрическое сопротивление проводника, воспользуйтесь соответствующими формулами. Сопротивление участка цепи находится по закону Ома. Если же известен материал и геометрические размеры проводника, его сопротивление можно рассчитать при помощи специальной формулы.

Вам понадобится

  • - тестер;
  • - штангенциркуль;
  • - линейка.

Инструкция

Вспомните, что подразумевает собой понятие резистора. В данном случае под резистором надо понимать любой проводник или элемент электрической цепи, имеющий активное резистивное сопротивление. Теперь важно задаться вопросом о том, как действует изменение значения сопротивления на значение силы тока и от чего оно зависит. Суть явления сопротивления заключается в том, что резистора формируют своего рода барьер для прохождения электрических зарядов. Чем выше сопротивление вещества, тем более плотно расположены атомы в решетке резистивного вещества. Данную закономерность и объясняет закон Ома для участка цепи. Как известно, закон Ома для участка цепи звучит следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на участке и обратно пропорциональна сопротивлению самого участка цепи.

Изобразите на листе бумаги график зависимости силы тока от напряжения на резисторе, а также от его сопротивления, исходя из закона Ома. Вы получите график гиперболы в первом случае и график прямой во втором случае. Таким образом, сила тока будет тем больше, чем больше напряжение на резисторе и чем меньше сопротивление. Причем зависимость от сопротивления здесь более яркая, ибо она имеет вид гиперболы.

Обратите внимание, что сопротивление резистора также изменяется при изменении его температуры. Если нагревать резистивный элемент и наблюдать при этом за изменением силы тока, то можно заметить, как при увеличении температуры уменьшается сила тока. Данная закономерность объясняется тем, что при увеличении температуры увеличиваются колебания атомов в узлах кристаллической решетки резистора, уменьшая таким образом свободное пространство для прохождения заряженных частиц. Другой причиной, уменьшающей силу тока в данном случае, является тот факт, что при увеличении температуры вещества увеличивается хаотичное движение частиц, в том числе заряженных. Таким образом, движение свободных частиц в резисторе становится в большей степени хаотичным, чем направленным, что и сказывается на уменьшении силы тока.

Видео по теме

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) - это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м 2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная - повышается. Установка заднего спойлера действует таким же образом.

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением - чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.