На первый взгляд может показаться, что процедура разложения квадратного корня на множители сложная и неприступная. Но это не так. В этой статье мы расскажем вам, как подступиться к квадратному корню и множителям, а также легко и просто разложить квадратный корень, воспользовавшись двумя проверенными методами.

Yandex.RTB R-A-339285-1

Разложение корня на множители

Для начала определим цель процедуры разложения квадратного корня на множители. Цель - упростить квадратный корень и записать его в удобном для вычислений виде.

Определение 1

Разложение квадратного корня на множители - нахождение двух или нескольких чисел, которые, при условии перемножения их друг на друга, дадут число равное исходному. Например: 4×4 = 16.

Если вы найдете множители, то сможете легко упростить выражение с квадратным корнем или вовсе его упразднить:

Пример 1

Разделите подкоренное число на 2, если оно четное.

Подкоренное число всегда следует делить на простые числа, поскольку любое значение простого числа можно разложить на простые множители. Если у вас нечетное число, то попробуйте разделить его на 3. Не делится на 3? Делите дальше на 5, 7, 9 и т.д.

Запишите выражение в виде корня произведения двух чисел.

Например, можно упростить таким способом 98: = 98 ÷ 2 = 49 . Из этого следует, что 2 × 49 = 98 , поэтому можно переписать задачу следующим образом: 98 = (2 × 49) .

Продолжите раскладывать числа, пока под корнем не останется произведение двух одинаковых чисел и других чисел.

Возьмем наш пример (2 × 49) :

Поскольку 2 уже и так максимально упрощено, необходимо упростить 49 . Ищем простое число, на которое можно разделить 49 . Очевидно, что ни 3 , ни 5 не подходят. Остается 7: 49 ÷ 7 = 7 , поэтому 7 × 7 = 49 .

Записываем пример в следующем виде: (2 × 49) = (2 × 7 × 7) .

Упростите выражение с квадратным корнем.

Поскольку в скобках у нас произведение 2 и двух одинаковых чисел (7) , то мы можем вынести за знак корня число 7 .

Пример 2

(2 × 7 × 7) = (2) × (7 × 7) = (2) × 7 = 7 (2) .

В тот момент, когда под корнем оказалось два одинаковых числа, останавливайтесь с разложением чисел на множители. Конечно, если вы использовали все возможности по максимуму.

Запомните: существуют корни, которые можно упрощать многократно.

В таком случае, числа, которые мы выносим из-под корня, и числа, которые стоят перед ним, перемножаются.

Пример 3

180 = (2 × 90) 180 = (2 × 2 × 45) 180 = 2 45

но 45 можно разложить на множители и еще раз упростить корень.

180 = 2 (3 × 15) 180 = 2 (3 × 3 × 5) 180 = 2 × 3 5 180 = 6 5

Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.

Если после разложения подкоренного выражения на произведение простых чисел, у вас не получилось получить два одинаковых числа, то такой корень упростить нельзя.

Пример 4

70 = 35 × 2 , поэтому 70 = (35 × 2)

35 = 7 × 5 , поэтому (35 × 2) = (7 × 5 × 2)

Как видим, все три множителя - простые числа, которые нельзя разложить на множители. Среди них нет одинаковых чисел, поэтому не представляется возможным вынести целое число из-под корня. Упростить 70 нельзя.

Полный квадрат

Запомните несколько квадратов простых чисел.

Квадрат числа получается, если умножить его на самого себя, т.е. при возведении в квадрат. Если вы запомните десяток квадратов простых чисел, то это очень упростить вам жизнь в дальнейшем упрощении корней.

Пример 5

1 2 = 1 2 2 = 4 3 2 = 9 4 2 = 16 5 2 = 25 6 2 = 36 7 2 = 49 8 2 = 64 9 2 = 81 10 2 = 100

В случае если под знаком корня квадратного корня находится полный квадрат, то стоит убрать знак корня и записать квадратный корень данного полного квадрата.

Сложно? Нет:

Пример 6

1 = 1 4 = 2 9 = 3 16 = 4 25 = 5 36 = 6 49 = 7 64 = 8 81 = 9 100 = 10

Попробуйте разложить число под знаком корня на произведения полного квадрата и другого числа.

Если вы видите, что подкоренное выражение раскладывается на произведение полного квадрата и какого-либо числа, то, запомнив несколько примеров, вы существенно сэкономите время и нервы:

Пример 7

50 = (25 × 2) = 5 2 . Если подкоренное число оканчивается на 25, 50 или 75, вы всегда можете разложить его на произведение 25 и какого-то числа.

1700 = (100 × 17) = 10 17 . Если подкоренное число оканчивается на 00, вы всегда можете разложить его на произведение 100 и какого-то числа.

72 = (9 × 8) = 3 8 . Если сумма цифр подкоренного числа равна 9, вы всегда можете разложить его на произведение 9 и какого-то числа.

Попробуйте разложить подкоренное число на произведение нескольких полных квадратов: вынесите их из-под знака корня и перемножьте.

Пример 8

72 = (9 × 8) 72 = (9 × 4 × 2) 72 = 9 × 4 × 2 72 = 3 × 2 × 2 72 = 6 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Треугольник ABC – прямоугольный (рис. 11), C = 90°, СD перпендикулярна АВ, ВD и DА – проекции катетов ВС и АС на гипотенузу АВ. Теоремы: 1) высота, проведенная из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между проекциями катетов на гипотенузу, т.е. ; 2) каждый катет – средняя пропорциональная величина между гипотенузой и проекцией этого катета на гипотенузу, т. е. , .

Теорема Пифагора. Квадрат гипотенузы равен сумме квадратов катетов.

Теорема. Если через точку, взятую внутри

круга, проведены диаметр и произвольная хорда,

то произведение длин отрезков диаметра рав-

но произведению длин отрезков хорды, т.е. (рис. 12).

Рис. 12

Следствие. Произведения длин отрезков пересекающихся хорд равны, т.е.

Теорема. Если из точки вне круга проведены касательная и се-кущая, то произведение всей секущей на ее внешнюю часть равно квадрату касательной, т.е. (рис. 13).

Рис. 13

Определения. Синусом острого угла в прямоугольном треугольнике называется отношение противолежащего этому углу катета к гипотенузе, косинусом – отношение прилежащего катета к гипотенузе, тангенсом отношение противолежащего катета к прилежащему, котангенсом – отношение прилежащего катета к противолежащему.

Из точки А вне окружности проведены касательная и секущая. Расстояние от А до точки касания 16 см, а от А до одной из точек пересечения секущей с окружностью 32 см. Найдите радиус окружности, если секущая удалена от ее центра на 5 см.

Рис. 14

На рис. 14 АВ – касательная к окружности с центром O, AD – се-кущая. OK перпендикулярна DC, АВ = 16 см, АD = 32 см, OК = 5 см. По теореме о касательной и секущей или , АС = 8 см. см. По теореме о хордах, пересекающихся внутри круга, , но DK = KC, так как EP – диаметр, перпендикулярный хорде DС. Получим . Заменим в этом равенстве ЕК на , КР на , DК на 12, получим: OE = 13 см – искомый радиус.

104. Стороны прямоугольника 30 и 40 см. Найдите расстояние

от вершины прямоугольника до диагонали, не проходящей через эту вершину.

105. Периметр ромба равен 1 м. Одна диагональ длиннее другой на

1 дм. Вычислите диагонали ромба.

В круге по разные стороны от центра проведены параллельные хорды длиной 36 и 48 мм, расстояние между ними 42 мм. Вычислите радиус круга.

Катеты прямоугольного треугольника относятся как 5: 6, гипотенуза 122 см. Найдите отрезки гипотенузы, отсекаемые высотой.

Касательная и секущая, проведенные из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, внутренняя часть секущей равна 10. Найдите радиус окружности.

К окружности с радиусом 7 см проведены две касательные из одной точки, удаленной от центра на 25 см. Найдите расстояние между точками касания.

Ширина кольца, образованного двумя концентрическими окружностями, равна 8 дм, хорда большей окружности, касательная к меньшей, равна 4 м. Найдите радиусы окружностей.

Радиус окружности 7 см. Из точки, удаленной от центра на

9 см, проведена секущая так, что она делится окружностью на равные части. Найдите длину этой секущей.

Касательная к окружности равна 20 см, а наибольшая секущая, проведенная из той же точки, равна 50 см. Найдите радиус.

Из одной точки к окружности проведены касательная и секущая, длина которой а, а её внутренний отрезок больше внешнего на длину касательной. Найдите длину касательной.

В круг радиусом R вписан равнобедренный треугольник, у которого сумма высоты и основания равна диаметру круга. Найдите высоту треугольника.

В равнобедренном треугольнике основание и боковая сторона равны соответственно 48 и 30 дм. Вычислите радиусы кругов, описанного и вписанного, и расстояние между их центрами.

Рассмотрим сначала секущую АС, проведенную из внешней по отношению к данной окружности точки А (рис. 288). Из той же точки проведем касательную АТ. Будем называть отрезок между точкой А и ближайшей к ней точкой пересечения с окружностью внешней частью секущей (отрезок АВ на рис. 288), отрезок же АС до более далекой из двух точек пересечения - просто секущей. Отрезок касательной от А до точки касания также коротко называем касательной. Тогда справедлива

Теорема. Произведение секущей на ее внешнюю часть равно квадрату касательной.

Доказательство. Соединим точку . Треугольники ACT и ВТ А подобны, так как угол при вершине А у них общий, а углы ACT и равны, поскольку оба они измеряются половиной одной и той же дуги ТВ. Следовательно, Отсюда получаем требуемый результат:

Касательная равна среднему геометрическому между секущей, проведенной из той же точки, и ее внешней частью.

Следствие. Для любой секущей, проведенной через данную точку А, произведение ее длины на внешнюю часть постоянно:

Рассмотрим теперь хорды, пересекающиеся во внутренней точке. Справедливо утверждение:

Если две хорды пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой (имеются в виду отрезки, на которые хорда разбивается точкой пересечения).

Так, на рис. 289 хорды АВ и CD пересекаются в точке М, и мы имеем Иначе говоря,

Для данной точки М произведение отрезков, на которые она разбивает любую проходящую через нее хорду, постоянно.

Для доказательства заметим, что треугольники МВС и MAD подобны: углы СМВ и DMA вертикальные, углы MAD и МСВ опираются на одну и ту же дугу. Отсюда находим

что и требовалось доказать.

Если данная точка М лежит на расстоянии l от центра, то, проведя через нее диаметр и рассматривая его как одну из хорд, найдем, что произведение отрезков диаметра, а значит, и любой другой хорды, равно Оно же равно квадрату минимальной полухорды (перпендикулярной к указанному диаметру), проходящей через М.

Теорема о постоянстве произведения отрезков хорды и теорема о постоянстве произведения секущей на ее внешнюю часть суть два случая одного и того же утверждения, различие состоит лишь в том, проводятся ли секущие через внешнюю или внутреннюю точку круга. Теперь можно указать еще один признак, отличающий вписанные четырехугольники:

Во всяком вписанном четырехугольнике произведения отрезное, на которые разбиваются диагонали точкой их пересечения, равны.

Необходимость условия очевидна, так как диагонали будут хордами описанной окружности. Можно показать, что это условие также и достаточно.

Математика. Алгебра. Геометрия. Тригонометрия

ГЕОМЕТРИЯ: Планиметрия

10. Теоремы о пропорциональных линиях

Теорема. Стороны угла пересекаются рядом параллельных прямых, рассекаются ими на пропорциональные части.

Доказательство. Требуется доказать, что

.

Проведя вспомогательные прямые DM,EN,... параллельные ВА, мы получим треугольники, которые подобны между собой, так как углы у них соответственно равны (вследствие параллельности прямых). Из их подобия следует:

Заменив в этом ряду равных отношений отрезок DM на D"E" , отрезок EN на E"F" (противоположные стороны параллелограмма) , мы получим то, что требовалось доказать.

Теорема. Биссектриса любого угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам треугольника

.

Обратная теорема. Если какая-нибудь сторона треугольника разделена на две части, пропорциональные двум прилежащим сторонам этого треугольника, то прямая, соединяющая точку деления с вершиной противолежащего угла, есть биссектриса этого угла

.

Теорема. Если биссектриса внешнего угла треугольника пересекает продолжение противоположной стороны в некоторой точке, то расстояния от этой точки до концов продолженной стороны пропорциональны прилежащим сторонам треугольника

.

Числовые зависимости между элементами треугольника.

Теорема. В прямоугольном треугольнике перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная между отрезками гипотенузы, а каждый катет есть средняя пропорциональная между гипотенузой и прилежащим к этому катету отрезком

.

Доказательство. Требуется доказать следующие три пропорции: 1) BD:AD=AD:DC, 2) BC:AB=AB:DB, 3) BC:AC=AC:DC.

1) Треугольники ABD и ADC подобны, так как

Р 1=Р 4 и Р 2=Р 3 (так как их стороны перпендикулярны), следовательно BD:AD=AD:DC.

2) Треугольники ABD и AВC подобны, так как они прямоугольные и угол В у них общий, следовательно BC:AB=AB:DB.

3) Треугольники ABС и ADC подобны, так как они прямоугольные и угол С у них общий, следовательно BC:AC=AC:DC.

Следствие. Перпендикуляр, опущенный из какой-нибудь точки окружности на диаметр, есть средняя пропорциональная между отрезками диаметра, а хорда, соединяющая эту точку с концом диаметра, есть средняя пропорциональная между диаметром и прилежащим к хорде отрезком его

.

Теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

.

Следствие. Квадраты катетов относятся между собой как прилежащие отрезки гипотенузы

.

Теорема. Во всяком треугольнике квадрат стороны, лежащей против острого угла, равен сумме квадратов двух других сторон без удвоенного

произведения какой-нибудь из этих сторон на отрезок её от вершины острого угла до высоты .

Теорема. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон

.

Пропорциональные линии в круге.

Теорема. Если через точку, взятую внутри круга, проведены какая-нибудь хорда и диаметр, то произведение отрезков хорды равно произведению отрезков диаметра .

Следствие. Если через точку, взятую внутри круга, проведено сколько угодно хорд, то произведение отрезков каждой хорды есть число постоянное для всех хорд.

Теорема. Если из точки, взятой вне круга, проведены к нему какая-нибудь секущая и касательная, то произведение секущей на её внешнюю часть равно квадрату касательной

.

Copyright © 2005-2013 Xenoid v2.0

Использование материалов сайта возможно при условии указания активной ссылки