В обычных условиях газ - это диэлектрик, т.е. состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока. Газ-проводник - это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.

Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.

Ионизация газа - это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.

Газовый разряд - это эл.ток в ионизированных газах. Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рис. 1

Рекомбинация заряженных частиц

Газ перестает быть проводником, если ионизация прекращается, это происходит в следствие рекомбинации (воссоединения противоположно заряженных частиц).

Рис. 2

Существует самостоятельный и несамостоятельный газовый разряд.

Несамостоятельный электрический разряд. Опыт показывает, что две разноименно заряженные пластины, разделенные слоем воздуха, не разряжаются.

Обычно вещество в газообразном состоянии является изолятором, так как атомы или молекулы, из которых оно состоит, содержат одинаковое число отрицательных и положительных электрических зарядов и в целом нейтральны.

Внесем в пространство между пластинами пламя спички или спиртовки рис 3.

Рис. 3

При этом электрометр начнет быстро разряжаться. Следовательно, воздух под действием пламени стал проводником. При вынесении пламени из пространства между пластинами разряд электрометра прекращается. Такой же результат можно получить, облучая пластины светом электрической дуги. Эти опыты доказывают, что газ может стать проводником электрического тока.

Явление прохождения электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия, называется несамостоятельным электрическим разрядом.

Термическая ионизация. Нагревание газа делает его проводником электрического тока, потому что часть атомов или молекул газа превращается в заряженные ионы.

Для отрыва электрона от атома необходимо совершить работу против сил кулоновского притяжения между положительно заряженным ядром и отрицательным электроном. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома или молекулы, называется энергией связи.

Электрон может быть оторван от атома при соударении двух атомов, если их кинетическая энергия превышает энергию связи электрона. Кинетическая энергия теплового движения атомов или молекул прямо пропорциональна абсолютной температуре, поэтому с повышением температуры газа увеличивается число соударений атомов или молекул, сопровождающихся ионизацией.

Процесс возникновения свободных электронов и положительных ионов в результате столкновений атомов и молекул газа при высокой температуре называется термической ионизацией.

Плазма. Газ, в котором значительная часть атомов или молекул ионизована, называется плазмой. Степень термической ионизации плазмы зависит от температуры. Например, при температуре 10 000 К ионизовано меньше 10 % общего числа атомов водорода, при температуре выше 20 000 К водород практически полностью ионизован.

Электроны и ионы плазмы могут перемещаться под действием электрического поля. Таким образом, при низких температурах газ является изолятором, при высоких температурах превращается в плазму и становится проводником электрического тока.

Фотоионизация. Энергия, необходимая для отрыва электрона от атома или молекулы, может быть передана светом. Ионизация атомов или молекул под действием света называется фотоионизацией.

Самостоятельный электрический разряд. При увеличении напряженности электрического поля до некоторого определенного значения, зависящего от природы газа и его давления, в газе возникает электрический ток и без воздействия внешних ионизаторов. Явление прохождения через газ электрического тока, не зависящего от действия внешних ионизаторов, называется самостоятельным электрическим разрядом.

В воздухе при атмосферном давлении самостоятельный электрический разряд возникает при напряженности электрического поля, равной примерно

Основной механизм ионизации газа при самостоятельном электрическом разряде -- ионизация атомов и молекул вследствие ударов электрона.

Ионизация электронным ударом. Ионизация электронным ударом становится возможной тогда, когда электрон при свободном пробеге приобретет кинетическую энергию, превышающую энергию связи W электрона с атомом.

Кинетическая энергия W к электрона, приобретаемая под действием электрического поля напряженностью, равна работе сил электрического поля:

W к = Fl = eEl,

где l -- длина свободного пробега.

Отсюда приближенное условие начала ионизации электронным ударом имеет вид

Энергия связи электронов в атомах и молекулах обычно выражается в электронволътах (эВ). 1 эВ равен работе, которую совершает электрическое поле при перемещении электрона (или другой частицы, обладающей элементарным зарядом) между точками поля, напряжение между которыми равно 1 В:

Энергия ионизации атома водорода, например, равна 13,6 эВ.

Механизм самостоятельного разряда. Развитие самостоятельного электрического разряда в газе протекает следующим образом. Свободный электрон под действием электрического поля приобретает ускорение. Если напряженность электрического поля достаточно велика, электрон при свободном пробеге настолько увеличивает кинетическую энергию, что при соударении с молекулой ионизует ее.

Первый электрон, вызвавший ионизацию молекулы, и второй электрон, освобожденный в результате ионизации, под действием электрического поля приобретают ускорение в направлении от катода к аноду. Каждый из них при следующих соударениях освобождает еще по одному электрону и общее число свободных электронов становится равным четырем. Затем таким же образом оно увеличивается до 8, 16, 32, 64 и т. д. Число свободных электронов, движущихся от катода к аноду, нарастает лавинообразно до тех пор, пока они не достигнут анода рис. 4.

Рис. 4

Положительные ионы, возникшие в газе, движутся под действием электрического поля от анода к катоду. При ударах положительных ионов о катод и под действием света, излучаемого в процессе разряда, с катода могут освобождаться новые электроны. Эти электроны в свою очередь разгоняются электрическим полем и создают новые электронно-ионные лавины, поэтому процесс может продолжаться непрерывно.

Концентрация ионов в плазме по мере развития самостоятельного разряда увеличивается, а электрическое сопротивление разрядного промежутка уменьшается. Сила тока в цепи самостоятельного разряда обычно определяется лишь внутренним сопротивлением источника тока и электрическим сопротивлением других элементов цепи.

Искровой разряд. Молния. Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то происходящий самостоятельный разряд называется искровым разрядом. Искровой разряд прекращается через короткий промежуток времени после начала разряда в результате значительного уменьшения напряжения. Примеры искрового разряда -- искры, возникающие при расчесывании волос, разделении листов бумаги, разряде конденсатора.

Самостоятельный электрический разряд представляют собой и молнии, наблюдаемые во время грозы. Сила тока в канале молнии достигает 10 000--20 000 А, длительность импульса тока составляет несколько десятков микросекунд. Самостоятельный электрический разряд между грозовым облаком и Землей после нескольких ударов молнии сам собою прекращается, так как большая часть избыточных электрических зарядов в грозовом облаке нейтрализуется электрическим током, протекающим по плазменному каналу молнии (рис. 5).


Рис. 6

При увеличении силы тока в канале молнии происходит нагревание плазмы до температуры свыше 10 000 К. Изменения давления в плазменном канале молнии при увеличении силы тока и прекращении разряда вызывают звуковые явления, называемые громом.

Тлеющий разряд. При понижении давления газа в разрядном промежутке разрядный канал становится более широким, а затем светящейся плазмой оказывается равномерно заполнена вся разрядная трубка. Этот вид самостоятельного электрического разряда в газах называется тлеющим разрядом (рис. 7).

Рис. 7

Электрическая дуга. Если сила тока в самостоятельном газовом разряде очень велика, то удары положительных ионов и электронов могут вызвать разогревание катода и анода. С поверхности катода при высокой температуре происходит эмиссия электронов, обеспечивающая поддержание самостоятельного разряда в газе. Длительный самостоятельный электрический разряд в газах, поддерживающийся за счет термоэлектронной эмиссии с катода, называется дуговым разрядом (рис. 8).

Рис. 8

Коронный разряд. В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом и плоскостью (линия электропередачи), возникает самостоятельный разряд особого вида, называемый коронным разрядом. При коронном разряде ионизация электронным ударом происходит лишь вблизи одного из электродов, в области с высокой напряженностью электрического поля.

Применение электрических разрядов. Удары электронов, разгоняемых электрическим полем, приводят не только к ионизации атомов и молекул газа, но и к возбуждению атомов и молекул, сопровождающемуся излучением света. Световое излучение плазмы самостоятельного электрического разряда широко используется в народном хозяйстве и в быту. Это лампы дневного света и газоразрядные лампы уличного, освещения, электрическая дуга в кинопроекционном аппарате и ртутно-кварцевые лампы, применяемые в больницах и поликлиниках. Высокая температура плазмы дугового разряда позволяет применять его для резки и сварки металлических конструкций, для плавки металлов. С помощью искрового разряда ведется обработка деталей из самых твердых материалов.

Электрический разряд в газах бывает и нежелательным явлением, с которым в технике необходимо бороться. Так, например, коронный электрический разряд с проводов высоковольтных линий электропередач приводит к бесполезным потерям электроэнергии. Возрастание этих потерь с увеличением напряжения ставит предел на пути дальнейшего увеличения напряжения в линии электропередач, тогда как для уменьшения потерь энергии на нагревание проводов такое повышение весьма желательно.

Презентация на тему: Электрический ток в различных средах

Выполнила Житина Карина

Ученица 8 а класса.

Электрический ток может протекать в пяти различных средах:

Металлах

Вакууме

Полупроводниках

Жидкостях

Электрический ток в металлах:

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Опыты Толмена и Стюарта являются доказательством того, что металлы обладают электронной проводимостью

Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г . Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией электронов.

Вывод:1.носителями заряда в металлах являются электроны;

2. процесс образования носителей заряда – обобществление валентных электронов;

3.сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника – выполняется закон Ома;

4. техническое применение электрического тока в металлах: обмотки двигателей, трансформаторов, генераторов, проводка внутри зданий, сети электропередачи, силовые кабели.

Электрический ток в вакууме

- Вакуум - сильно разреженный газ, в котором средняя длина свободного пробега частицы больше размера сосуда, то есть молекула пролетает от одной стенки сосуда до другой без соударения с другими молекулами. В результате в вакууме нет свободных носителей заряда, и электрический ток не возникает. Для создания носителей заряда в вакууме используют явление термоэлектронной эмиссии.

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ – это явление «испарения» электронов с поверхности нагретого металла.

В вакуум вносят металлическую спираль, покрытую оксидом металла, нагревают её электрическим током (цепь накала) и с поверхности спирали испаряются электроны, движением которых можно управлять при помощи электрического поля.

На слайде показано включение двухэлектродной лампы

Такая лампа называется вакуумный диод

Эта электронная лампа носит название вакуумный ТРИОД.

Она имеет третий электрод –сетку, знак потенциала на которой управляет потоком электронов.

Выводы:1. носители заряда – электроны;

2. процесс образования носителей заряда – термоэлектронная эмиссия;

3.закон Ома не выполняется;

4.техническое применение – вакуумные лампы (диод, триод), электронно – лучевая трубка.

Электрический ток в полупроводниках

При нагревании или освещении некоторые электроны приобретают возможность свободно перемещаться внутри кристалла, так что при приложении электрического поля возникает направленное перемещение электронов.

Полупроводники представляют собой нечто среднее между проводниками и изоляторами.

- Полупроводники - твердые вещества, проводимость которых зависит от внешних условий (в основном от нагревания и от освещения).

С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.

Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T .

Собственная проводимость полупроводников

Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной , т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

Образование электронно-дырочной пары

При повышении температуры или увеличении освещенности некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название «дырок ».

Примесная проводимость полупроводников

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную проводимости.

Электронная и дырочная проводимости.

Если примесь имеет валентность большую, чем чистый полупроводник, то появляются свободные электроны. Проводимость –электронная, примесь донорная, полупроводник n – типа.

Если примесь имеет валентность меньшую, чем чистый полупроводник, то появляются разрывы связей – дырки. Проводимость – дырочная, примесь акцепторная, полупроводник p – типа.

Выводы:1. носители заряда – электроны и дырки;

2. процесс образования носителей заряда – нагревание, освещение или внедрение примесей;

3.закон Ома не выполняется;

4.техническое применение – электроника.

Электрический ток в жидкостях

- Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитами являются водные растворы неорганических кислот, солей и щелочей.

Сопротивление электролитов падает с ростом температуры, так как с ростом температуры растёт количество ионов.

- График зависимости сопротивления электролита от температуры.

Явление электролиза

Это выделение на электродах веществ, входящих в электролиты;
Положительно заряженные ионы (анионы) под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные ионы (катионы) - к положительному аноду.
На аноде отрицательные ионы отдают лишние электроны (окислительная реакция)
На катоде положительные ионы получают недостающие электроны (восстановительная).

Законы электролиза Фарадея.

Законы электролиза определяют массу вещества, выделяемого при электролизе на катоде или аноде за всё время прохождения электрического тока через электролит.

K - электрохимический эквивалент вещества,
численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.

Вывод:1. носители заряда – положительные и отрицательные ионы;

- 2. процесс образования носителей заряда – электролитическая диссоциация;

- 3 .электролиты подчиняются закону Ома;

- 4.Применение электролиза :
получение цветных металлов (очистка от примесей - рафинирование); гальваностегия - получение покрытий на металле (никелирование, хромирование, золочение, серебрение и т.д.);
гальванопластика - получение отслаиваемых покрытий (рельефных копий).

Электрический ток в газах

Зарядим конденсатор и подключим его обкладки к электрометру. Заряд на пластинах конденсатора держится сколь угодно долго, не наблюдается перехода заряда с одной пластины конденсатора на другую. Следовательно воздух между пластинами конденсатора не проводит ток.

В обычных условиях отсутствует проводимость электрического тока любыми газами. Нагреем теперь воздух в промежутке между пластинами конденсатора, внеся в него зажженную горелку. Электрометр укажет появление тока, следовательно при высокой температуре часть нейтральных молекул газа распадается на положительные и отрицательные ионы. Такое явление называется ионизацией газа.

Прохождение электрического тока через газ называется разрядом.

Разряд, существующий при действии внешнего ионизатора, - несамостоятельный .

Если действие внешнего ионизатора продолжается, то через определенное время в газе устанавливается внутренняя ионизация (ионизация электронным ударом) и разряд становится самостоятельным .

Виды самостоятельного разряда:

ИСКРОВОЙ

КОРОННЫЙ

Искровой разряд

При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск.

Молния. Красивое и небезопасное явление природы – молния – представляет собой искровой разряд в атмосфере.

Уже в середине 18-го века высказывалось предположение, что грозовые облака несут в себе большие электрические заряды и что молния есть гигантская искра, ничем, кроме размеров, не отличающаяся от искры между шарами электрической машины. На это указывал, например, русский физик и химик Михаил Васильевич Ломоносов (1711-1765), наряду с другими научными вопросами занимавшийся атмосферным электричеством.

Электрическая дуга (дуговой разряд)

В 1802 году русский физик В.В. Петров (1761-1834) установил, что если присоединить к полюсам большой электрической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их раздвинуть, то между концами углей образуется яркое пламя, а сами концы углей раскалятся добела, испуская ослепительный свет.

В обычных условиях газы не проводят электрический ток, так как их молекулы электрически нейтральны. Например, сухой воздух - это хороший изолятор, в чем мы могли убедиться с помощью самых простых опытов по электростатике. Однако воздух и другие газы становятся проводниками электрического тока, если в них тем или иным способом создать ионы.

Рис. 100. Воздух становится проводником электрического тока, если его ионизировать

Простейший опыт, иллюстрирующий проводимость воздуха при его ионизации пламенем показан на рис. 100: заряд на пластинах, сохраняющийся в течение длительного времени, быстро исчезает при внесении зажженной спички в пространство между пластинами.

Газовый разряд. Процесс прохождения электрического тока через газ обычно называют газовым разрядом (или электрическим разрядом в газе). Газовые разряды подразделяются на два вида: самостоятельные и несамостоятельные.

Несамостоятельный разряд. Разряд в газе называют несамостоятельным, если для его поддержания необходим внешний источник

ионизации. Ионы в газе могут возникать под действием высоких температур, рентгеновского и ультрафиолетового излучения, радиоактивности, космических лучей и т. д. Во всех этих случаях происходит освобождение одного или нескольких электронов из электронной оболочки атома или молекулы. В результате в газе появляются положительные ионы и свободные электроны. Освободившиеся электроны могут присоединяться к нейтральным атомам или молекулам, превращая их в отрицательные ионы.

Ионизация и рекомбинация. Наряду с процессами ионизации в газе происходят и обратные процессы рекомбинации: соединяясь между собой, положительные и отрицательные ионы или положительные ионы и электроны образуют нейтральные молекулы или атомы.

Изменение со временем концентрации ионов, обусловленное постоянным источником ионизации и процессами рекомбинации, можно описать следующим образом. Допустим, что источник ионизации создает в единице объема газа за единицу времени положительных ионов и такое же число электронов. Если в газе нет электрического тока и можно пренебречь уходом ионов из рассматриваемого объема из-за диффузии, то единственным механизмом уменьшения концентрации ионов будет рекомбинация.

Рекомбинация происходит при встрече положительного иона с электроном. Число таких встреч пропорционально как числу ионов, так и числу свободных электронов, т. е. пропорционально . Поэтому убыль числа ионов в единице объема в единицу времени может быть записана в виде , где а - постоянная величина, называемая коэффициентом рекомбинации.

При справедливости введенных предположений уравнение баланса ионов в газе запишется в виде

Мы не будем решать это дифференциальное уравнение в общем виде, а рассмотрим некоторые интересные частные случаи.

Прежде всего отметим, что процессы ионизации и рекомбинации через некоторое время должны скомпенсировать друг друга и в газе установится постоянная концентрация видно, что при

Стационарная концентрация ионов тем больше, чем мощнее источник ионизации и чем меньше коэффициент рекомбинации а.

После выключения ионизатора убывание концентрации ионов описывается уравнением (1), в котором нужно положить принять в качестве начального значения концентрации

Переписав это уравнение в виде после интегрирования получаем

График этой функции показан на рис. 101. Он представляет собой гиперболу, асимптотами которой являются ось времени и вертикальная прямая Разумеется, физический смысл имеет лишь участок гиперболы, соответствующий значениям Отметим медленный характер убывания концентрации со временем в сравнении с часто встречающимися в физике процессами экспоненциального затухания, которые реализуются, когда скорость убывания какой-либо величины пропорциональна первой степени мгновенного значения этой величины.

Рис. 101. Убывание концентрации ионов в газе после выключения источника ионизации

Несамостоятельная проводимость. Процесс спадания концентрации ионов после прекращения действия ионизатора значительно ускоряется, если газ находится во внешнем электрическом поле. Вытягивая электроны и ионы на электроды, электрическое поле может очень быстро обратить в нуль электропроводность газа в отсутствие ионизатора.

Для уяснения закономерностей несамостоятельного разряда рассмотрим для простоты случай, когда ток в ионизуемом внешним источником газе течет между двумя плоскими электродами, параллельными друг другу. В этом случае ионы и электроны находятся в однородном электрическом поле напряженности Е, равной отношению приложенного к электродам напряжения к расстоянию между ними.

Подвижность электронов и ионов. При постоянном приложенном напряжении в цепи устанавливается некоторая постоянная сила тока 1. Это значит, что электроны и ионы в ионизованном газе движутся с постоянными скоростями. Чтобы объяснить этот факт, нужно считать, что кроме постоянной ускоряющей силы электрического поля на движущиеся ионы и электроны действуют силы сопротивления, растущие с увеличением скорости. Эти силы описывают усредненный эффект столкновений электронов и ионов с нейтральными атомами и молекулами газа. Благодаря силам сопротивления

устанавливаются в среднем постоянные скорости электронов и ионов, пропорциональные напряженности Е электрического поля:

Коэффициенты пропорциональности называются подвижностями электрона и иона. Подвижности ионов и электронов имеют разные значения и зависят от сорта газа, его плотности, температуры и т. д.

Плотность электрического тока т. е. заряд, переносимый электронами и ионами за единицу времени через единичную площадку, выражается через концентрацию электронов и ионов их заряды и скорости установившегося движения

Квазинейтральность. В обычных условиях ионизованный газ в целом электронейтрален, или, как говорят, квазинейтрален, ибо в малых объемах, содержащих сравнительно небольшое число электронов и ионов, условие электронейтральности может и нарушаться. Это значит, что выполняется соотношение

Плотность тока при несамостоятельном разряде. Чтобы получить закон изменения со временем концентрации носителей тока при несамостоятельном разряде в газе, нужно наряду с процессами ионизации внешним источником и рекомбинации учесть также уход электронов и ионов на электроды. Число частиц, уходящих в единицу времени на электрод площади из объема равно Скорость убывания концентрации таких частиц мы получим, разделив это число на объем газа между электродами. Поэтому уравнение баланса вместо (1) при наличии тока запишется в виде

Для установления режима, когда из (8) получаем

Уравнение (9) позволяет найти зависимость плотности установившегося тока при несамостоятельном разряде от приложенного напряжения (или от напряженности поля Е).

Два предельных случая видны непосредственно.

Закон Ома. При низком напряжении, когда в уравнении (9) можно пренебречь вторым слагаемым в правой части, после чего получаем формулы (7) при этом имеем

Плотность тока пропорциональна напряженности приложенного электрического поля. Таким образом, для несамостоятельного газового разряда в слабых электрических полях выполняется закон Ома.

Ток насыщения. При низкой концентрации электронов и ионов в уравнении (9) можно пренебречь первым (квадратичным по слагаемым в правой части. В этом приближении вектор плотности тока направлен вдоль напряженности электрического поля, а его модуль

не зависит от приложенного напряжения. Этот результат справедлив для сильных электрических полей. В этом случае говорят о токе насыщения.

Оба рассмотренных предельных случая можно исследовать и не обращаясь к уравнению (9). Однако таким путем нельзя проследить, как при увеличении напряжения происходит переход от закона Ома к нелинейной зависимости тока от напряжения.

В первом предельном случае, когда ток очень мал, основной механизм удаления электронов и ионов из области разряда - это рекомбинация. Поэтому для стационарной концентрации можно воспользоваться выражением (2), что при учете (7) немедленно дает формулу (10). Во втором предельном случае, наоборот, пренебрегается рекомбинацией. В сильном электрическом поле электроны и ионы не успевают сколько-нибудь заметно рекомбинировать за время пролета от одного электрода до другого, если концентрация их достаточно мала. Тогда все образуемые внешним источником электроны и ионы достигают электродов и полная плотность тока равна Она пропорциональна длине ионизационной камеры, поскольку полное число производимых ионизатором электронов и ионов пропорционально I.

Экспериментальное изучение газового разряда. Выводы теории несамостоятельного газового разряда подтверждаются экспериментами. Для исследования разряда в газе удобно использовать стеклянную трубку с двумя металлическими электродами. Электрическая схема такой установки показана на рис. 102. Подвижности

электронов и ионов сильно зависят от давления газа (обратно пропорционально давлению), поэтому опыты удобно проводить при пониженном давлении.

На рис. 103 представлена зависимость силы тока I в трубке от приложенного к электродам трубки напряжения Ионизацию в трубке можно создать, например, рентгеновскими или ультрафиолетовыми лучами либо с помощью слабого радиоактивного препарата. Существенно только, чтобы внешний источник ионов оставался неизменным Линейный участок ОА вольт-амперной характеристики соответствует области применимости закона Ома.

Рис. 102. Схема установки для изучения газового разряда

Рис. 103. Экспериментальная вольт-амперная характеристика газового разряда

На участке сила тока нелинейно зависит от напряжения. Начиная с точки В ток достигает насыщения и остается постоянным на некотором участке Все это соответствует теоретическим предсказаниям.

Самостоятельный разряд. Однако в точке С снова начинается возрастание тока, сначала медленное, а затем очень резкое. Это означает, что в газе появился новый, внутренний источник ионов. Если теперь убрать внешний источник, то разряд в газе не прекращается, т. е. из несамостоятельного разряд переходит в самостоятельный. При самостоятельном разряде образование новых электронов и ионов происходит в результате внутренних процессов в самом газе.

Ионизация электронным ударом. Нарастание тока при переходе от несамостоятельного разряда к самостоятельному происходит лавинообразно и называется электрическим пробоем газа. Напряжение, при котором происходит пробой, называется напряжением зажигания. Оно зависит от рода газа и от произведения давления газа на расстояние между электродами.

Процессы в газе, ответственные за лавинообразное нарастание силы тока при увеличении приложенного напряжения, связаны с ионизацией нейтральных атомов или молекул газа свободными электронами, разогнанными электрическим полем до достаточно

больших энергий. Кинетическая энергия электрона перед очередным столкновением с нейтральным атомом или молекулой пропорциональна напряженности электрического поля Е и длине свободного пробега электрона X:

Если эта энергия достаточна для того, чтобы ионизовать нейтральный атом или молекулу, т. е. превосходит работу ионизации

то при столкновении электрона с атомом или молекулой происходит их ионизация. В результате вместо одного электрона возникают два. Они в свою очередь разгоняются электрическим полем и ионизуют встречающиеся на их пути атомы или молекулы и т. д. Процесс развивается лавинообразно и называется электронной лавиной. Описанный механизм ионизации называется ионизацией электронным ударом.

Экспериментальное доказательство того, что ионизация нейтральных атомов газа происходит в основном благодаря ударам электронов, а не положительных ионов, было дано Дж. Таунсендом. Он брал ионизационную камеру в виде цилиндрического конденсатора, внутренним электродом которого служила тонкая металлическая нить, натянутая по оси цилиндра. В такой камере ускоряющее электрическое поле сильно неоднородно, и основную роль в ионизации играют частицы, которые попадают в область наиболее сильного поля вблизи нити. Опыт показывает, что при одном и том же напряжении между электродами ток разряда больше в том случае, когда положительный потенциал подается на нить, а не на внешний цилиндр. Именно в этом случае все создающие ток свободные электроны обязательно проходят через область наиболее сильного поля.

Эмиссия электронов из катода. Самостоятельный разряд может быть стационарным лишь при условии постоянного появления в газе новых свободных электронов, так как все возникающие в лавине электроны достигают анода и выбывают из игры. Новые электроны выбиваются из катода положительными ионами, которые при движении к катоду также ускоряются электрическим полем и приобретают достаточную для этого энергию.

Катод может испускать электроны не только в результате бомбардировки ионами, но и самостоятельно, при нагревании его до высокой температуры. Такой процесс называется термоэлектронной эмиссией, его можно рассматривать как своего рода испарение электронов из металла. Обычно оно происходит при таких температурах, когда испарение самого материала катода еще мало. В случае самостоятельного газового разряда катод обычно разогревается не

нитью накала, как в электронных лампах, а из-за выделения теплоты при бомбардировке его положительными ионами. Поэтому катод испускает электроны даже тогда, когда энергия ионов недостаточна для выбивания электронов.

Самостоятельный разряд в газе возникает не только в результате перехода от несамостоятельного при повышении напряжения и удалении внешнего источника ионизации, но и при непосредственном приложении напряжения, превышающего пороговое напряжение зажигания. Теория показывает, что для зажигания разряда достаточно самого незначительного количества ионов, которые всегда присутствуют в нейтральном газе хотя бы из-за естественного радиоактивного фона.

В зависимости от свойств и давления газа, конфигурации электродов и приложенного к электродам напряжения возможны различные виды самостоятельного разряда.

Тлеющий разряд. При низких давлениях (десятые и сотые доли миллиметра ртутного столба) в трубке наблюдается тлеющий разряд. Для зажигания тлеющего разряда достаточно напряжения в несколько сотен или даже десятков вольт. В тлеющем разряде можно выделить четыре характерные области. Это темное катодное пространство, тлеющее (или отрицательное) свечение, фарадеево темное пространство и светящийся положительный столб, занимающий большую часть пространства между анодом и катодом.

Первые три области находятся вблизи катода. Именно здесь происходит резкое падение потенциала, связанное с большой концентрацией положительных ионов на границе катодного темного пространства и тлеющего свечения. Электроны, ускоренные в области катодного темного пространства, производят в области тлеющего свечения интенсивную ударную ионизацию. Тлеющее свечение обусловлено рекомбинацией ионов и электронов в нейтральные атомы или молекулы. Для положительного столба разряда характерно незначительное падение потенциала и свечение, вызываемое возвращением возбужденных атомов или молекул газа в основное состояние.

Коронный разряд. При сравнительно высоких давлениях в газе (порядка атмосферного) вблизи заостренных участков проводника, где электрическое поле сильно неоднородно, наблюдается разряд, светящаяся область которого напоминает корону. Коронный разряд иногда возникает в естественных условиях на верхушках деревьев, корабельных мачтах и т. п. («огни святого Эльма»). С коронным разрядом приходится считаться в технике высоких напряжений, когда этот разряд возникает вокруг проводов высоковольтных линий электропередачи и приводит к потерям электроэнергии. Полезное практическое применение коронный разряд находит в электрофильтрах для очистки промышленных газов от примесей твердых и жидких частиц.

При увеличении напряжения между электродами коронный разряд переходит в искровой с полным пробоем промежутка между

электродами. Он имеет вид пучка ярких зигзагообразных разветвляющихся каналов, мгновенно пронизывающих разрядный промежуток и прихотливо сменяющих друг друга. Искровой разряд сопровождается выделением большого количества теплоты, ярким голубовато-белым свечением и сильным потрескиванием. Его можно наблюдать между шариками электрофорной машины. Пример гигантского искрового разряда - естественная молния, где сила тока достигает 5-105 А, а разность потенциалов - 109 В.

Поскольку искровой разряд происходит при атмосферном (и более высоком) давлении, то напряжение зажигания весьма велико: в сухом воздухе при расстоянии между электродами 1 см оно составляет около 30 кВ.

Электрическая дуга. Специфическим практически важным видом самостоятельного газового разряда является электрическая дуга. При соприкосновении двух угольных или металлических электродов в месте их контакта выделяется большое количество теплоты из-за большого сопротивления контакта. В результате начинается термоэлектронная эмиссия и при раздвижении электродов между ними возникает ярко светящаяся дуга из сильно ионизованного хорошо проводящего газа. Сила тока даже в небольшой дуге достигает нескольких ампер, а в большой дуге - нескольких сотен ампер при напряжении порядка 50 В. Электрическая дуга широко применяется в технике как мощный источник света, в электропечах и для электросварки. слабое задерживающее поле с напряжением около 0,5 В. Это поле препятствует попаданию на анод медленных электронов. Электроны испускаются катодом К, подогреваемым электрическим током.

На рис. 105 показана полученная в этих опытах зависимость силы тока в анодной цепи от ускоряющего напряжения Эта зависимость имеет немонотонный характер с максимумами при напряжениях кратных 4,9 В.

Дискретность уровней энергии атома. Объяснить такую зависимость тока от напряжения можно лишь наличием у атомов ртути дискретных стационарных состояний. Если бы дискретных стационарных состояний у атома не было, т. е. его внутренняя энергия могла бы принимать любые значения, то неупругие столкновения, сопровождающиеся увеличением внутренней энергии атома, могли бы происходить при любых энергиях электронов. Если же дискретные состояния есть, то столкновения электронов с атомами могут быть только упругими, пока энергия электронов недостаточна для перевода атома из основного состояния в наинизшее возбужденное.

При упругих столкновениях кинетическая энергия электронов практически не меняется, так как масса электрона много меньше массы атома ртути. В этих условиях число электронов, достигающих анода, монотонно увеличивается с ростом напряжения. Когда ускоряющее напряжение достигает значения 4,9 В, столкновения электронов с атомами становятся неупругими. Внутренняя энергия атомов скачком увеличивается, а электрон в результате соударения теряет почти всю свою кинетическую энергию.

Задерживающее поле не пропускает также медленные электроны к аноду и сила тока резко уменьшается. Она не обращается в нуль лишь потому, что часть электронов достигает сетки, не испытав неупругих соударений. Второй и последующие максимумы силы тока получаются потому, что при напряжениях, кратных 4,9 В, электроны на пути к сетке могут испытать несколько неупругих столкновений с атомами ртути.

Итак, необходимую для неупругого соударения энергию электрон приобретает только после прохождения разности потенциалов 4,9 В. Это означает, что внутренняя энергия атомов ртути не может измениться на величину, меньшую эВ, что и доказывает дискретность энергетического спектра атома. Справедливость этого вывода подтверждается еще и тем, что при напряжении 4,9 В разряд начинает светиться: возбужденные атомы при спонтанных

переходах в основное состояние излучают видимый свет, частота которого совпадает с вычисленной по формуле

В классических опытах Франка и Герца методом электронного удара были определены не только потенциалы возбуждения, но и ионизационные потенциалы ряда атомов.

Приведите пример опыта по электростатике, из которого можно сделать вывод о том, что сухой воздух - это хороший изолятор.

Где в технике используются изолирующие свойства воздуха?

Что такое несамостоятельный газовый разряд? При каких условиях он протекает?

Поясните, почему скорость убывания концентрации, обусловленная рекомбинацией, пропорциональна квадрату концентрации электронов и ионов. Почему эти концентрации можно считать одинаковыми?

Почему для закона убывания концентрации, выражаемого формулой (3), не имеет смысла вводить понятие характерного времени, широко используемого для экспоненциально затухающих процессов, хотя и в том и в другом случае процессы продолжаются, вообще говоря, бесконечно долго?

Как по-вашему, почему в определениях подвижностей в формулах (4) для электронов и ионов выбраны противоположные знаки?

Как сила тока при несамостоятельном газовом разряде зависит от приложенного напряжения? Почему с ростом напряжения происходит переход от закона Ома к току насыщения?

Электрический ток в газе осуществляется как электронами, так и ионами. Однако на каждый из электродов приходят заряды лишь одного знака. Как это согласуется с тем, что во всех участках последовательной цепи сила тока одинакова?

Почему в ионизации газа в разряде из-за соударений наибольшую роль играют электроны, а не положительные ионы?

Опишите характерные признаки различных видов самостоятельного газового разряда.

Почему результаты опытов Франка и Герца свидетельствуют о дискретности уровней энергии атомов?

Опишите физические процессы, происходящие в газоразрядной трубке в опытах Франка и Герца, при повышении ускоряющего напряжения.

Прохождение электрического тока через газ

Электрический ток в газах обладает по сравнению с то­ком в металлических проводниках особенностями:

1) носителями электрических зарядов в газе являются элементарные заряженные частицы - электроны и ионы. Электрический ток в газах представляет собой направлен­ное движение, как электронов, так и ионов под действием приложенного градиента потенциала;

2) атомы и молекулы в газе находятся на значительном расстоянии друг от друга, во много раз превышающем раз­меры молекулы, в результате чего силы взаимодействия между ними незначительны и свободные заряды практичес­ки отсутствуют. Для того чтобы газ стал проводником, его необхо­димо ионизировать, т. е. создать в нем ионы и свободные электроны.

В теории газового разряда процесс первона­чальной ионизации газового промежутка под действием приложенного напряжения называют пробоем газового про­межутка . Прохождение электрического тока через газ на­зывают разрядом .

Напряжение пробоя при данном расстоянии между элек­тродами зависит от рода газа и его давления. При переменном напряжении явление пробоя осложняется побочными процессами. Например, с ростом частоты напряжение пробоя снижается.

Физические процессы, происходящие в момент пробоя, можно описать следующим образом. В данном объеме газа результате внешних природных ионизирующих факторов всегда присутствуют в небольшом количестве отдельные свободные заряженные частицы, которые при появлении электрического поля начинают двигаться вдоль силовых линий. Скорость движения заряженных частиц в газе зависит от их заряда и массы, также напряженности поля. Если частица встретит на пути том или молекулу газа, то произойдет соударение. В зависимости от кинетической энергии, которой обладает частица моменту соударения, и свойств встреченного атома его результатом будут изменения скорости атома (упругое соударение) либо его возбуждение или даже ионизация (неупругое соударение). При возбуждении происходит рост внутренней энергии, атома за счет кинетической энергии частицы. Этот избыток энергии освобождается через небольшой промежуток времени в виде фотона. При ионизации происходит освобождение электрона из числа электронов внешней орбиты атома или молекулы. Освобожденный электрон под действием поля придет в движение и в свою очередь может ионизировать встреченные им атомы или молекулы. Процесс освобождения заряженных частиц при достаточной напряженности приложенного поля развивается лавинообразно. Внешняя цепь, с помощью которой было приложено вызвавшее пробой напряжение, окажется замкнутой, и в ней установится электрический ток, значение которого определяется прежде всего параметрами этой внешней цепи.

На мысль о корпускулярном строении электричества наводили также результаты, полученные при изучении электрических явлений в газах. Прохождение электричества через газы и связанные с этим процессом явления наблюдали в лабораторных условиях еще в середине XVIII века. Однако систематически эти явления начали изучать значительно позже, в середине XIX века.

В 1838 году Фарадей, рассматривая прохождение электричества через разреженный газ, установил, что свечение, сопровождающее такой разряд, имеет определенную структуру. Теорию этого явления Фарадей не разработал, но указал, что результаты таких наблюдений в будущем «окажут на теорию учения об электричестве значительно большее влияние, чем мы можем себе представить в настоящее время ».

Начиная с 50-х годов, после того как Генрих Гейслер (1814-1879) стал изготовлять газоразрядные трубки (носящие его имя), изучение разрядов в газах пошло интенсивнее. В 1858-1859 годах. Юлиус Плюккер (1801-1861), исследуя электрический разряд в таких трубках, открыл существование «катодных лучей». Он заметил, что если катод сделан в виде острия, то свечение имеет форму шнура, отходящего от катода. Этот «шнур» отклонялся магнитным полем. Плюккер пришел к заключению, что это поток заряженных частиц, летящих от катода к аноду. Он заметил также, что стекло возле катода начинало светиться.

Исследования ряда физиков подтвердили установленные Плюккером факты и дополнили их новыми. О природе этих частиц единого мнения не существовало. Так, например, Уильям Крукс (1832-1919) пришел к мнению, что катодные лучи являются потоком особых отрицательно заряженных частиц и представляют собой некое четвертое состояние материи. Другие же считали, что катодные лучи – это поток обычных частиц (атомов или молекул), несущих электрический заряд.

Молекулярной гипотезе Крукса о природе катодных лучей противостояла волновая гипотеза, поддерживаемая немецкими учеными Видеманом, Гольдштейном и Ленардом. Герц, который находился еще под влиянием теории Гельмгольца, допускавшей существование не только поперечных, но и продольных электромагнитных волн, также считал катодные лучи продольными волнами в эфире. Однако Герцу не удалось добиться отклонения катодных лучей при прохождении ими электростатического поля. В 1892 году он показал, что катодные лучи могут проникать сквозь тонкие пластинки алюминия.

Используя это открытие, Филипп Ленард (1862-1947) вывел эти лучи из трубки, заменив участок стеклянной трубки перед катодом металлической фольгой, достаточно прочной, чтобы выдержать атмосферное давление.

Однако волновая гипотеза несовместима с тем фактом, что катодные лучи отклоняются магнитом, потому что на световые волны магнитное поле не действует. Как молекулярная гипотеза Крукса, так и волновая гипотеза Гольдштейна оказались неудовлетворительными. Чтобы выйти из этого затруднения, нужны были дополнительные экспериментальные данные.

Зарождение электроники

Они были получены молодым физиком Жаном Перреном (1870-1942), работавшим тогда с Липпманом в лаборатории Эколь нормаль в Париже. Перрен поместил внутри разрядной трубки перед катодом закрытый металлический цилиндр с небольшим отверстием против катода на расстоянии 10 см от него и соединил цилиндр с электроскопом. При работе трубки пучок катодных лучей проникал в цилиндр, причем цилиндр всегда оказывался заряженным отрицательно. Для проверки достаточно было отклонить магнитом катодные лучи так, чтобы они не проникали в цилиндр, и сразу электроскоп, присоединенный к цилиндру, оказывался незаряженным.

Отсюда можно было сделать вывод: катодные лучи - это отрицательные электрические заряды, так что их материальная природа представляется значительно более вероятной, чем волновая.

Это был 1895 год. В этот год родилась электроника.

К 80-м годам было окончательно выяснено, что газы не являются абсолютными изоляторами и, хотя и слабо, проводят электрический ток; проводимость их можно увеличить, подвергнув, например, нагреванию. Было высказано мнение, что, подобно проводимости электролитов, проводимость газов объясняется наличием заряженных частиц ионов.

Такую точку зрения подробно развил в 1882 году Вильгельм Гизе . Согласно его теории, в газах всегда имеется некоторое количество заряженных частичек, образующихся в результате деления молекул на положительные и отрицательные частицы-ионы, которые, так же как и в жидкостях, проводят электричество. Однако в обычных условиях таких ионов в газах очень мало. При более высоких температурах их число увеличивается и проводимость повышается.

К этой теории присоединился и английский физик Артур Шустер (1851-1934), который считал, что частицы газов – ионы – всегда несут определенный электрический заряд. Продолжая свои исследования, Шустер попробовал проверить эту теорию на опыте и одновременно определить отношения заряда к массе таких ионов. Для этого он решил использовать явление отклонения катодных лучей в магнитном поле. Зная напряженность магнитного поля, разность потенциалов и, измерив отклонение катодных лучей в магнитном поле, можно вычислить отношение заряда к массе для катодных частиц. Такой эксперимент и проделал Шустер, получивший, что e/m = 10^(11) Кл/кг.

Этот результат показался Шустеру сомнительным. Он полагал, что отношение e/m в катодных лучах должно быть по порядку величины равно отношению e/m для иона водорода, подсчитанному из данных электролиза, т. е. порядка 10^(8) Кл/кг. «... Я мог отсюда заключить , – пишет Шустер, – что или количество электричества, переносимое при разряде в газах, значительно больше переносимого ионами при электролизе, или что масса его «носителя» гораздо меньше ». Однако Шустер такого заключения в свое время не сделал. Его исследования были опубликованы в 1890 году, но не обратили на себя внимания.

Наконец, была высказана и гипотеза о том, что ток проводимости осуществляется в результате движения дискретных зарядов. Эта идея принадлежала Фехнеру, а затем была развита Вебером.

Первоначально Вебер не обсуждал вопрос о связи «атомов электричества» с атомами веществ, но затем ему пришлось приписать электрическим частицам массу. Это было сделано в период дискуссии с Гельмгольцем об отношении его теории к закону сохранения энергии. В 1871 г. он писал, что с «каждым весомым ионом связан электрический атом ».

Применяя указанную гипотезу, Вебер пытался объяснить ряд явлений, связанных с электрическим током, в том числе выделение током тепла в проводниках, термоэлектричество, явление Пельтье и др. При этом ему удалось предвосхитить ряд положений, установленных позже в электронной теории.

Заряженные частицы вещества, называемые Лоренцем ионами, вызывают в окружающей их среде, т. е. в эфире, особое состояние, которое определяется значениями напряженности электрического Е и магнитного Н полей. Заряженная частица должна испытывать действие силы, которая зависит от значений Е и Н в точке ее нахождения, а также и от скорости ее движения. Эта сила получила название сила Лоренца.

Непосредственно применять уравнение Лоренца для описания электромагнитных процессов в макроскопических масштабах в случае наличия среды нельзя. Величины Е и Н изменяют свои значения уже на расстоянии атомных размеров и притом чрезвычайно быстро, так что доступные измерению значения электрических и магнитных полей представляют собой средние значения этих величин. Поэтому, чтобы иметь возможность применять уравнения Лоренца для макроскопических полей, их нужно усреднить. Для случая неподвижных сред, получаются обычные уравнения Максвелла. В случае, когда среда обладает магнитными свойствами, усреднение уравнений Лоренца более сложно, но и тогда для неподвижных сред приходим к уравнениям Максвелла. Для случая же, когда среда движется как целое, усреднение уравнений Лоренца приводит к новым уравнениям, их Лоренц считает уравнениями для движущихся сред.

Нужно отметить, что разработка Лоренцем электронной теории в значительной степени была обусловлена попыткой создать электродинамику движущихся сред. Этим и обусловлено название его главного труда «Опыт теории электрических и оптических явлений в движущихся телах ».

Первым серьезным успехом новой теории было объяснение открытого в 1896 году Питером Зееманом (1865-1943) явления расщепления спектральных линий в магнитном поле. Первоначальная установка Зеемана не была снабжена достаточно точной аппаратурой, и Зееман заметил, только, что спектральные линии расширяются, если источник света помещен в магнитное поле. Узнав результаты первого опыта Зеемана, Лоренц объяснил их, исходя из теории электронов. При этом он предсказал, что спектральные линии в опыте Зеемана должны не просто расширяться, но разделяться на две или на три в зависимости от направления, в котором производится наблюдение по отношению к направлению магнитного поля. Лоренц также определил, что эти линии должны быть определенным образом поляризованы, Последующие экспериментальные исследования подтвердили выводы Лоренца и, таким образом, явились подтверждением электронной теории.

Вскоре после создания электронной теории была развита электронная теория металлов. Немецкий физик Пауль Друде (1863-1906) полагал, что электроны, находящиеся в металле, являются свободными и ведут себя подобно атомам идеального газа. Эта гипотеза дала ему возможность, применив методы кинетической теории газов к электронам внутри металла, построить электронную теорию металлов, которая была далее разработана Лоренцем в 1904-1907 годах.

Новые результаты были получены также при применении электронной теории для объяснения магнитных свойств тел. Развитие представлений об электронах поставило на очередь задачу рассмотреть явление парамагнетизма и диамагнетизма с точки зрения этой теории.

Впервые электронную теорию диамагнетизма начал разрабатывать английский ученый Джозеф Лармор (1957-1942), который одновременно с Лоренцем участвовал в построении общей теории электронов. Лармор объяснил явления диамагнетизма, рассматривая движение электронов в веществе, учитывая при этом действие внешнего магнитного поля (прецессия Лармора).

В 1905 году Поль Ланжевен (1872-1946) развил более подробную и строгую электронную теорию диамагнетизма и парамагнетизма. Электронная теория ферромагнетизма была разработана в 1907 Пьером Вейсом (1865-1940).

Конец XIX века в истории физики отмечен рядом принципиальных открытий, которые вызвали научную революцию во взглядах физиков. Важнейшими из них были открытие электрона и установление зависимости его массы от скорости, а затем открытие радиоактивности. Следует отметить открытие фотоэффекта и его законов, а также открытие рентгеновских лучей. Последние два открытия помимо собственного значения для развития представлений о физических явлениях сыграли существенную роль как в открытии электрона и электромагнитной массы, так и в открытии радиоактивности.

В 1895 году Вильгельм Конрад Рентген (1845-1923) открыл лучи, получившие название рентгеновских. Открытие чрезвычайно заинтересовало ученых и вызвало широкую дискуссию об их природе. Быстро был выяснен ряд свойств этих необычных лучей: способность проходить через светоне-проницаемые тела, ионизировать газы и др., но природа самих лучей оставалась неясной.

Рентген высказал гипотезу о том, что лучи представляют собой продольные электромагнитные волны. Существовала гипотеза о корпускулярной природе этих лучей. С другой стороны, уже очень скоро после открытия Рентгена было высказано предположение, что эти лучи являются электромагнитными волнами, имеющими вид хаотически следующих друг за другом электромагнитных импульсов.

Однако все попытки обнаружить волновые свойства лучей Рентгена, например наблюдать их дифракцию, долгое время были безуспешными, пока немецкому физику Максу Феликсу Теодору Лауэ (1979-1960) не пришла идея использовать вместо дифракционной решетки кристалл и попытаться обнаружить дифракцию рентгеновских лучей от кристаллической решетки (опыт впервые был произведен только в 1925 году).

Открытие рентгеновских лучей способствовало исследованиям электропроводности газов и изучению катодных лучей.

Джозеф Джон Томсон (1856-1940) и Эрнест Резерфорд (1871-1937) установили, что под действием облучения рентгеновскими лучами газ сильно повышает свою электропроводность, сохраняя некоторое время это свойство и после прекращения облучения. Однако если газ, подвергнутый облучению рентгеновскими лучами, пропустить через вату, то он немедленно теряет приобретенное свойство. Этот факт подтверждал предположение, что проводниками электричества в газах являются заряженные частички, образующиеся в результате действия рентгеновских лучей. Что это за частички, каков их заряд и масса – эти вопросы встали перед Томсоном. Для исследования этих вопросов Томсон, решил изучить свойства катодных лучей, которые как он считал, также являются потоком заряженных частиц, и провел целую серию экспериментальных исследований по измерению отношения заряда к массе для катодных частиц. Эти исследования и привели его к открытию электрона.

Открытие электрона

Заинтересовавшись открытием Рентгена, английские ученые Джозеф Джон Томсон (1856-1940) и Эрнест Резерфорд (1871-1937) установили, что под действием облучения рентгеновскими лучами газ сильно повышает свою электропроводность, сохраняя некоторое время это свойство и после прекращения облучения. Однако если газ, подвергнутый облучению рентгеновскими лучами, пропустить через вату, то он немедленно теряет приобретенное свойство. Этот факт подтверждал предположение, что проводниками электричества в газах являются заряженные частички, образующиеся в результате действия рентгеновских лучей. Что это за частички, каков их заряд и масса – эти вопросы встали перед Томсоном.

Для исследования этих вопросов Томсон, решил изучить свойства катодных лучей, которые как он считал, также являются потоком заряженных частиц, и провел целую серию экспериментальных исследований по измерению отношения заряда к массе для катодных частиц. Эти исследования и привели его к открытию электрона.

В 1897 году Томсон опубликовал первые результаты по определению отношения заряда к массе катодных лучей. Для измерения отношения заряда к массе катодных частичек он применил два метода. Первый заключался в измерении заряда и кинетической энергии, переносимых катодными лучами за один и тот же промежуток времени. Для измерения электрического заряда пучок катодных лучей направлялся в фарадеев цилиндр (полый металлический цилиндр, имеющий небольшое отверстие в одном из оснований и соединенный с электрометром). Кинетическая энергия пучка катодных лучей определялась по измерению температуры внутри фарадеева цилиндра с помощью помещенного туда термоэлемента, который нагревался при попадании в него этих лучей. Измеряя далее отклонение этого пучка лучей в магнитном поле, имеющем направление, перпендикулярное лучу, Томсон и определил отношение заряда к массе.

Другой метод, который использовал Томсон для определения отношения e /m , был основан на одновременном действии электрического и магнитного полей на пучок катодных лучей. Томсон воздействовал на такой пучок электрическим и магнитным полями, направленными взаимно перпендикулярно и перпендикулярно пучку. Подбирая величину электрического поля так, чтобы действие его компенсировалось действием магнитного поля, и измеряя затем отклонения этого пучка при наличии только одного магнитного поля той же напряженности, Томсон определил отношение заряда к массе.

Томсон получил, что среднее значение для e/m равно 1,76·10^11 Кл/кг. Из опытов Томсона следовало, что катодные лучи, бесспорно, являются потоком заряженных частиц, заряд и масса которых остаются одними и теми же при использовании различных газов и разных материалов катода. Если принять, что заряд катодных частиц равен заряду водородного иона, определенного из электролиза, то масса этих частиц во много раз меньше массы самого малого атома – атома водорода. Таким образом, напрашивался вывод о существовании заряженных частиц, имеющих значительно меньшую массу, чем масса атома, и входящих как составные части в атомы всех элементов. Такие частицы Томсон предложил назвать «корпускулами». Эти корпускулы, как утверждал он, входят в состав всех атомов элементов.

Независимо от Томсона значение величины e/m для катодных лучей определил Вальтер Кауфман (1871-1947). Измеряя отклонение пучка катодных лучей в магнитном поле и, зная разность потенциалов между катодом и анодом, Кауфман вычислил величину e/m, порядок которой получился таким же, как и у Томсона. Однако Кауфман в первой своей работе не сделал выводов, какие сделал Томсон. Он писал, что факт постоянства e/m для различных металлов и газов и значительное отклонение этой величины от отношения заряда к массе ионов, вычисленных из явления электролиза, очень трудно объяснить. Вскоре Томсон определил отношение заряда к массе для заряженных частиц, получаемых при освещении ультрафиолетовыми лучами поверхности металла, т. е. использовал явление фотоэффекта.

Явление фотоэффекта впервые наблюдал Герц , который заметил, что электрическая искра проскакивает через искровой промежуток при меньшей разности потенциалов, если он освещается ультрафиолетовым светом. Последующие опыты показали также, что заряженный проводник заметно теряет свой заряд, если он освещается ультрафиолетовыми лучами.

В 1888 году явление фотоэффекта исследовал Александр Григорьевич Столетов (1836-1896). Он установил, что фотоэффект может иметь место и при малых потенциалах, и разработал классический метод наблюдения этого явления.

Установка Столетова представляла собой металлическую пластинку С, которая освещалась через сетку лучами от электрической дуги А. Пластинка и сетка были включены в цепь, содержащую гальваническую батарею В и гальванометр. Если на сетку подавалось положительное напряжение, а на пластинку – отрицательное, то при освещении последней по цепи протекал ток. Используя рассмотренный метод исследования, Столетов установил ряд важных закономерностей. Так, он показал, что фототок имеет место только в том случае, если на освещаемую пластинку подается отрицательный потенциал; что величина тока пропорциональна световому потоку, падающему на пластину; что существует ток насыщения; что для получения фототока нужно осветить прибор ультрафиолетовыми лучами, и т. д.

Для измерения отношения e/m у фотоэлектронов Томсон использовал простейший фотоэлемент, состоящий из металлической пластинки и металлической сетки, включенных в цепь с батареей и гальванометром. Пластинка и сетка помещались в сосуд, из которого выкачивался воздух. Стенка сосуда, через которую освещалась металлическая пластинка, была изготовлена из кварца. Освещая пластинку светом, содержащим ультрафиолетовые лучи, Томсон наблюдал, как обычно, появление фототока, регистрируемого гальванометром. Если теперь поместить весь прибор в магнитное поле, направление которого перпендикулярно направлению фототока, то при определенной величине напряженности поля фототок прекратится. Это, очевидно, имеет место тогда, когда под действием магнитного поля заряженные частицы поворачиваются, не успев достигнуть сетки, и ток, следовательно, прекращается. Зная расстояние между пластинкой и сеткой, разность потенциалов между ними, а также измерив критическую напряженность магнитного поля, при котором ток прекращается, Томсон определил значение e /m . При этом он получил величину, примерно совпадающую с величиной e/m , полученной им для катодных лучей.

Важнейшим открытием в физике конца XIX в. было открытие радиоактивности, которое помимо своего общего принципиального значения сыграло важную роль в развитии представлений об электроне. Толчком к открытию радиоактивности было изучение рентгеновских лучей.

В 1896 году Антуан Анри Беккерель (1852-1908), пытаясь обнаружить рентгеновские лучи, испускаемые, по его мнению, различного рода веществами после того, как они освещались солнечным светом, открыл, что кристалл урановой соли является непрерывным источником какого-то излучения, которое может проходить через светонепроницаемые экраны и вызывать почернение фотопластинки.

Мария Склодовская-Кюри (1867-1934), занявшись исследованием нового явления, пришла к выводу, что в урановых рудах присутст-вуют вещества, обладающие также свойством излучения, названного ею радиоактивным. В результате упорного труда Марии и Пьеру Кюри (1859-1906) удалось выделить из урановых руд новый элемент (1898), который обладал радиоактивностью гораздо большей, чем уран. Этот элемент был назван радием.

Исследованием вновь открытых явлений занялись многие физики. Перед ними встали два вопроса.
Во-первых, это вопрос о природе радиоактивного излучения. Уже через короткое время после открытия Беккереля стало ясно, что радиоактивное излучение неоднородно и содержит три компонента, которые получили название альфа , бета и гамма -лучей. При этом оказалось, что альфа - и бета -лучи являются потоками соответственно положительно и отрицательно заряженных частиц. Природа гамма -излучения была выяснена позже, хотя довольно рано высказывалось мнение, что оно представляет собой электромагнитное излучение.

Второй вопрос, возникший в связи с исследованием радиоактивного излучения, был более трудным и заключался в определении источника энергии, которую несут эти лучи. Вначале было высказано предположение, что энергия излучения при радиоактивном распаде берется из вне, из окружающего радиоактивное вещество пространства. Однако эта гипотеза вызвала много возражений. Гипотеза о том, что источник энергии радиоактивного излучения нужно искать внутри самого радиоактивного вещества, казалась более убедительной. Но вопрос о том, что это за энергия, находящаяся внутри атома, которая освобождается при его распаде и выделяется вместе с излучением, был неясен, как и вообще вопрос о механизме самого радиоактивного распада, а первые теории, возникшие для решения этого вопроса, нельзя было считать убедительными.


Похожая информация.