Со-сто-я-щий из зве-ньев оди-на-ко-вой дли-ны и ис-поль-зу-ю-щий пол-зу-ны, пе-ре-дви-га-ю-щи-е-ся по крас-но-му непо-движ-но-му стерж-ню, ре-а-ли-зу-ет на плос-ко-сти осе-вую сим-мет-рию. Дей-стви-тель-но, по-ло-же-ние од-но-го из зе-лё-ных шар-ни-ров за-да-ёт по-ло-же-ние и дли-ну про-ти-во-по-лож-ной сто-ро-ны сво-е-го тре-уголь-ни-ка, а тре-уголь-ни-ки, на-хо-дя-щи-е-ся по раз-ные сто-ро-ны от стерж-ня, все-гда рав-ны. Зна-чит, при лю-бом по-ло-же-нии ме-ха-низ-ма два зе-лё-ных шар-ни-ра сим-мет-рич-ны от-но-си-тель-но крас-но-го стерж-ня.

Возь-мём фигу-ру - кри-во-ли-ней-ный тре-уголь-ник - и по-смот-рим, во что она пе-рей-дёт под дей-стви-ем на-ше-го ме-ха-низ-ма. По-лу-чит-ся сим-мет-рич-ная фигу-ра . Она, в том чис-ле, рав-на из-на-чаль-ной, но по-дру-го-му ори-ен-ти-ро-ва-на. Т.е., ес-ли счи-тать плос-кость бес-ко-неч-ным ли-стом бу-ма-ги с на-ри-со-ван-ной на нём фигу-рой, то чтобы сов-ме-стить фигу-ру и её об-раз, необ-хо-ди-мо сло-жить лист по оси сим-мет-рии, при этом у од-ной его по-ло-вин-ки по-ме-ня-ет-ся верх с ни-зом.

При-ме-ним те-перь к уже по-лу-чив-ше-му-ся тре-уголь-ни-ку наш ме-ха-низм, ре-а-ли-зу-ю-щий сим-мет-рию, с осью, па-рал-лель-ной оси пер-во-го ме-ха-низ-ма. По-лу-чив-ший-ся тре-уголь-ник име-ет ту же ори-ен-та-цию, что и са-мый пер-вый, и по-лу-ча-ет-ся из него па-рал-лель-ным пе-ре-но-сом, т.е. сдви-гом. Двой-ной па-рал-ле-ло-грамм с дву-мя крас-ны-ми за-креп-лён-ны-ми шар-ни-ра-ми ре-а-ли-зу-ет это пре-об-ра-зо-ва-ние на плос-ко-сти. Итак, ре-зуль-та-том двух осе-вых сим-мет-рий с па-рал-лель-ны-ми ося-ми яв-ля-ет-ся про-сто сдвиг. Вер-но и об-рат-ное - лю-бой па-рал-лель-ный пе-ре-нос мож-но раз-ло-жить в две осе-вые сим-мет-рии с па-рал-лель-ны-ми ося-ми. Как нетруд-но за-ме-тить, та-кое раз-ло-же-ние не един-ствен-но.

Та-кой ре-зуль-тат по-сле-до-ва-тель-ных отоб-ра-же-ний на-зы-ва-ет-ся в ма-те-ма-ти-ке ком-по-зи-ци-ей, а в тер-ми-но-ло-гии функ-ций - слож-ной функ-ци-ей. Так же, как и в ана-ли-ти-че-ской за-пи-си, ре-зуль-тат ком-по-зи-ции мож-но по-лу-чить, ли-бо по-сле-до-ва-тель-но вы-пол-няя со-став-ля-ю-щие её дей-ствия, ли-бо как-то пре-об-ра-зо-вав и при-ме-нив уже в «упро-щён-ном» ви-де. При этом пре-об-ра-зо-ван-ный объ-ект внешне мо-жет быть со-вер-шен-но не по-хож на из-на-чаль-ные, из ко-то-рых он по-лу-чал-ся.

А что же бу-дет, ес-ли оси сим-мет-рий не па-рал-лель-ны ?

Ком-по-зи-ци-ей двух осе-вых сим-мет-рий с непа-рал-лель-ны-ми ося-ми яв-ля-ет-ся по-во-рот с цен-тром в точ-ке пе-ре-се-че-ния осей. При этом угол, на ко-то-рый по-во-ра-чи-ва-ет-ся фигу-ра, ра-вен удво-ен-но-му уг-лу меж-ду ося-ми. Как и в слу-чае со сдви-гом, вер-но и об-рат-ное - лю-бой по-во-рот на плос-ко-сти рас-кла-ды-ва-ет-ся на две осе-вые сим-мет-рии.

Шар-нир-ный ме-ха-низм, ос-но-ван-ный на ром-бе, ре-а-ли-зу-ет пре-об-ра-зо-ва-ние по-во-ро-та плос-ко-сти.

А те-перь к плос-ко-сти (на при-ме-ре на-шей фигу-ры) при-ме-ним по-сле-до-ва-тель-но па-рал-лель-ный пе-ре-нос, а за-тем по-во-рот. Мож-но ли ка-ким-то од-ним пре-об-ра-зо-ва-ни-ем сов-ме-стить ис-ход-ную и ко-неч-ную фигу-ры?

Раз-ло-жим ис-поль-зо-ван-ный по-во-рот на две сим-мет-рии . Из этой кар-тин-ки вид-но, что этап по-лу-че-ния се-ро-го тре-уголь-ни-ка и по-том при-ме-не-ния к нему од-ной сим-мет-рии мож-но за-ме-нить про-сто на од-ну сим-мет-рию. А та-кая кар-тин-ка - ком-по-зи-ция двух осе-вых сим-мет-рий с непа-рал-лель-ны-ми ося-ми - нам уже зна-ко-ма, это есть про-сто по-во-рот.

На-ри-су-ем тре-уголь-ник на сто-ле. По-ло-жив ли-сток бу-ма-ги по-верх, об-ве-дём фигу-ру. Под-ни-мем ли-сто-чек и от-пу-стим , чтобы он слу-чай-ным об-ра-зом опу-стил-ся на стол, но при этом не пе-ре-вер-нул-ся. Тем са-мым по-лу-че-но, как го-во-рят ма-те-ма-ти-ки, «в об-щем ви-де» дви-же-ние плос-ко-сти - пре-об-ра-зо-ва-ние, со-хра-ня-ю-щее рас-сто-я-ния и не ме-ня-ю-щее ори-ен-та-цию. Ко-неч-но, мог-ло так слу-чить-ся, что фигу-ры от-ли-ча-ют-ся па-рал-лель-ным пе-ре-но-сом, но ве-ро-ят-ность, что ли-сто-чек ля-жет так ак-ку-рат-но, очень ма-ла. Во всех дру-гих слу-ча-ях это - про-сто по-во-рот с неко-то-рым цен-тром на неко-то-рый угол!

локальная симметрия

Плавающая симметрия

Организация фасадов на основе "симметричного ядра"

Вам хорошо знакомо слово симметрия. Наверное, когда вы его произносите, то вспоминаете бабочку или клиновый лист, в которых мысленно можно провести прямую ось и части, которые будут расположены по разные стороны от этой прямой будут практически одинаковыми.
Это представление – правильное. Но это только один из видов симметрии, которую изучает математика, так называемая осевая симметрия. Кроме того, существует более общее понятие симметрии.
Общее понятие симметрии характеризует особую структуру организации любых систем, в которой сохраняются (остаются инвариантными) определенные признаки при выполнении определенных преобразований. Признаки, которые будут сохраняться, могут быть геометрическими, физическими, биологическими, химическими, информационными и т. д.

Рассматривая симметрию в архитектуре, нас будет интересовать геометрическая симметрия – симметрия формы как соразмерность частей целого. Замечено, что при выполнении определенных преобразований над геометрическими фигурами, их части, переместившись в новое положение, вновь будут образовывать первоначальную фигуру. Например, если провести прямую через высоту равнобедренного треугольника к основанию, и части треугольника, расположенные по разные стороны от этой прямой, поменять местами, то мы получим тот же (в смысле формы и размеров) равнобедренный треугольник; пятиконечная звезда при повороте на угол 72 градуса вокруг центральной точки (точки пересечения ее лучей) займет первоначальное положение. В приведенных примерах рассматриваются разные виды симметрии. В первом случае речь идет об осевой симметрии. Части, которые, если можно так сказать, взаимозаменяют друг друга, образованы некоторой прямой. Эту прямую принято называть осью симметрии. В пространстве аналогом оси симметрии является плоскость симметрии. Таким образом, в пространстве обычно рассматривается симметрия относительно плоскости симметрии. Например, куб симметричен относительно плоскости, проходящей через его диагональ. Имея ввиду оба случая (плоскости и пространства), этот вид симметрии иногда называют зеркальной. Название это оправдано тем, что обе части фигуры, находящиеся по разные стороны от оси симметрии или плоскости симметрии, похожи на некоторый объект и его отражение в зеркале. Заметим, что вы можете встретиться и с другим названием этого вида симметрии. Например, в биологии указанный вид симметрии называют билатеральным, а плоскость симметрии – билатеральной плоскостью.

Кроме зеркальной симметрии рассматривается центральная или поворотная симметрия. В этом случае переход частей в новое положение и образование исходной фигуры происходит при повороте этой фигуры на определенный угол вокруг точки, которая обычно называется центром поворота. Отсюда и приведенные выше названия указанного вида симметрии. Поворотная симметрия рассматривалась в примере с пятиконечной звездой. Поворотная симметрия может рассматриваться и в пространстве. Куб при повороте вокруг точки пересечения его диагоналей на угол 90° в плоскости, параллельной любой грани, перейдет в себя. Поэтому можно сказать, что куб является фигурой центрально симметричной или обладающей поворотной симметрией.

Еще одним видом симметрии, о которой мы пока не говорили, является переносная симметрия. Этот вид симметрии состоит в том, что части целой формы организованы таким образом, что каждая следующая повторяет предыдущую и отстоит от нее на определенный интервал в определенном направлении. Этот интервал называют шагом симметрии. Переносная симметрия обычно используется при построении бордюров. В произведениях архитектурного искусства ее можно увидеть в орнаментах или решетках, которые используются для их украшения. Переносная симметрия используется и в интерьерах зданий.

Архитектурные сооружения, созданные человеком, в большей своей части симметричны. Они приятны для глаза, их люди считают красивыми. С чем это связано? Здесь можно высказать только предположения.
Во-первых, все мы с вами живем в симметричном мире, который обусловлен условиями жизни на планете Земля, прежде всего существующей здесь гравитацией. И, скорее всего, подсознательно человек понимает, что симметрия это форма устойчивости, а значит существования на нашей планете. Поэтому в рукотворных вещах он интуитивно стремится к симметрии.
Во-вторых, окружающие человека люди, растения, животные и вещи симметричны. Однако при ближайшем рассмотрении оказывается, что природные объекты (в отличие от рукотворных) только почти симметричны. Но это не всегда воспринимает глаз человека. Глаз человека привыкает видеть симметричные объекты. Они воспринимаются как гармоничные и совершенные.
Симметрия воспринимается человеком как проявление закономерности, а значит внутреннего порядка. Внешне этот внутренний порядок воспринимается как красота.
Симметричные объекты обладают высокой степенью целесообразности – ведь симметричные предметы обладают большей устойчивостью и равной функциональностью в разных направлениях. Все это привело человека к мысли, что чтобы сооружение было красивым оно должно быть симметричным. Симметрия использовалась при сооружении культовых и бытовых сооружений в Древнем Египте. Украшения этих сооружений тоже представляют образцы использования симметрии. Но наиболее ярко симметрия проявляется в античных сооружениях Древней Греции, предметах роскоши и орнаментов, украшавших их. С тех пор и до наших дней симметрия в сознании человека стала объективным признаком красоты.
Соблюдение симметрии является первым правилом архитектора при проектировании любого сооружения. Стоит только посмотреть на великолепное произведение Казанский собор в Санкт-Петербурге, чтобы убедиться в этом.
Если мы мысленно проведем вертикальную линию через шпиль на куполе и вершину фронтона, то увидит, что с двух сторон от нее абсолютно одинаковые части сооружения (колоннады и здания собора). Но возможно, что вы не знаете, что в Казанском соборе есть еще одна, если можно так сказать «несостоявшаяся» симметрия.
Дело в том, что по канонам православной церкви вход в собор должен быть с востока, т. е. он должен быть с улицы, которая находится справа от собора и идет перпендикулярно Невскому проспекту. Но, с другой стороны Воронихин понимал, что собор должен быть обращен к главной магистрали города. И тогда он сделал вход в собор с востока, но задумал еще один вход, который украсил прекрасной колоннадой. Чтобы сделать здание совершенным, а значит симметричным, такая же колоннада должны была располагаться с другой стороны собора. Тогда, если бы мы посмотрели на собор сверху, то план его имел бы не одну, а две оси симметрии. Но замыслам архитектора было не суждено сбыться.

Казанский собор в Санкт-Петербурге

Кроме симметрии в архитектуре можно рассматривать антисимметрию и диссимметрию. Антисимметрия это противоположность симметрии, ее отсутствие. Примером антисимметрии в архитектуре является Собор Василия Блаженного в Москве, где симметрия отсутствует полностью в сооружении в целом. Однако, удивительно, что отдельные части этого собора симметричны и это создает его гармонию. Попробуйте привести еще примеры антисимметричных архитектурных сооружений. Диссимметрия – это частичное отсутствие симметрии, расстройство симметрии, выраженное в наличии одних симметричных свойств и отсутствии других. Примером диссимметрии в архитектурном сооружении может служить Екатерининский дворец в Царском селе под Санкт-Петербургом. Практически в нем полностью выдержаны все свойства симметрии за исключением одной детали. Наличие Дворцовой церкви расстраивает симметрию здания в целом. Если же не принимать во внимание эту церковь, то Дворец становится симметричным.

Екатерининский дворец в Царском селе

В современной архитектуре все чаще используются приемы как антисимметрии, так и диссимметрии. Эти поиски часто приводят к весьма интересным результатам. Появляется новая эстетика градостроительства. Завершая наш разговор, мы можем констатировать, что красота есть единство симметрии и диссимметрии.

При изучении темы «Поворот» учащимся дается задание: нарисовать на альбомном листе фигуру, выбрать центр поворота и угол поворота. Построить новую фигуру. Техника работы может быть различной. Например, дети часто используют апп ликацию. На нашей виртуальной выставке вторая работа выполнена в этой технике. А вот на 3 рисунке ученик использовал готовое изображение (аппликация) и вторую подвижную фигуру нарисовал самостоятельно.

Особенно интересны работы, выполненные с помощью карандашей, фломастеров или красок. Конечно, при составлении этих работ дети предварительно изготовили шаблон. Этот шаблон-трафарет помог им при выполнении творческих работ по другим темам "Симметрия относительно прямой", " Симметрия относительно точки ", "Параллельный перенос".

Детям особенно нравиться делать динамические модели. Их можно покрутить и выполнить поворот по часовой стрелке и против часовой стрелки. На представленной выставке только одна работа статическая на первом рисунке. Остальные работы динамические.

Для изготовления динамической модели одну фигуру надо нарисовать на альбомном листе. Вторую фигуру вырезать по шаблону из белого картона. Некоторые ребята вторую подвижную фигуру для большей надежности еще оклеили бесцветной пленкой. Например, красивая рыба в верхнем ряду. Ей уже больше 10 лет, а она выглядит, как новенькая. Не потускнели и не выгорели яркие краски. Для обозначения центра ученики используют маленькую круглую точку из картона, скрепляют подвижную фигуру с альбомным листом с помощью обычных швейных ниток. Некоторые дети использовали металлические гайки. Правда этот вариант не очень эстетично выглядит.

Есть в копилке лучших работ по теме "Поворот" работы, выполненные на фанере с помощью прибора для выжигания. Среди них есть подвижные модели и статические рисунки. Для динамических моделей надо выполнить значительно больший объем работ, ведь подвижную фигура необходимо выпилить. Вот, какая трудоемкая работа!


Лучшие работы оформляются на стенде в классе. А работы на фанере стоят в шкафах. После Выставки в кабинете я архивирую творческие работы в тематические папки, они пополняют методическую базу кабинета. Эта папка представляется на Выставках в гимназии, проходящих в рамках различных методических мероприятий, семинарах. Например, Выставка творческих работ учащихся в рамках Дня открытых дверей в гимназии, на который традиционно приглашаются родители обучающихся.

Классный час в 9 классе, стратегия « Продвинутая лекция »

Осевая и центральная симметрия, параллельный перенос,
поворот - как движения плоскости

Буякова Елена Валерьевна

Цель : показать различные способы задания уравнения прямой и общее уравнение прямой.

Задачи :

1) ознакомиться с такими понятиями, как направляющий вектор и вектор нормали прямой;

2) показать четыре различных способа задания уравнения прямой;

3) показать взаимозаменяемость различных способов задания прямой.

Ход урока .

1. Тема урока. Разбиение класса на пары.

2. Инструктаж по чтению текста (приложение 1) и выполнению работы

Чтение и заполнение ведутся индивидуально. Текст разбит на две части.

Первый номер пары проверяет соответствие выписаных слов читаемому тексту.

Второй номер пары запоминает основные факты, с тем, что объяснить первому номеру.

Вторую часть текста пары читают, поменявшись ролями.

3. Вопрос к первой части: Что вы помните о осевой и центральной симметрии ?

4. Вопрос ко второй части текста: Какие ассоциации у вас возникают с темой «параллельный перенос, поворот »?

На доску выписываются слова - ассоциации, найденные каждой парой (без повторов), в тетрадях учащиеся пополняют свои списки данных слов. После чего читается соответствующий текст.

5. Обсуждение в парах.

6. Рефлексия - 10 минутное эссе на тему «Движения плоскости: виды и их отличия»

Приложение 1

Центральная и осевая симметрия

Определение. Симметрия (означает «соразмерность») — свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры.

Симметрия относительно точки — это центральная симметрия (рис. 23 ниже), а симметрия относительно прямой — это осевая симметрия (рис. 24 ниже).

Симметрия относительно точки предполагает, что по обе стороны от точки на одинаковых расстояниях находится что-либо, например другие точки или геометрическое место точек (прямые линии, кривые линии, геометрические фигуры).

Если соединить прямой симметричные точки (точки геометрической фигуры) через точку симметрии, то симметричные точки будут лежать на концах прямой, а точка симметрии будет ее серединой. Если закрепить точку симметрии и вращать прямую, то симметричные точки опишут кривые, каждая точка которых тоже будет симметрична точке другой кривой линии.

Симметрия относительно прямой (оси симметрии) предполагает, что по перпендикуляру, проведенному через каждую точку оси симметрии, на одинаковом расстоянии от нее расположены две симметричные точки. Относительно оси симметрии (прямой) могут располагаться те же геометрические фигуры, что и относительно точки симметрии.

Примером может служить лист тетради, который согнут пополам, если по линии сгиба провести прямую линию (ось симметрии). Каждая точка одной половины листа будет иметь симметричную точку на второй половине листа, если они расположены на одинаковом расстоянии от линии сгиба на перпендикуляре к оси.

Линия осевой симметрии, как на рисунке 24, вертикальна, и горизонтальные края листа перпендикулярны ей. Т. е. ось симметрии служит перпендикуляром к серединам горизонтальных ограничивающих лист прямых. Симметричные точки (R и F, C и D) расположены на одинаковом расстоянии от осевой прямой — перпендикуляра к прямым, соединяющим эти точки. Следовательно, все точки перпендикуляра (оси симметрии), проведенного через середину отрезка, равноудалены от его концов; или любая точка перпендикуляра (оси симметрии) к середине отрезка равноудалена от концов этого отрезка.

Параллельный перенос

Параллельным переносом называется такое движение, при котором все точки плоскости перемещаются в одном и том же направлении на одинаковое расстояние.

Подробнее: параллельный перенос произвольным точкам плоскости X и Y ставит в соответсвие такие точки X" и Y", что XX"=YY" или еще можно сказать так: параллельный перенос это отображение, при котором все точки плоскости перемещаются на один и тот же вектор - вектор переноса . Параллельный перенос задается вектором переноса: зная этот вектор всегда можно сказать, в какую точку перейдет любая точка плоскости.

Параллельный перенос является движением, сохраняющим направления. Дейсвтительно, пусть при параллельном переносе точки X и Y перешли в точки X" и Y" соответственно. Тогда выполняется равенство XX"=YY". Но из этого равенства по признаку равных векторов следут, что XY=X"Y", откуда получаем, что во-первых XY=X"Y", то есть параллельный перенос является движением, и во вторых, что XY X"Y", то есть при параллельном переносе сохраняются направления.

Это свойство параллельного переноса - его характерное свойство, то есть справедливо утверждение: движение, сохраняющее направления является параллельным переносом.

Поворот

Поворот плоскости относительно цетра O на данный угол () в данном направлении определяется так: каждой точке X плоскости ставится в соответсвие такая точка X", что, во-первых, OX"=OX, во-вторых и, в-третих, луч OX" откладывается от луча OX в заданном направлении. Точка O называется центром поворота , а угол -углом поворота .

Докажем, что поворот является движением:

Пусть при повороте вокруг точки O точкам X и Y сопостовляются точки X" и Y". Покажем, что X"Y"=XY.

Рассмотрим общий случай, когда точки O, X, Y не лежат на одной прямой. Тогда угол X"OY" равен углу XOY. Действительно, пусть угол XOY от OX к OY отсчитывается в направлении поворота. (Если это не так, то рассматриваем угол YOX). Тогда угол между OX и OY" равен сумме угла XOY и угла поворота (от OY к OY"):

с другой стороны,

Так как (как углы поворота), следовтельно . Кроме того, OX"=OX, и OY"=OY. Поэтому - по двум сторонам и углу между ними. Следовтельно X"Y"=XY.

Если же точки O, X, Y лежат на одной прямой, то отрезки XY и X"Y" будут либо суммой, любо разностью равных отрезков OX, OY и OX", OY". Поэтому и в этом случае X"Y"=XY. Итак, поворот является движением.