Функция принадлежности μ A (x) ∈ ставит в соответствие каждому числу

x ∈ X число из интервала , характеризующее степень принадлежности решения к подмножеству А.

Т.е. это некоторая не вероятностная субъективная мера нечеткости, определяемая в результате опроса экспертов о степени соответствия элемента x понятию, формализуемому нечетким множеством A. В отличие от вероятностной меры, которая является оценкой стохастической неопределенности, имеющей дело с неоднозначностью наступления некоторого события в различные моменты времени, нечеткая мера является численной оценкой лингвистической неопределенности, связанной с неоднозначностью и расплывчатостью категорий человеческого мышления. При построении функции принадлежности μ A (x) с каждым нечетким множеством A ассоциируется некоторое свойство, признак или атрибут, который характеризует некоторую совокупность объектов X. Чем в большей степени конкретный объект x ∈ X обладает этим свойством, тем более близко к 1 соответствующее значение μ A (x). Если элемент x ∈ X определенно обладает этим свойством, то μ A (x)=1, если же x ∈ X определенно не обладает этим свойством, то μ A (x)=0.

Основные виды функций принадлежности

На практике удобно использовать те функции принадлежности, которые допускают аналитическое представление в виде некоторой простой математической функции.

1. Кусочно-линейные,

использующиеся для задания неопределенностей типа: «приблизительно равно», «среднее значение», «расположен в интервале», «подобен объекту», «похож на предмет» и т.п.

Треугольная trimf

Трапецеидальная trapmf

2. S-образные,

использующиеся для задания неопределенностей типа: «большое количество», «большое значение», «значительная величина», «высокий уровень» и т.п.

Квадратичный S-сплайн smf

3. Z -образные,

использующиеся для задания неопределенностей типа «малое количество», «небольшое значении е», «незначительная величина», «низкий уровень» и т.п.

Квадратичный Z -сплайн z mf

4. П-образные,

использующиеся для задания неопределенностей типа: «приблизительно в пределах от и до», «примерно равно», «около» и т.п.

К данному типу функций принадлежности можно отнести целый класс кривых, которые по своей форме напоминают колокол, сглаженную трапецию или букву "П".

Колоколообразная gbellmf

a - коэффициент концентрации функции принадлежности; b – коэффициент крутизны функции принадлежности; c – координата максимума функции принадлежности.

Гауссовская gaussmf

a – координата максимума функции принадлежности; b – коэффициент концентрации функции принадлежности.

Методы построения функций принадлежности

Прямые и косвенные

В зависимости от числа привлеченных к опросу экспертов как прямые, так и косвенные методы делятся на одиночные и групповые .

Прямые

В прямых методах эксперт либо группа экспертов просто задают для каждого

x ∈ X значение функции принадлежности μ A (x).

Как правило, прямые методы построения функций принадлежности используются для таких свойств, которые могут быть измерены в некоторой количественной шкале. Например, такие физические величины, как скорость, время, расстояние, давление, температура и другие имеют соответствующие единицы и эталоны для своего измерения.

При прямом построении функций принадлежности следует учитывать, что теория нечетких множеств не требует абсолютно точного задания функций принадлежности. Зачастую бывает достаточно зафиксировать лишь наиболее характерные значения и вид функции принадлежности.

Так, например, если необходимо построить нечеткое множество, которое представляет свойство "скорость движения автомобиля примерно 50 км/ч", на начальном этапе может оказаться достаточным представить соответствующее нечеткое множество треугольной функцией принадлежности с параметрами а = 40 км/ч, b = 60 км/ч и с = 50 км/ч. В последующем функция принадлежности может быть уточнена опытным путем на основе анализа результатов решения конкретных задач.

Процесс построения или задания нечеткого множества на основе некоторого известного заранее количественного значения измеримого признака получил даже специальное название - фаззификация или приведение к нечеткости. Речь идет о том, что хотя иногда нам бывает известно некоторое значение измеримой величины, мы признаем тот факт, что это значение известно неточно, возможно с погрешностью или случайной ошибкой. При этом, чем меньше мы уверены в точности измерения признака, тем большим будет интервал носителя соответствующего нечеткого множества. Следует помнить, что в большинстве практических случаев абсолютная точность измерения является лишь удобной абстракцией для построения математических моделей. Именно по этой причине фаззификация позволяет более адекватно представить объективно присутствующую неточность результатов физических измерений.

Метод относительных частот (прямой групповой)

Пусть имеется m экспертов, n 1 из которых на вопрос о принадлежности элемента x ∈ X нечеткому множеству A отвечают положительно. Другая часть экспертов n 2 = m n 1 отвечает на этот вопрос отрицательно. Тогда принимается μ A (x) = n 1 / (n 1 + n 2) = n 1 / m.

Пример. Рассмотрим нечеткое множество A, соответствующее понятию «скорость изменения температуры положительная средняя». Объект x – скорость изменения температуры. Экспертам предъявляются различные значения скорости изменения температуры x, и каждому из них задается вопрос: считает ли эксперт, что данная скорость изменения температуры x положительная средняя. Результаты опроса сведены в табл.

В качестве непрерывного представления данной нечеткой переменной можно использовать гауссовскую ФП gaussmf с максимумом функции принадлежности а=5 и коэффициентом концентрации функции принадлежности b=1.7:

μ(x) = exp [ – (x–5) 2 / 2*1.7 2 ]

Косвенные

Используются при решении задач, для которых свойства физических величин не могут быть измерены. Наибольшее распространение среди косвенных методов получил метод парных сравнений.

Метод парных сравнений

Интенсивность принадлежности определяют, исходя из попарных сравнений рассматриваемых элементов.

Для каждой пары элементов универсального множества эксперт оценивает преимущество одного элемента над другим по отношению к свойству нечеткого множества. Парные сравнения удобно представлять следующей матрицей:

,

где - уровень преимущество элементанад(), определяемый по девятибальной шкале Саати:

1 - если отсутствует преимущество элемента над элементом;

3 - если имеется слабое преимущество над;

5 - если имеется существенное преимущество над;

7 - если имеется явное преимущество над;

9 - если имеется абсолютное преимущество над;

2, 4, 6, 8 - промежуточные сравнительные оценки.

Пример. Построить функцию принадлежности нечеткого множества "высокий мужчина" на универсальном множестве {170, 175, 180, 185, 190, 195}, если известны такие экспертные парные сравнения:

    абсолютное преимущество 195 над 170;

    явное преимущество 195 над 175;

    существенное преимущество 195 над 180;

    слабое преимущество 195 над 185;

    отсутствует преимущество 195 над 190.

Приведенным экспертным высказываниям соответствует такая матрица парных сравнений:

При согласованных мнениях эксперта матрица парных сравнений обладает следующими свойствами:

    она диагональная‚ т. е. a ii =1 ‚ i=1..n ;

    она обратно симметрична‚ т. е. элементы‚ симметричные относительно главной диагонали‚ связаны зависимостью a ij =1/a ji , i,j=1..n ;

    она транзитивна‚ т. е. a ik a kj =a ij , i,j,k=1..n .

Наличие этих свойств позволяет определить все элементы матрицы парных сравнений:

После определения всех элементов матрицы парных сравнений, степени принадлежности нечеткого множества вычисляются по формуле:

Для нормализации нечеткого множества разделим все степени принадлежности на максимальное значение, т.е. на 0.3588.

μ высокий мужчина (u i) (субнормальное нечеткое множество)

μ высокий мужчина (u i) ((нормальное нечеткое множество)

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью


Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:


Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.


Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.
Нечеткое множество (fuzzyset) представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно утверждать – обладают ли эти элементы некоторым характеристическим свойством, которое используется для задания нечеткого множества.

Пусть X – универсальное (базовое) множество, x – элемент X , а R – некоторое свойство. Обычное (четкое) подмножество A универсального множества X , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар
A = μ A x / x , где μ A x – характеристическая функция, принимающая значение 1 , если x удовлетворяет свойству R , и 0 – в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из X нет однозначного ответа «да-нет» относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества X определяется как множество упорядоченных пар A = μ A x / x , где μ A x – характеристическая функция принадлежности (или просто функция принадлежности ), принимающая значения в некотором вполне упорядоченном множестве M = 0 ; 1 . Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей. Если M = 0 ; 1 , то нечеткое подмножество A может рассматриваться как обычное или четкое множество. Степень принадлежности μ A x является субъективной мерой того, насколько элемент x ∈ X , соответствует понятию, смысл которого формализуется нечетким множеством A .

Носителем нечеткого множества A является четкое подмножество S A универсального множества X со свойством μ A x > 0 , т.е. S A = x ∣ x ∈ X ∧ μ A x > 0 . Иными словами, носителем нечеткого множества A является подмножество S A универсального множества X , для элементов которого функция принадлежности μ A x > 0 больше нуля. Иногда носитель нечеткого множества обозначают support A .

Если носителем нечеткого множества A является дискретное подмножество S A , то нечеткое подмножество A универсального множества X , состоящего из n элементов, можно представить в виде объединения конечного числа одноточечных множеств μ A x / x при помощи символа ∑ : A = ∑ i = 1 n μ A x i / x i . При этом подразумевается, что элементы x i упорядочены по возрастанию в соответствии со своими индексами, т.е. x 1 < x 2 < x 3 < … < x n .

Если носителем нечеткого множества A является непрерывное подмножество S A , то нечеткое подмножество A универсального множества X , рассматривая символ ∫ как непрерывный аналог введенного выше символа объединения для дискретных нечетких множеств ∑ , можно представить в виде объединения бесконечного числа одноточечных множеств μ A x / x:

A = ∫ X μ A x / x .

Пример. Пусть универсальное множество X соответствует множеству возможных значений толщин изделия от 10 мм до 40 мм с дискретным шагом 1 мм. Нечеткое множество A , соответствующее нечеткому понятию «малая толщина изделия», может быть представлено в следующем виде:

A = 1 / 10 ; 0,9 / 11 ; 0,8 / 12 ; 0,7 / 13 ; 0,5 / 14 ; 0,3 / 15 ; 0,1 / 16 ; 0 / 17 ; … ; 0 / 40 ,

A = 1 / 10 + 0,9 / 11 + 0,8 / 12 + 0,7 / 13 + 0,5 / 14 + 0,3 / 15 + 0,1 / 16 + 0 / 17 + … + 0 / 40 ,

где знак суммирования обозначает не операцию арифметического сложения, а объединения элементов в одно множество. Носителем нечеткого множества A будет конечное подмножество (дискретный носитель):

S A = 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 .

Если же универсальное множество X является множеством действительных чисел от 10 до 40 , т.е. толщина изделия может принимать все возможные значения в этих пределах, то носителем нечеткого множества A является отрезок S A = 10 ; 16 .

Нечеткое множество с дискретным носителем может быть представлено в виде отдельных точек на плоскости, нечеткое множество с непрерывным носителем может быть представлено в виде кривой, что соответствует дискретной и непрерывной функциям принадлежности μ A x , заданным на универсальном множестве X (рис.2.1).

Рис.2.1. Функции принадлежности нечетких множеств с (а)-дискретным и (б)-непрерывным носителями

Пример. Пусть X = 0 ; 1 ; 2 ; … – множество целых неотрицательных чисел. Нечеткое множество ital малый можно определить как μ ital малый x = x 1 + 0,1 x 2 − 1 .

Рис.2.2. Графическое представление нечеткого множества малый

Нечеткое множество A называется конечным , если его носитель S A является конечным четким множеством. При этом, по аналогии с обычными множествами, можно говорить, что такое нечеткое множество имеет конечную мощность card A = card S A . Нечеткое множество A называется бесконечным , если его носитель S A не является конечным четким множеством. При этом счетным нечетким множеством будет называться нечеткое множество с счетным носителем, имеющим счетную мощность в обычном смысле в терминах теории четких множеств, т.е. если S A содержит бесконечное число элементов, которые однако можно пронумеровать натуральными числами 1,2 ,3 . . . , причем достичь последнего элемента при нумерации принципиально невозможно. Несчетным нечетким множеством будет называться нечеткое множество со несчетным носителем, имеющим несчетную мощность континуума , т.е. если S A содержит бесконечное число элементов, которые невозможно пронумеровать натуральными числами 1,2 ,3 . . .

Пример. Нечеткое понятие «очень маленькое количество деталей» может быть представлено в виде конечного нечеткого множества A = 1 / 0 + 0,9 / 1 + 0,8 / 2 + 0,7 / 3 + 0,5 / 4 + 0,1 / 5 + 0 / 6 + … с мощностью card (A) = 6 и носителем S A = 0 ; 1 ; 2 ; 3 ; 4 ; 5 , который является конечным четким множеством. Нечеткое понятие «очень большое количество деталей» может быть представлено в виде A = 0 / 0 + … + 0,1 / 1 0 + 0,4 / 11 + 0,7 / 12 + 0,9 / 13 + 1 / 14 + 1 / 15 + … + 1 / n + … , n ∈ N – нечеткого множества с бесконечным счетным носителем S A ≡ N (множество натуральных чисел), который имеет счетную мощность в обычном смысле.

Пример. Несчетное нечеткое множество A , соответствующее нечеткому понятию «очень горячо», задано на универсальном множестве значений температур (в Кельвинах) температурой x ∈ [ 0 ; ∞) и функцией принадлежности μ A = 1 − e − x , с носителем S A ≡ R + (множество неотрицательных действительных чисел), который имеет несчетную мощность континуума.

Величина sup x ∈ X μ A x называется высотой нечеткого множества.

Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности sup x ∈ X μ A x = 1 . При sup x ∈ X μ A x < 1 субнормальным.

Нечеткое множество называется пустым , если ∀ x ∈ X μ A x = 0 .

Непустое субнормальное множество всегда можно нормализовать, разделив все значения функции принадлежности на ее максимальное значение μ A x sup x ∈ X μ A x .

Нечеткое множество называется унимодальным , если μ A x = 1 только для одной точки x (моды ) универсального множества X .

Нечеткое множество называется точечным , если μ A x > 0 только для одной точки x универсального множества X .

Множеством α -уровня нечеткого множества A , определенного на универсальном множества X , называется четкое подмножество A α универсального множества X , определяемое в виде:

A α = x ∈ X ∣ μ A x ≥ α , где α ∈ 0 ; 1 .

Пример. A = 0,8 / 1 + 0,6 / 2 + 0,2 / 3 + 1 / 4 , A 0,5 = 1 ; 2 ; 4 , где A 0,5 – четкое множество, включающее те элементы x упорядоченных пар μ A x / x , составляющих нечеткое множество A , для которых значение функции принадлежности которых удовлетворяет условию μ A x ≥ α .

Для множеств α -уровня выполняется следующее свойство: если α 1 ≥ α 2 , то мощность подмножества A α 1 не больше мощности подмножества A α 2 .

Элементы x ∈ X , для которых μ A x = 0,5 называются точками перехода нечеткого множества A .

Ядром нечеткого множества A , определенного на универсальном множестве X , называется четкое множество core A , элементы которого удовлетворяют условию core A = x ∈ X ∣ μ A x = 1 .

Границей нечеткого множества A , определенного на универсальном множестве X , называется четкое множество front A , элементы которого удовлетворяют условию front A = x ∈ X ∣ 0 < μ A x < 1 .

Пример. Пусть X = 0 ; 1 ; 2 ; … ; 10 , M = 0 ; 1 . Нечеткое множество несколько можно определить на универсальном множестве натуральных чисел следующим образом: несколько = 0,5 / 3 + 0,8 / 4 + 1 / 5 + 1 / 6 + 0,8 / 7 + 0,5 / 8 ; его характеристики: высота = 1 , носитель = 3 ; 4 ; 5 ; 6 ; 7 ; 8 , точки перехода = 3 ; 8 , ядро = 5 ; 6 , граница = 3 ; 4 ; 7 ; 8 .

Нечеткое множество A , определенное на универсальном множестве X , называется выпуклым , если μ A x ≥ min μ A a ; μ A b ; a < x < b ; x , a , b ∈ X (рис.2.3).

Рис.2.3. Функции принадлежности выпуклого и невыпуклого нечетких множеств

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью


Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:


Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.


Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Универсум

Элементы нечеткого множества выбираются (черпаются) из универсального множества или короче универсума . Универсум включает в себя все элементы, которые можно использовать при рассмотрении множества. В частности в выше рассмотренном примере универсумом является множество

U = [ 1 2 3 4 5 6 7 8 ].

Можно сказать, что универсум является областью определения множества , следовательно, и его функции принадлежности. Тем не менее, универсум зависит от контекста, как показывает следующий пример.

Пример 1.3 (универсум) . а) множество «молодые люди» может иметь в качестве универсума всех людей, проживающих на земле. Как альтернативу универсумом можно считать людей, возраст которых лежит между 0 и 100 годами; эти люди будут представлять переменную возраст (рис. 1.3).

Множества «более или менее молодой», «очень молодой» и «не очень молодой» получены из множеств «молодой» и «старый» ;

б) множество x >>10 (x много больше 10 вольт ) может иметь как универсум все положительные результаты измерений напряжения.

Применение универсума позволяет исключить из рассмотрения ошибочные результаты измерений, например отрицательные значения для уровня воды в баке.

В том случае, когда мы имеем дело с нечисловыми переменными, например, с переменной вкус пищи , которые не могут быть измерены в отношении численного масштаба, мы не можем использовать в качестве универсума множество чисел. При этом элементы универсума должны быть взяты, как говорят, из психологического континуума(сплошной среды) ; для данного примера таким универсумом может быть {горький, соленый, кислый, сладк ий,…}.

Определение (нечеткое множество ). Если U есть набор элементов (другими словами, универсум), обозначаемых традиционно x , то нечеткое множество A в U определяется как упорядоченное множество пар:

где называется функцией принадлежности (ФП) x к A .

Каждый элемент в универсуме является членом (элементом) нечеткого множества A с некоторой степенью принадлежности, может быть и с нулевой.

ФП является просто степенью, с которой элемент x принадлежит к множеству A. ФП преобразует универсум U в интервал ,

: U ,

т.е. каждому элементу x универсума U ставит в соответствие определенное число из интервала . Если =0,8, то говорят, что элемент x i на 80% принадлежит нечеткому множеству A .

Нечеткое множество строго определяется с помощью функции принадлежности, другими словами, логика определения понятия нечеткого множества не содержит никакой нечеткости. Четкое множество является частным случаем нечеткого множества, т.е. понятие нечеткого множества является расширенным понятием, охватывающим понятие четкого множества.

Непрерывное и дискретное представления . Существуют два альтернативных представления функций принадлежности в компьютере: непрерывный и дискретный. В непрерывной форме функция принадлежности есть математическая функция, возможно программа. Функция принадлежности может быть колоколообразной (так называемая - кривая ), s- образной (называемая s-кривой ), обратная s- образной (называемая z-кривой ), треугольной или трапециидальной. На рис. 1.2 изображена как пример - кривая . В дискретной форме функция принадлежности и универсум представляют собой дискретные значения (точки) в списке (векторе). В ряде случаев удобно иметь дело с дискретными представлениями.

В соответствии с эмпирическим правилом непрерывная форма требует более быстродействующего, но с меньшей памятью АЦП, чем дискретная форма.

Пример 1.4 (непрерывная форма) . Функция косинуса может быть использована для построения различных функций принадлежности. Так s-кривая может быть описана как


, (1.3)

где a l - левая точка излома, а a r - правая точка излома кривой. z-кривая является зеркальным отражением s-кривой относительно точки (a r - a l)/2 :

. (1.4)

При этом - кривая может быть интерпретирована как комбинация s-кривой и z-кривой, тогда в интервале при условии значения функции принадлежности

одинаковы и максимальны.

На рис. 1.2 изображена - кривая, описываемая функцией

Пример 1.5 (дискретная форма) . Чтобы получить дискретное представление, эквивалентное кривой, изображенной на рис. 1.2, предположим, что универсум U = u представлен дискретными значениями, скажем такими

u = .

Занесем результаты вычислений по формулам (1.3), (1.4) и (1.5) в соответствующий список значений

или в кратком виде,

[ 0 0,04 0,31 0,69 0,96 1 ].

Кстати, символически принято нечеткое множество на универсуме записывать как множество упорядоченных пар,

для непрерывных и дискретных универсумов соответственно. Здесь символы ине имеют никакого отношения к операциям интегрирования и суммирования. Так нечеткое множество, представленное ФП на рис. 1.2, можно записать в виде

Из приведенных примеров мы видим, что конструкция нечеткого множества зависит от двух вещей: выбора подходящего универсума и выбора соответствующей функции принадлежности . Еще раз отметим, что выбор функции принадлежности является в сущности субъективным делом, из чего следует, что выбранные разными людьми функции принадлежности для одного и того же понятия (скажем, «холодный») могут значительно отличаться. Эта субъективность проистекает из неопределенной природы абстрактных понятий и не имеет ничего общего с вероятностью. Поэтому субъективность и неслучайность нечетких множеств являются главным отличием изучения нечетких множеств и теории вероятности. Последняя имеет дело с объективной трактовкой случайных событий (явлений).

Нормализация . Нечеткое множество называется нормализованным , если самое большое значение функции принадлежности, так называемая высота нечеткого множества, равно 1, Вы нормализуете нечеткое множество путем деления каждого элемента его функции принадлежности на упомянутое самое большое значение, a/max(a) . При использовании функций принадлежности различают другие параметры, в частности ядро или сердцевину (см. рисунок ниже).

Ядро или сердцевина нормализованного нечеткого множества A включает все элементы x , для которых =1. Четкое подмножество элементов, имеющих отличную от нуля степень принадлежности, называют основным (опорным) для нечеткого множества или носителем нечеткого множества. Опора или основа нечеткого множества A включает все элементы x , для которых 0.