Интерес к искусственному интеллекту растёт с каждым годом: в 2011 году было 67 сделок с компаниями, которые занимаются разработкой технологий ИИ, а в 2015 году - около 400. В первом квартале 2016 финансового года состоялось более 140 сделок - рекордный показатель за историю сектора.

Обозреватель сайт рассказал, как искусственный интеллект используют в различных сферах жизни и что ждёт технологии из этой области в будущем.

Сельское хозяйство

Сейчас

В 2012 году компания Autonomous Tractor Cooperation (ATC) показала прототип беспилотного трактора Spirit, заявив, что это «первый полностью беспилотный трактор для сельского хозяйства». Сейчас ATC продолжает работать над улучшением прототипа. Spirit оснащен разработанной компанией технологей AutoDrive , которая сочетает радионавигацию и лазерный гироскоп вместе с технологиями искусственного интеллекта.

Благодаря AutoDrive трактор сможет самостоятельно передвигаться по пути, по которому он предварительно проехал с водителем. «Трактор не станет фермером только из-за того, что мы дадим ему шаблон действий. Мы должны тренировать его, как начинающего агрария. Трактору нужно научиться обрабатывать землю, а не только правильно ездить», - говорит генеральный директор компании Крэйг Шульц.

Беспилотный трактор Spirit

В мае 2016 года российская компания Cognitive Technologies протестировала беспилотный трактор с системой компьютерного зрения. На тракторе были установлены видеокамеры, навигационный и инерционный датчики ГЛОНАСС и GPS и вычислительный блок.

«Система компьютерного зрения позволяет с высокой точностью детектировать опасные объекты, определять их размеры и координаты для составления высокоточных карт, - говорит президент компании Ольга Ускова. - Благодаря точному знанию положения предметов на поле многие из них становится возможным удалить ещё до уборочной стадии, когда они могут представлять реальную угрозу механическим элементам сельхозтехники».

Трактор объезжает объекты, которые невозможно убрать при уборке урожая, а благодаря видеокамерам и датчикам он получает информацию о появлении новых объектах в режиме реального времени. По словам Ольги Усковой, технология должна быть готова для продажи потребителям через полтора года.

В августе 2016 года компания CNH Industrial представила концепт беспилотного трактора на основе существующего Case IH Magnum. Трактор может работать без участия водителя, используя лидар (технология получения и обработки информации об удалённых объектах с помощью систем, использующих явления отражения света и его рассеяния - прим. ред.) и камеры для того, чтобы обнаруживать и избегать препятствия. По словам представителей компании, беспилотные транспортные средства помогут повысить точность и продуктивность работ в секторе сельского хозяйства.

Учебные вопросы

  1. Понятие искусственного интеллекта
  2. Инструментальные средства СИИ
  3. Назначение и структура экспертных систем

Искусственный интеллект – научная дисциплина, возникшая в 50-х годах на стыке кибернетики, лингвистики, психологии и программирования.

Искусственный интеллект (artificial intelligence) имеет давнюю историю. Еще Платон, Аристотель, Сократ, Р.Декарт, Г.Лейбниц, Дж.Буль, затем Н.Винер и многие другие исследователи стремились описать мышление как совокупность некоторых элементарных операций, правил и процедур.

Приведем некоторые определения искусственного интеллекта, опубликованные в различных источниках.

1. ИИ – условное обозначение кибернетических систем , моделирующих некоторые стороны интеллектуальной (разумной) деятельности человека: логическое и аналитическое мышление.

2. ИИ – способность робота или компьютера к имитации человеческих навыков, используемых для решения задач, изучения проблем, рассуждений и самоусовершенствования.

3. ИИ – научное направление, связанное с разработкой алгоритмов и программ для автоматизации деятельности, требующей человеческого интеллекта.

4. ИИ – одно из направлений информатики, цель которого – разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои задачи, традиционно считающиеся интеллектуальными, общаясь с ЭВМ на ограниченном подмножестве естественного языка.

С начала исследований в области ИИ выделяются два направления:

ИИ разделяется на два научных направления: нейрокибернетику (или искусственный разум) и кибернетику «черного ящика» (или машинный интеллект).

Напомним, что кибернетика – это наука об управлении, связи и переработке информации. Кибернетика исследует объекты независимо от их материальной природы (живые и неживые системы).

Первое направление – нейрокибернетика – базируется на аппаратном моделировании работы головного мозга человека, основой которого является большое число (около 14 миллиардов) связанных и взаимодействующих нервных клеток – нейронов.

Системы искусственного интеллекта, которые моделируют работу головного мозга, называют нейронными сетями (или нейросетями). Первые нейросети были созданы в конце 50-х годов двадцатого столетия американскими учеными Г.Розенблаттом и П.Мак-Каллоком.

Для второго направления ИИ – кибернетики «черного ящика» -- не имеет значения, какова конструкция «мыслящего» устройства. Главное, чтобы на заданные входные воздействия оно реагировало также, как человеческий мозг.

Пользователи ЭВМ достаточно часто встречаются с проявлением искусственного интеллекта. Например, при работе с текстовым редактором происходит автоматическая проверка правописания (причем с учетом используемого языка). При работе с электронными таблицами не требуется вводить все дни недели или все месяцы года. Достаточно сделать одну-две записи, а ЭВМ сумеет безошибочно дополнить список. С помощью микрофона и специальной программы можно голосом управлять работой программы. При наборе электронного адреса браузер пытается предугадать адрес и дописать его. Поиск информации в глобальной сети по заданным ключевым словам также происходит с привлечением элементов ИИ. При сканировании рукописного текста системы ИИ распознают буквы и цифры.



Идеи ИИ используются в теории игр, например, для создания ЭВМ, играющей в шахматы, шашки, реверси и другие логические и стратегические игры.

С помощью ММ решают задачу синтеза речи и обратную задачу – анализа и распознавания речи. В большинстве случаев ИИ используется для нахождения метода решения некоторой задачи. Математика является одним из основных направлений приложений методов ИИ. Символьная математика (компьютерная алгебра) – одно из величайших проявлений искусственного интеллекта.

К сфере ИИ относят задачи распознавания образов (оптических и акустических). Идентификация отпечатков пальцев, сравнение человеческих лиц – это задачи распознавания образов.

Экспертные системы, построенные на идеях ИИ, аккумулируют опыт, знания, навыки специалистов (экспертов) для того, чтобы в нужный момент передать их любому пользователю ЭВМ.

Разработка интеллектуальных программ существенно отличается от обычного программирования и ведется путем построения системы искусственного интеллекта.

Если обычная программа для ПК может быть представлена в виде:

Программа = Алгоритм + Данные

То для систем ИИ характерна следующая структура:

СИИ = Знания + Стратегия обработки знаний

Основным отличительным признаком СИИ является работа со знаниями.

В отличие от данных, знания обладают следующими свойствами:

Внутренней интерпретируемостью – вместе с информацией в БЗ представлены информационные структуры, позволяющие не только хранить знания, но и использовать их.

Структурированностью – выполняется декомпозиция сложных объектов на более простые и установление связей между ними.

Связанностью - отображаются закономерности относительно фактов, процессов, явлений и причинно-следственные отношения между ними.

Активностью – знания предполагают целенаправленное использование информации, способность управлять информационными процессами по решению определенных задач.

Все эти свойства в конечном итоге должны обеспечить возможность СИИ моделировать рассуждения человека при решении прикладных задач – со знаниями тесно связано понятие процедуры получения решений задач (стратегии обработки знаний.)

В системах обработки знаний такую процедуру называют механизмом вывода, логическим выводом или машиной вывода. Принципы построения механизма вывода в СИИ определяются способом представления знаний и видом моделируемых рассуждений.

Для организации взаимодействия с СИИ в ней должны быть средства общения с пользователем, то есть интерфейс. Интерфейс обеспечивает работу с БЗ и механизмом вывода на языке достаточно высокого уровня, приближенном к профессиональному языку специалистов в той прикладной области, к которой относится СИИ.

Кроме того, в функции интерфейса входит поддержка диалога пользователя с системой, что дает пользователю получать объяснения действий системы, участвовать в поиске решения задачи, пополнять и корректировать БЗ.

Основными частями систем, основанных на знаниях, являются:

2. Механизм вывода

3. Интерфейс с пользователем.

Каждая из этих частей может быть устроена по-разному в различных системах, отличия эти могут быть в деталях и в принципах. Однако для всех СИИ характерно моделирование человеческих рассуждений .

Знания, на которые опирается человек, решая ту или иную задачу весьма разнородны:

Понятийные знания (набор понятий и их взаимосвязи)

Конструктивные знания (знания о структуре и взаимодействии частей различных объектов)

Процедурные знания (методы, алгоритмы и программы решения различных задач).

Фактографические знания (количественные и качественные характеристики объектов, явлений и их элементов).

Особенностью систем представления знаний заключается в том, что они моделируют деятельность человека, осуществляемую часто в неформальном виде. Модели представления знаний имеют дело с информацией, получаемой от экспертов, которая часто носит качественный и противоречивый характер. Для обработки с помощью ЭВМ такая информация должна быть приведена к однозначному формализованному виду. Изучением методов формализованного представления знаний занимается наука – логика.

В настоящее время исследования в области ИИ имеют следующую прикладную ориентацию:

Экспертные системы

Автоматическое доказательство теорем

Робототехника

Распознавание образов и т.д.

Наибольшее распространение достигнуты в создании ЭС, которые получили широкое распространение и используются при решении практических задач.

  1. Инструментальные средства СИИ

Инструментальные средства, используемые для разработки СИИ, можно разделить на несколько типов:

Системы программирования на языках высокого уровня;

Системы программирования на языках представления знаний;

Оболочки систем искусственного интеллекта – скелетные системы;

Средства автоматизированного создания ЭС.

Системы программирования на языках высокого уровня в наименьшей степени ориентированы на решение задач ИИ. Они не содержат средств, предназначенных для представления и обработки знаний. Тем не менее, достаточно большая, но со временем снижающаяся, доля СИИ разрабатывается с помощью традиционных ЯВУ.

Системы программирования на языках представления знаний имеют специальные средства, предназначенные для создания СИИ. Они содержат собственные средства представления знаний (в соответствии с определенной моделью) и поддержки логического вывода. Разработка СИИ с помощью систем программирования на ЯПЗ основана на технологии обычного программирования. Наибольшее распространение получил язык логического программирования ПРОЛОГ.

Средства автоматизированного создания ЭС представляют собой гибкие программные системы, допускающие использование нескольких моделей представления знаний, способов логического вывода и видов интерфейса и содержащие вспомогательные средства создания ЭС. Построение ЭС с помощью рассматриваемых средств заключается в формализации исходных знаний, записи их на входном языке представления знаний и описания правил логического вывода решений. Далее экспертная система наполняется знаниями.

Оболочки или пустые ЭС представляют собой готовые ЭС без БЗ. Примерами оболочек ЭС, получивших широкое применение, являются зарубежная оболочка EMYCIN и отечественная разработка Эксперт-микро, ориентированная на создание ЭС решения задач диагностики. Технология создания и использования оболочки ЭС заключается в том, что из готовой экспертной системы удаляются знания из БЗ, затем база заполняется знаниями, ориентированными на другие приложения. Достоинством оболочек является простота применения – специалисту нужно только заполнить оболочку знаниями, не занимаясь созданием программ. Недостатком применения оболочек является возможное несоответствие конкретной оболочки и разрабатываемой с её помощью прикладной ЭС.

Термин искусственный интеллект (ИИ) является русским переводом английского термина artificalintelligence. Создателем ИИ многие ученые считают Алана Тьюринга, автора знаменитой машины Тьюринга, которая стала одним из математических определений алгоритма . В 1950 году в английском журнале “Mind” в статье “ComputingMachineryandIntelligence” (в русском переводе статья называлась «Может ли машина мыслить?») Алан Тьюринг предложил критерий, позволяющий определить, обладает ли машина мыслительными способностями. Этот тест заключается в следующем: человек и машина при помощи записок ведут диалог, а судья (человек), находясь в другом месте, должен определить по запискам, кому они принадлежат, человеку или машине. Если ему это не удается, то это будет означать, что машина успешно прошла тест. До сих пор не одна машина такой тест не прошла.

Не существует единого и общепринятого определения ИИ. Это не удивительно, так как нет универсального определения человеческого интеллекта.

ИИ – это область информатики, предметом которой является разработка компьютерных систем, обладающих возможностями, традиционно связываемыми со способностями естественного интеллекта.

К области ИИ принято относить ряд алгоритмов и программных систем, которые могут решать некоторые задачи так, как это делает человек.

Первый шаг в исследованиях по ИИ был сделан в направлении изучения естественного интеллекта. При изучении этого вопроса был сделан ряд открытий в различных областях знаний. Так, в 1962 году Фрэнком Розенблаттом были предложены модели мозга, имитирующие биофизические процессы, которые протекают в головном мозге и которые были названы персептронами . Персептроны представляют собой различного вида сети из искусственных нейронов, в основе которых лежат модели, разработанные еще в 1943 году Уильямом Маккалоком и Уолтером Питтсом.

Первоначально, изучение персептронов было связано с задачей распознавания образов, однако, в настоящее время нейронные сети широко используются для решения задач аппроксимации, классификации и распознавания образов, прогнозирования, идентификации и оценивания, ассоциативного управления . Нейронные сети представляют собой низкоуровневые модели мозговой деятельности человека.

Другое направление моделирования естественного интеллекта связано с созданием высокоуровневых моделей деятельности мозга человека, которые позволяют моделировать процессы рассуждений и принятия решений.

В целом можно сказать, что изучение разумного поведения человека привело к появлению эвристических методов, моделирующих деятельность человека в проблемной ситуации и к разработке программно-аппаратных средств, реализующих эти методы, то есть к разработке систем искусственного интеллекта, называемых решателями задач .

Другим результатом этих исследований можно считать создание экспертных систем , то есть систем искусственного интеллекта, основанных на знаниях человека-эксперта.

Также к специфическим особенностям деятельности человека обычно относят способности к распознаванию сложных зрительных и слуховых образов, пониманию естественных языков, способности к обучению, рассуждениям и логическим выводам. Все эти особенности стали реализовываться в системах искусственного интеллекта.

В Советском союзе ИИ получил официальное признание в 1974 году, когда при президиуме АН СССР был создан научный совет по проблеме «Искусственный интеллект», хотя работы в этом направлении велись с 60-х годов Вениамином Пушкиным, Дмитрием Александровичем Поспеловым, Сергеем Масловым, В.Ф.Турчиным.

Первые положительные результаты были получены в области теории управления, так как в этой области имелся ряд задач, для решения которых традиционные методы не были пригодны из-за невозможности формализации цели управления объектом и невозможности установления точных количественных зависимостей между параметрами, оказывающими влияние на процесс управления . В результате проведенных работ появились логико-лингвистические модели, в которых решающее значение имеют тексты на естественном языке. В таких моделях для принятия решения при управлении объектами используется семантическая информация для описания модели объекта, модели среды и блока принятия решения.

Моделирование рассуждений человека, осуществление логического вывода с помощью вычислительной машины стало возможным, благодаря использованию методов поиска решений в исчислении предикатов . Эти методы стали основой общей теории дедуктивных систем. При этом все «творческие задачи» решаются интеллектуальным перебором в четко очерченном множестве – в фиксированной формальной теории, которая является ветвью математической логики и в которой реализуется процесс нахождения решений.

В настоящее время выделяют следующие направления развития исследований в области искусственного интеллекта :

    Разработка систем, основанных на знаниях. Целью этого направления является имитация способностей человека в области анализа неструктурированных и слабоструктурированных задач. В данной области исследований осуществляется разработка моделей представления, извлечения и структурирования знаний, а также изучаются проблемы создания баз знаний (БЗ). К данному классу систем также относятсяэкспертные системы (ЭС).

    Разработка естественно-языковых интерфейсов и машинный перевод. Данные системы строятся как интеллектуальные системы, так как основаны на БЗ в определенной предметной области и сложных моделях, обеспечивающих трансляцию «исходный язык – язык смысла – язык перевода». Эти модели основаны на последовательном анализе и синтезе естественно-языковых сообщений и ассоциативном поиске аналогичных фрагментов текста и их переводов в специальных базах данных (БД).

    Генерация и распознавание речи. Решаются задачи обработки, анализа и синтеза фонемных текстов.

    Обработка визуальной информации. Решаются задачи обработки, анализа и синтеза изображений. В задаче анализа исходные изображения преобразуются в данные другого типа, например, текстовые описания. При синтезе изображений в качестве входной информации используются алгоритмы построения изображений, а выходными данными являются графические объекты.

    Обучение и самообучение. Данная область ИИ включает модели, методы и алгоритмы, реализующие автоматическое накопление и генерацию знаний с использованием процедур анализа и обобщения знаний. К данному направлению относятся системы добычи данных (Data - mining ) и системыпоиска закономерностей в компьютерных базах данных (Knowledge Discovery ) .

    Распознавание образов. Распознавание образов осуществляется на применении специальных математических моделей, обеспечивающих отнесение объектов к классам, которые описываются совокупностями определенных значений признаков.

    Игры и машинное творчество. К данной области относятся системы сочинения компьютерной музыки, стихов, изобретения новых объектов, а также интеллектуальные компьютерные игры.

    Программное обеспечение систем ИИ. К данной области относятся инструментальные средства для разработки интеллектуальных систем, включая специальные языки программирования, ориентирование на обработку символьной информации (LISP,SMALLTALK, РЕФАЛ), языки логического программирования (PROLOG), языки представления знаний (OPS5,KRL,FRL), интегрирование программные среды (KE,ARTS,GURU,G2), а также оболочки экспертных систем (BUILD,EMYGIN,EXSYSProfessional, ЭКСПЕРТ).

    Новые архитектуры компьютеров. Это направление связано с созданием компьютеров не фон-неймановской архитектуры, ориентированных на обработку символьной информации. Известны удачные промышленные решения параллельных и векторных компьютеров, однако в настоящее время они имеют очень высокую стоимость и недостаточную совместимость с существующими вычислительными средствами.

    Интеллектуальные роботы. В настоящее время данная область ИИ развивается очень бурно. Достигнуты значительные успехи в создании бытовых роботов, роботов, используемых в космических исследованиях, медицинских роботов.

Искусственный интеллект ИИ (artificial intelligence) обычно трактуется как свойство автоматических систем брать на себя отдельные функции мыслительной способности человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. Речь идет, в первую очередь, о системах, в основу которых положены принципы обучения, самоорганизации и эволюции при минимальном участии человека, но привлечении его в качестве учителя и партнёра, гармоничного элемента человеко-машинной системы.

Естественно, что попытки создать ИИ на базе компьютеров начались на заре развития компьютерной техники. Тогда господствовала компьютерная парадигма, ключевыми тезисами которой утверждалось, что машина Тьюринга является теоретической моделью мозга, а компьютер - реализацией универсальной машины и любой информационный процесс может быть воспроизведён на компьютере. Такая парадигма была доминирующей долгое время, принесла много интересных результатов, но главной задачи - построения ИИ в смысле моделирования мышления человека, так и не достигла. Компьютерная парадигма создания ИИ, потерпевшая крах в связи с неправильным набором ключевых предпосылок, логично трансформировалась в нейроинформатику, развивающую некомпьютерный подход к моделированию интеллектуальных процессов. Человеческий мозг, оперирующий с нерасчленённой информацией, оказался значительно сложнее машины Тьюринга. Каждая человеческая мысль имеет свой контекст, вне которого она бессмысленна, знания хранятся в форме образов, которые характеризуются нечёткостью, размытостью, система образов слабо чувствительна к противоречиям. Система хранения знаний человека характеризуется высокой надёжностью вследствие распределённого хранения знаний, а оперирование с информацией характеризуется большой глубиной и высоким параллелизмом.

Переработка информации в любых интеллектуальных системах основывается на использовании фундаментального процесса - обучения. Образы обладают характерными объективными свойствами в том смысле, что разные распознающие системы, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. Именно эта объективность образов позволяет людям всего мира понимать друг друга. Обучением обычно называют процесс выработки в некоторой системе специфической реакции на группы внешних идентичных сигналов путем многократного воздействия на распознающую систему сигналов внешней корректировки. Механизм генерации этой корректировки, которая чаще всего имеет смысл поощрения и наказания, практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Интеллектуальные информационные системы могут использовать "библиотеки" самых различных методов и алгоритмов, реализующих разные подходы к процессам обучения, самоорганизации и эволюции при синтезе систем ИИ. Поскольку к настоящему времени нет ни обобщающей теории искусственного интеллекта, ни работающего образца полнофункциональной ИИ-модели, то нельзя сказать, какой из этих подходов является правильным, а какой ошибочным: скорее всего они способны гармонично дополнять друг друга. Подробнее о проблемах искусственного интеллекта можно узнать на сайтах www.ccas.ru и www.iseu.by/rus/educ/envmon.

Искусственный интеллект реализуется с использованием четырех подходов (с трудом удержимся, чтобы не произнести модное "парадигм"): логического, эволюционного, имитационного и структурного. Все эти четыре направления развиваются параллельно, часто взаимно переплетаясь.

Основой для логического подхода служит булева алгебра и ее логические операторы (в первую очередь, знакомый всем оператор IF ["если"]). Свое дальнейшее развитие булева алгебра получила в виде исчисления предикатов, в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, а правила логического вывода - как отношения между ними.

Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных. Примером практической реализации логических методов являются деревья решений, которые реализуют в концентрированном виде процесс "обучения" или синтеза решающего правила.

Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. После основополагающих работ Л. Заде термин fuzzy (англ. нечеткий, размытый) стал ключевым словом. В отличие от традиционной математики, требующей на каждом шаге моделирования точных и однозначных формулировок закономерностей, нечеткая логика предлагает совершенно иной уровень мышления, благодаря которому творческий процесс моделирования происходит на более высоком уровне абстракции, при котором постулируется лишь минимальный набор закономерностей. Например, правдивость логического высказывания может принимать в нечетких системах, кроме обычных "да / нет" (1/0), еще и промежуточные значения: "не знаю" (0.5), "пациент скорее жив, чем мертв" (0.75), "пациент скорее мертв, чем жив" (0.25) и т.д. Данный подход больше похож на мышление человека, который редко отвечает на вопросы только "да" или "нет". Теоретические основы и прикладные аспекты интеллектуальных систем оценивания и прогнозирования в условиях неопределенности, основанные на теории нечетких множеств, подробно изложены в литературных источниках [Аверкин с соавт, 1986; Борисов с соавт., 1989; Нетрадиционные модели.., 1991; Васильев, Ильясов, 1995].

Под термином "самоорганизация" понимается по мнению Ивахненко "процесс самопроизвольного (спонтанного) увеличения порядка, или организации в системе, состоящей из многих элементов, происходящий под действием внешней среды".

Принципы самоорганизации были предметом исследования многих выдающихся ученых: Дж. фон Неймана, Н. Винера, У.Р. Эшби и др. Большой вклад в развитие этого направления внесли работы украинских кибернетиков под руководством А.Г. Ивахненко, разработавших целый класс адаптивных самоорганизующихся моделей (англ. selforganisation models), который можно было бы назвать "интеллектуальным обобщением" эмпирико-статистических методов.

Можно отметить следующие принципы самоорганизации математических моделей:

  • - принцип неокончательных решений (предложен Д. Габором и заключается в необходимости сохранения достаточной "свободы выбора" нескольких лучших решений на каждом шаге самоорганизации),
  • - принцип внешнего дополнения (базируется на теореме К. Геделя и заключается в том, что только внешние критерии, основанные на новой информации, позволяют синтезировать истинную модель объекта, скрытую в зашумленных экспериментальных данных);
  • - принцип массовой селекции (предложен А.Г. Ивахненко и указывает наиболее целесообразный путь постепенного усложнения самоорганизующейся модели, с тем чтобы критерий ее качества проходил через свой минимум).

Для возникновения самоорганизации необходимо иметь исходную структуру, механизм случайных ее мутаций и критерии отбора, благодаря которому мутация оценивается с точки зрения полезности для улучшения качества системы. Т.е. при построении этих систем ИИ исследователь задает только исходную организацию и список переменных, а также критерии качества, формализующие цель оптимизации, и правила, по которым модель может изменяться (самоорганизовываться или эволюционировать). Причем сама модель может принадлежать самым различным типам: линейная или нелинейная регрессия, набор логических правил или любая другая модель.

Самоорганизующиеся модели служат, в основном, для прогнозирования поведения и структуры экосистем, так как по самой логике их построения участие исследователя в этом процессе сведено к минимуму. Можно привести ряд конкретных примеров использования алгоритмов МГУА: для долгосрочных прогнозов экологической системы оз. Байкал, моделирования геоботанических описаний; системы "хищник-жертва", прироста деревьев, прогнозирования токсикологических показателей поллютантов, оценки динамики численности сообществ зоопланктона.

В математической кибернетике различают два вида итеративных процессов развития систем:

  • - адаптация, при которой экстремум (цель движения системы) остается постоянной;
  • - эволюция, при которой движение сопровождается изменением и положения экстремума.

Если самоорганизация связана только с адаптационными механизмами подстройки реакций системы (например, изменением значений весовых коэффициентов), то понятие эволюции связано с возможностью эффектора (термин, введенный С. Лемом) изменять свою собственную структуру, т.е. количество элементов, направленность и интенсивность связей, настраивая их оптимальным образом относительно поставленных задач в каждый конкретный момент времени. В процессе эволюции в условиях сложной и меняющейся среды эффектор способен приобрести принципиально новые качества, выйти на следующую ступень развития. Например, в процессе биологической эволюции возникли чрезвычайно сложные и вместе с тем удивительно продуктивно функционирующие живые организмы.

Эволюционное моделирование представляет собой существенно универсальный способ построения прогнозов макросостояний системы в условиях, когда полностью отсутствует апостериорная информация, а априорные данные задают лишь предысторию этих состояний. Общая схема алгоритма эволюции выглядит следующим образом:

  • - задается исходная организация системы (в эволюционном моделировании в этом качестве может фигурировать, например, конечный детерминированный автомат Мили);
  • - проводят случайные "мутации", т.е. изменяют случайным образом текущий конечный автомат;
  • - отбирают для дальнейшего "развития" ту организацию (тот автомат), которая является "лучшей" в смысле некоторого критерия, например, максимальной точности предсказания последовательности значений макросостояний экосистемы.

Критерий качества модели в этом случае мало чем отличается, например, от минимума среднеквадратической ошибки на обучающей последовательности метода наименьших квадратов (со всеми вытекающими отсюда недостатками). Однако, в отличии от адаптации, в эволюционном программировании структура решающего устройства мало меняется при переходе от одной мутации к другой, т.е. не происходит перераспределения вероятностей, которые бы закрепляли мутации, приведшие к успеху на предыдущем шаге. Поиск оптимальной структуры происходит в большей степени случайным и нецеленаправленным, что затягивает процесс поиска, но обеспечивает наилучшее приспособление к конкретным изменяющимся условиям.

Под структурным подходом подразумеваются попытки построения систем ИИ путем моделирования структуры человеческого мозга. В последние десять лет впечатляет феномен взрыва интереса к структурным методам самоорганизации - нейросетевому моделированию, которое успешно применяется в самых различных областях - бизнесе, медицине, технике, геологии, физике, т.е. везде, где нужно решать задачи прогнозирования, классификации или управления.

Способность нейронной сети к обучению впервые была исследована Дж. Маккалоком и У. Питтом, когда в 1943 г. вышла их работа "Логическое исчисление идей, относящихся к нервной деятельности". В ней была представлена модель нейрона и сформулированы принципы построения искусственных нейронных сетей.

Крупный толчок развитию нейрокибернетики дал американский нейрофизиолог Ф. Розенблатт, предложивший в 1962 г. свою модель нейронной сети - персептрон. Воспринятый первоначально с большим энтузиазмом, персептрон вскоре подвергся интенсивным нападкам со стороны крупных научных авторитетов. И, хотя подробный анализ их аргументов показывает, что они оспаривали не совсем тот персептрон, который предлагал Розенблатт, крупные исследования по нейронным сетям были свернуты почти на 10 лет.

Другой важный класс нейронных систем был введен в рассмотрение финном Т. Кохоненом. У этого класса красивое название: "самоорганизующиеся отображения состояний, сохраняющие топологию сенсорного пространства". Теория Кохонена активно использует теорию адаптивных систем, которую развивал на протяжении многих лет академик РАН Я.З. Цыпкин.

Весьма популярна сейчас во всем мире оценка возможностей обучающихся систем, в частности, нейронных сетей, основанная на теории размерности, созданной в 1966 г. советскими математиками В.Н. Вапником и А.Я. Червоненкисом. Еще один класс нейроподобных моделей представляют сети с обратным распространением ошибок, в развитии современных модификаций которых ведущую роль сыграл проф. А.Н. Горбань и возглавляемая им красноярская школа нейроинформатики. Большую научную и популяризаторскую работу проводит Российская ассоциации нейроинформатики под руководством президента В.Л. Дунина-Барковского.

В основе всего нейросетевого подхода лежит идея построения вычислительного устройства из большого числа параллельно работающих простых элементов - формальных нейронов. Эти нейроны функционируют независимо друг от друга и связаны между собой однонаправленными каналами передачи информации. Ядром нейросетевых представлений является идея о том, что каждый отдельный нейрон можно моделировать довольно простыми функциями, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Предельным выражением этой точки зрения может служить лозунг: "структура связей - все, свойства элементов - ничто".

Нейронные сети (НС) - очень мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости, нелинейные по свой природе. Как правило, нейронная сеть используется тогда, когда неизвестны предположения о виде связей между входами и выходами (хотя, конечно, от пользователя требуется какой-то набор эвристических знаний о том, как следует отбирать и подготавливать данные, выбирать нужную архитектуру сети и интерпретировать результаты).

На вход нейронной сети подаются представительные данные и запускается алгоритм обучения, который автоматически анализирует структуру данных и генерирует зависимость между входом и выходом. Для обучения НС применяются алгоритмы двух типов: управляемое ("обучение с учителем") и неуправляемое ("без учителя").

Простейшая сеть имеет структуру многослойного персептрона с прямой передачей сигнала (см. рис. 3), которая характеризуется наиболее устойчивым поведением. Входной слой служит для ввода значений исходных переменных, затем последовательно отрабатывают нейроны промежуточных и выходного слоев. Каждый из скрытых и выходных нейронов, как правило, соединен со всеми элементами предыдущего слоя (для большинства вариантов сети полная система связей является предпочтительной). В узлах сети активный нейрон вычисляет свое значение активации, беря взвешенную сумму выходов элементов предыдущего слоя и вычитая из нее пороговое значение. Затем значение активации преобразуется с помощью функции активации (или передаточной функции), и в результате получается выход нейрона. После того, как вся сеть отработает, выходные значения элементов последнего слоя принимаются за выход всей сети в целом.

Рис. 3.

Наряду с моделью многослойного персептрона, позднее возникли и другие модели нейронных сетей, различающихся по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов можно назвать НС с обратным распространением ошибки, основанные на радиальных базисных функциях, обобщенно-регрессионные сети, НС Хопфилда и Хэмминга, самоорганизующиеся карты Кохонена, стохастические нейронные сети и т.д. Существуют работы по рекуррентным сетям (т.е. содержащим обратные связи, ведущие назад от более дальних к более ближним нейронам), которые могут иметь очень сложную динамику поведения. Начинают эффективно использоваться самоорганизующиеся (растущие или эволюционирующие) нейронные сети, которые во многих случаях оказываются более предпочтительными, чем традиционные полносвязные НС.

Для моделей, построенных по мотивам человеческого мозга, характерны как легкое распараллеливание алгоритмов и связанная с этим высокая производительность, так и не слишком большая выразительность представленных результатов, не способствующая извлечению новых знаний о моделируемой среде. Поэтому основное назначение нейросетевых моделей, - прогнозирование.

Важным условием применения НС, как и любых статистических методов, является объективно существующая связь между известными входными значениями и неизвестным откликом. Эта связь может носить случайный характер, искажена шумом, но она должна существовать. Это объясняется, во-первых, тем, что итерационные алгоритмы направленного перебора комбинаций параметров нейросети оказываются весьма эффективными и очень быстрыми лишь при хорошем качестве исходных данных. Однако, если это условие не соблюдается, число итераций быстро растет и вычислительная сложность оказывается сопоставимой с экспоненциальной сложностью алгоритмов полного перебора возможных состояний. Во-вторых, сеть склонна обучаться прежде всего тому, чему проще всего обучиться, а, в условиях сильной неопределенности и зашумленности признаков, это - прежде всего артефакты и явления "ложной корреляции".

Отбор информативных переменных в традиционной регрессии и таксономии осуществляют путем "взвешивания" признаков с использованием различных статистических критериев и пошаговых процедур, основанных, в той или иной форме, на анализе коэффициентов частных корреляций или ковариаций. Для этих целей используют различные секвенциальные (последовательные) процедуры, не всегда приводящие к результату, достаточно близкому к оптимальному. Эффективный автоматизированный подход к выбору значимых входных переменных может быть реализован с использованием генетического алгоритма.

В связи с этим, в общей схеме статистического моделирования методами ИИ рекомендуется последовательное выполнение двух разных процедур:

  • - с помощью эволюционных методов в бинарном пространстве признаков ищется такая минимальная комбинация переменных, которая обеспечивает незначительную потерю информации в исходных данных,
  • - полученная на предыдущем этапе минимизированная матрица данных подается на вход нейронной сети для обучения.

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов - используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2018 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.


В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.