Лекция 21 Приложения определенного интеграла (2ч)

Геометрические приложения

а) Площадь фигуры

Как уже отмечалось в лекции 19, численно равен площади криволинейной трапеции, ограниченной кривой у = f (x ) , прямыми х = а , х = b и отрезком [a , b ] оси ОХ. При этом если f (x ) £ 0 на [a , b ], то интеграл следует взять со знаком минус.

Если же на заданном отрезке функция у = f (x ) меняет знак, то для вычисления площади фигуры, заключенной между графиком этой функции и осью ОХ, следует разбить отрезок на части, на каждой из которых функция сохраняет знак, и найти площадь каждой части фигуры. Искомая площадь в этом случае есть алгебраическая сумма интегралов по этим отрезкам, причем интегралы, соответствующие отрицательным значения функции, взяты в этой сумме со знаком «минус».

Если фигура ограничена двумя кривыми у = f 1 (x ) и у = f 2 (x ), f 1 (x f 2 (x ), то, как следует из рис.9, ее площадь равна разности площадей криволинейных трапеций а ВСb и а АDb , каждая из которых численно равна интегралу. Значит,


Заметим, что площадь фигуры, изображенной на рисунке 10,а находятся по такой же формуле: S = (докажите это!). Подумайте, как вычислить площадь фигуры, изображенной на рисунке 10,б?

Мы вели речь только о криволинейных трапециях, прилежащих к оси ОХ. Но аналогичные формулы справедливы и для фигур, прилежащих к оси ОУ. Например, площадь фигуры, изображенной на рисунке 11, находится по формуле

Пусть линия y = f (x ), ограничивающая криволинейную трапецию, может быть задана параметрическими уравнениями , t Î , причем j(a)=а , j(b) = b , т.е. у = . Тогда площадьэтой криволинейной трапеции равна

.

б) Длина дуги кривой

Пусть дана кривая у = f (x ). Рассмотрим дугу этой кривой, соответствующую изменению х на отрезке [a , b ]. Найдем длину этой дуги. Для этого разобьем дугу АВ на п частей точками А = М 0 ,М 1 , М 2, ..., М п = В (рис.14), соответствующими точкам х 1 , х 2 , ..., х п Î [a , b ].



Обозначим Dl i длину дуги , тогда l = . Если длины дуг Dl i достаточно малы, то их можно считать приближенно равными длинам соответствующих отрезков , соединяющих точки М i -1, Mi . Эти точки имеют координаты М i -1 (х i -1, f (x i -1)) , M i (х i , f (x i )). Тогда длины отрезков равны соответственно

Здесь использована формула Лагранжа. Положим х i x i -1 =Dх i , получим

Тогда l = , откуда

l = .

Таким образом, длина дуги кривой у = f (x ), соответствующей изменению х на отрезке [a , b ], находится по формуле

l = , (1)

Если кривая задана параметрически , t Î, т.е. y (t ) = f (x (t )), то из формулы (1) получим:

l =
.

Значит, если кривая задана параметрически , то длина дуги этой кривой, соответствующей изменению t Î, находится по формуле

в) Объем тела вращения.

Рис.15
Рассмотрим криволинейную трапецию а АВb , ограниченную линией у = f (x ), прямыми х = а , х = b и отрезком [a , b ] оси ОХ (рис.15). Пусть эта трапеция вращается вокруг оси ОХ, в результате получится тело вращения. Можно доказать, что объем этого тела будет равен

Аналогично можно вывести формулу объема тела, полученного вращением вокруг оси ОУ криволинейной трапеции, ограниченной графиком функции х = j(у ), прямыми y = c , y = d и отрезком [c , d ] оси ОУ (рис.15):

Физические приложения определенного интеграла

В лекции 19 мы доказали, что с физической точки зрения, интеграл численно равен массе прямолинейного тонкого неоднородного стержня длины l = b a , с переменной линейной плотностью r = f (x ), f (x ) ³ 0, где х – расстояние от точки стержня до его левого конца.

Рассмотрим другие физические приложения определенного интеграла.

Задача 1 . Найти работу, необходимую для выкачивания масла из вертикального цилиндрического резервуара высотой Н и радиусом основания R. Плотность масла равна r.

Решение. Построим математическую модель данной задачи. Пусть ось ОХ проходит вдоль оси симметрии цилиндра высоты Н и радиуса R, начало – в центре верхнего основания цилиндра (рис.17). Разобьем цилиндр на п малых горизонтальных частей. Тогда , где A i – работа по выкачиванию i -го слоя. Это разбиение цилиндра соответствует разбиению отрезка изменения высоты слоя на п частей. Рассмотрим один из таких слоев, расположенный на расстоянии х i от поверхности, шириной Dх (или сразу dx ). Выкачивание этого слоя можно рассматривать как «поднятие» слоя на высоту х i .

Тогда работа по выкачиванию этого слоя равна

A i »Р i x i , ,

где Р i =rgV i = rgpR 2 dx , Р i – вес, V i – объем слоя. Тогда A i » Р i x i = rgpR 2 dx.х i , откуда

, и, следовательно, .

Задача 2 . Найти момент инерции

а) полого тонкостенного цилиндра относительно оси, проходящей через ось его симметрии;

б) сплошного цилиндра относительно оси, проходящей через ось его симметрии;

в) тонкого стержня длины l относительно оси, проходящей через его середину;

г) тонкого стержня длины l относительно оси, проходящей через его левый конец.

Решение. Как известно, момент инерции точки относительно оси равен J =mr 2 , а системы точек .

а) Цилиндр тонкостенный, значит, толщиной стенок можно пренебречь. Пусть радиус основания цилиндра R, высота его Н, плотность масс на стенках равна r.


Разобьем цилиндр на п частей и найдем , где J i – момент инерции i -го элемента разбиения.

Рассмотрим i -й элемент разбиения (бесконечно малый цилиндрик). Все его точки находятся на расстоянии R от оси l . Пусть масса этого цилиндрика т i , тогда т i = rV i » rS бок = 2prRdx i , где х i Î. Тогда J i » R 2 prRdx i , откуда

.

Если r – постоянная, то J = 2prR 3 Н, а так как при этом масса цилиндра равна М = 2prRН, то J = МR 2 .

б) Если цилиндр сплошной (заполненный), то разобьем его на п вло женных один в другого тонких цилиндров. Если п велико, каждый из этих цилиндров можно считать тонкостенным. Это разбиение соответствует разбиению отрезка на п частей точками R i . Найдем массу i -го тонкостенного цилиндра: т i = rV i , где

V i = pR i 2 Н – pR i - 1 2 Н = pН(R i 2 –R i -1 2) =

PН(R i –R i -1)(R i +R i -1).

Ввиду того, что стенки цилиндра тонкие, то можно считать, что R i +R i -1 » 2R i , а R i –R i -1 = DR i , тогда V i » pН2R i DR i , откуда т i » rpН×2R i DR i ,

Тогда окончательно

в) Рассмотрим стержень длины l , плотность масс которого равна r. Пусть ось вращения проходит через его середину.

Моделируем стержень как отрезок оси ОХ, тогда ось вращения стержня –ось ОУ. Рассмотрим элементарный отрезок , масса его , расстояние до оси можно считать приближенно равным r i = х i . Тогда момент инерции этого участка равен , откуда момент инерции всего стержня равен . Учитывая, что масса стержня равна , то

г) Пусть теперь ось вращения проходит через левый конец стержня, т.е. моделью стержня является отрезок оси ОХ. Тогда аналогично , r i = х i , , откуда , а так как , то .

Задача 3. Найти силу давления жидкости с плотностью r на прямоугольный треугольник с катетами а и b , погруженный вертикально в жидкость так, что катет а находится на поверхности жидкости.

Решение .

Построим модель задачи. Пусть вершина прямого угла треугольника находится в начале координат, катет а совпадает с отрезком оси ОУ (ось ОУ определяет поверхность жидкости), ось ОХ направлена вниз, катет b совпадает с отрезком этой оси. Гипотенуза этого треугольника имеет уравнение , или .

Известно, что если на горизонтальную область площади S , погруженную в жидкость плотности r, давит столб жидкости высотой h , то сила давления равна (закон Паскаля). Воспользуемся этим законом.

Определенный интеграл (ОИ) широко используется в практических приложениях математики и физики.

В частности, в геометрии с помощью ОИ находят площади простых фигур и сложных поверхностей, объемов тел вращения и тел произвольной формы, длин кривых на плоскости и в пространстве.

В физике и теоретической механике ОИ применяют для вычисления статических моментов, масс и центров масс материальных кривых и поверхностей, для вычисления работы переменной силы по криволинейному пути и др.

Площадь плоской фигуры

Пусть некоторая плоская фигура в декартовой прямоугольной системе координат $xOy$ сверху ограничена кривой $y=y_{1} \left(x\right)$, снизу -- кривой $y=y_{2} \left(x\right)$, а слева и справа вертикальными прямыми $x=a$ и $x=b$ соответственно. В общем случае площадь такой фигуры выражается с помощью ОИ $S=\int \limits _{a}^{b}\left(y_{1} \left(x\right)-y_{2} \left(x\right)\right)\cdot dx $.

Если же некоторая плоская фигура в декартовой прямоугольной системе координат $xOy$ справа ограничена кривой $x=x_{1} \left(y\right)$, слева -- кривой $x=x_{2} \left(y\right)$, а снизу и сверху горизонтальными прямыми $y=c$ и $y=d$ соответственно, то площадь такой фигуры выражается с помощью ОИ $S=\int \limits _{c}^{d}\left(x_{1} \left(y\right)-x_{2} \left(y\right)\right)\cdot dy $.

Пусть плоская фигура (криволинейный сектор), рассматриваемая в полярной системе координат, образована графиком непрерывной функции $\rho =\rho \left(\phi \right)$, а также двумя лучами, проходящими под углами $\phi =\alpha $ и $\phi =\beta $ соответственно. Формула для вычисления площади такого криволинейного сектора имеет вид: $S=\frac{1}{2} \cdot \int \limits _{\alpha }^{\beta }\rho ^{2} \left(\phi \right)\cdot d\phi $.

Длина дуги кривой

Если на отрезке $\left[\alpha ,\; \beta \right]$ кривая задана уравнением $\rho =\rho \left(\phi \right)$ в полярной системе координат, то длина её дуги вычисляется с помощью ОИ $L=\int \limits _{\alpha }^{\beta }\sqrt{\rho ^{2} \left(\phi \right)+\rho "^{2} \left(\phi \right)} \cdot d\phi $.

Если на отрезке $\left$ кривая задана уравнением $y=y\left(x\right)$, то длина её дуги вычисляется с помощью ОИ $L=\int \limits _{a}^{b}\sqrt{1+y"^{2} \left(x\right)} \cdot dx $.

Если на отрезке $\left[\alpha ,\; \beta \right]$ кривая задана параметрически, то есть $x=x\left(t\right)$, $y=y\left(t\right)$, то длина её дуги вычисляется с помощью ОИ $L=\int \limits _{\alpha }^{\beta }\sqrt{x"^{2} \left(t\right)+y"^{2} \left(t\right)} \cdot dt $.

Вычисление объема тела по площадям параллельных сечений

Пусть необходимо найти объем пространственного тела, координаты точек которого удовлетворяют условиям $a\le x\le b$, и для которого известны площади сечений $S\left(x\right)$ плоскостями, перпендикулярными оси $Ox$.

Формула для вычисления объема такого тела имеет вид $V=\int \limits _{a}^{b}S\left(x\right)\cdot dx $.

Объем тела вращения

Пусть на отрезке $\left$ задана неотрицательная непрерывная функция $y=y\left(x\right)$, образующая криволинейную трапецию (КрТ). Если вращать эту КрТ вокруг оси $Ox$, то образуется тело, называемое телом вращения.

Вычисление объема тела вращения является частным случаем вычисления объема тела по известным площадям его параллельных сечений. Соответствующая формула имеет вид $V=\int \limits _{a}^{b}S\left(x\right)\cdot dx =\pi \cdot \int \limits _{a}^{b}y^{2} \left(x\right)\cdot dx $.

Пусть некоторая плоская фигура в декартовой прямоугольной системе координат $xOy$ сверху ограничена кривой $y=y_{1} \left(x\right)$, снизу -- кривой $y=y_{2} \left(x\right)$, где $y_{1} \left(x\right)$ и $y_{2} \left(x\right)$ -- неотрицательные непрерывные функции, а слева и справа вертикальными прямыми $x=a$ и $x=b$ соответственно. Тогда объем тела, образованного вращением этой фигуры вокруг оси $Ox$, выражается ОИ $V=\pi \cdot \int \limits _{a}^{b}\left(y_{1}^{2} \left(x\right)-y_{2}^{2} \left(x\right)\right)\cdot dx $.

Пусть некоторая плоская фигура в декартовой прямоугольной системе координат $xOy$ справа ограничена кривой $x=x_{1} \left(y\right)$, слева -- кривой $x=x_{2} \left(y\right)$, где $x_{1} \left(y\right)$ и $x_{2} \left(y\right)$ -- неотрицательные непрерывные функции, а снизу и сверху горизонтальными прямыми $y=c$ и $y=d$ соответственно. Тогда объем тела, образованного вращением этой фигуры вокруг оси $Oy$, выражается ОИ $V=\pi \cdot \int \limits _{c}^{d}\left(x_{1}^{2} \left(y\right)-x_{2}^{2} \left(y\right)\right)\cdot dy $.

Площадь поверхности тела вращения

Пусть на отрезке $\left$ задана неотрицательная функция $y=y\left(x\right)$ с непрерывной производной $y"\left(x\right)$. Эта функция образует КрТ. Если вращать эту КрТ вокруг оси $Ox$, то она сама образует тело вращения, а дуга КрТ -- его поверхность. Площадь поверхности такого тела вращения выражается формулой $Q=2\cdot \pi \cdot \int \limits _{a}^{b}y\left(x\right)\cdot \sqrt{1+y"^{2} \left(x\right)} \cdot dx $.

Предположим, что кривую $x=\phi \left(y\right)$, где $\phi \left(y\right)$ -- заданная на отрезке $c\le y\le d$ неотрицательна функция, вращают вокруг оси $Oy$. В этом случае площадь поверхности образованного тела вращения выражается ОИ $Q=2\cdot \pi \cdot \int \limits _{c}^{d}\phi \left(y\right)\cdot \sqrt{1+\phi "^{2} \left(y\right)} \cdot dy $.

Физические приложения ОИ

  1. Для вычисления пройденного пути в момент времени $t=T$ при переменной скорости движения $v=v\left(t\right)$ материальной точки, которая начала движение в момент времени $t=t_{0} $, используют ОИ $S=\int \limits _{t_{0} }^{T}v\left(t\right)\cdot dt $.
  2. Для вычисления работы переменной сили $F=F\left(x\right)$, приложенной к материальной точке, перемещающейся по прямолинейному пути вдоль оси $Ox$ от точки $x=a$ до точки $x=b$ (направление действия силы совпадает с направлением движения) используют ОИ $A=\int \limits _{a}^{b}F\left(x\right)\cdot dx $.
  3. Статические моменты относительно координатных осей материальной кривой $y=y\left(x\right)$ на промежутке $\left$ выражаются формулами $M_{x} =\rho \cdot \int \limits _{a}^{b}y\left(x\right)\cdot \sqrt{1+y"^{2} \left(x\right)} \cdot dx $ и $M_{y} =\rho \cdot \int \limits _{a}^{b}x\cdot \sqrt{1+y"^{2} \left(x\right)} \cdot dx $, где линейная плотность $\rho $ этой кривой считается постоянной.
  4. Центр масс материальной кривой -- это точка, в которой условно сосредоточена вся её масса таким образом, что статические моменты точки относительно координатных осей равны соответствующим статическим моментам всей кривой в целом.
  5. Формулы для вычисления координат центра масс плоской кривой имеют вид $x_{C} =\frac{\int \limits _{a}^{b}x\cdot \sqrt{1+y"^{2} \left(x\right)} \cdot dx }{\int \limits _{a}^{b}\sqrt{1+y"^{2} \left(x\right)} \cdot dx } $ и $y_{C} =\frac{\int \limits _{a}^{b}y\left(x\right)\cdot \sqrt{1+y"^{2} \left(x\right)} \cdot dx }{\int \limits _{a}^{b}\sqrt{1+y"^{2} \left(x\right)} \cdot dx } $.

  6. Статические моменты материальной плоской фигуры в виде КрТ относительно координатных осей выражаются формулами $M_{x} =\frac{1}{2} \cdot \rho \cdot \int \limits _{a}^{b}y^{2} \left(x\right)\cdot dx $ и $M_{y} =\rho \cdot \int \limits _{a}^{b}x\cdot y\left(x\right)\cdot dx $.
  7. Координаты центра масс материальной плоской фигуры в виде КрТ, образованной кривой $y=y\left(x\right)$ на промежутке $\left$, вычисляют по формулам $x_{C} =\frac{\int \limits _{a}^{b}x\cdot y\left(x\right)\cdot dx }{\int \limits _{a}^{b}y\left(x\right)\cdot dx } $ и $y_{C} =\frac{\frac{1}{2} \cdot \int \limits _{a}^{b}y^{2} \left(x\right)\cdot dx }{\int \limits _{a}^{b}y\left(x\right)\cdot dx } $.

Лекции 8. Приложения определенного интеграла.

Приложение интеграла к физическим задачам основано на свойстве аддитивности интеграла по множеству. Поэтому с помощью интеграла могут вычисляться такие величины, которые сами аддитивны по множеству. Например, площадь фигуры равна сумме площадей ее частей Длина дуги, площадь поверхности, объем тела, масса тела обладают тем же свойством. Поэтому все эти величины можно вычислять с помощью определенного интеграла.

Можно использовать два метода решения задач: метод интегральных сумм и метод дифференциалов.

Метод интегральных сумм повторяет конструкцию определенного интеграла: строится разбиение, отмечаются точки, в них вычисляется функция, вычисляется интегральная сумма, производится предельный переход. В этом методе основная трудность – доказать, что в пределе получится именно то, что нужно в задаче.

Метод дифференциалов использует неопределенный интеграл и формулу Ньютона – Лейбница. Вычисляют дифференциал величины, которую надо определить, а затем, интегрируя этот дифференциал, по формуле Ньютона – Лейбница получают требуемую величину. В этом методе основная трудность – доказать, что вычислен именно дифференциал нужной величины, а не что-либо иное.

Вычисление площадей плоских фигур.

1. Фигура ограничена графиком функции, заданной в декартовой системе координат.

Мы пришли к понятию определенного интеграла от задачи о площади криволинейной трапеции (фактически, используя метод интегральных сумм). Если функция принимает только неотрицательные значения, то площадь под графиком функции на отрезке может быть вычислена с помощью определенного интеграла . Заметим, что поэтому здесь можно увидеть и метод дифференциалов.

Но функция может на некотором отрезке принимать и отрицательные значения, тогда интеграл по этому отрезку будет давать отрицательную площадь, что противоречит определению площади.

Можно вычислять площадь по формуле S =. Это равносильно изменению знака функции в тех областях, в которых она принимает отрицательные значения.

Если надо вычислить площадь фигуры, ограниченной сверху графиком функции , а снизу графиком функции , то можно пользоваться формулой S = , так как .

Пример. Вычислить площадь фигуры, ограниченной прямыми x=0, x=2 и графиками функций y=x 2 , y=x 3 .

Заметим, что на интервале (0,1) выполнено неравенство x 2 > x 3 , а при x >1 выполнено неравенство x 3 > x 2 . Поэтому

2. Фигура ограничена графиком функции, заданной в полярной системе координат.

Пусть график функции задан в полярной системе координат и мы хотим вычислить площадь криволинейного сектора, ограниченного двумя лучами и графиком функции в полярной системе координат.

Здесь можно использовать метод интегральных сумм, вычисляя площадь криволинейного сектора как предел суммы площадей элементарных секторов, в которых график функции заменен дугой окружности .

Можно использовать и метод дифференциалов: .

Рассуждать можно так. Заменяя элементарный криволинейный сектор, соответствующий центральному углу круговым сектором, имеем пропорцию . Отсюда . Интегрируя и используя формулу Ньютона – Лейбница, получаем .

Пример. Вычислим площадь круга (проверим формулу). Полагаем . Площадь круга равна .

Пример. Вычислим площадь, ограниченную кардиоидой .

3 Фигура ограничена графиком функции, заданной параметрически.

Функция может быть задана параметрически в виде . Используем формулу S = , подставляя в нее и пределы интегрирования по новой переменной . . Обычно при вычислении интеграла выделяют те области, где подинтегральная функция имеет определенный знак и учитывают соответствующую площадь с тем или иным знаком.

Пример. Вычислить площадь, ограниченную эллипсом .

Используем симметрию эллипса, вычислим площадь четверти эллипса, находящуюся в первом квадранте. В этом квадранте . Поэтому .

Вычисление объемов тел.

1. Вычисление объемов тел по площадям параллельных сечений.

Пусть требуется вычислить объем некоторого тела V по известным площадям сечений этого тела плоскостями, перпендикулярными прямой OX, проведенными через любую точку x отрезка прямой OX.

Применим метод дифференциалов. Считая элементарный объем , над отрезком объемом прямого кругового цилиндра с площадью основания и высотой , получим . Интегрируя и применяя формулу Ньютона – Лейбница, получим

2. Вычисление объемов тел вращения.

Пусть требуется вычислить OX .

Тогда .

Аналогично, объем тела вращения вокруг оси OY , если функция задана в виде , можно вычислить по формуле .

Если функция задана в виде и требуется определить объем тела вращения вокруг оси OY , то формулу для вычисления объема можно получить следующим образом.

Переходя к дифференциалу и пренебрегая квадратичными членами, имеем . Интегрируя и применяя формулу Ньютона – Лейбница, имеем .

Пример. Вычислить объем шара .

Пример. Вычислить объем прямого кругового конуса, ограниченного поверхностью и плоскостью .

Вычислим объем, как объем тела вращения, образованного вращением вокруг оси OZ прямоугольного треугольника в плоскости OXZ, катеты которого лежат на оси OZ и прямой z = H , а гипотенуза лежит на прямой .

Выражая x через z, получим .

Вычисление длины дуги.

Для того, чтобы получить формулы для вычисления длины дуги, вспомним выведенные в 1 семестре формулы для дифференциала длины дуги.

Если дуга представляет собой график непрерывно дифференцируемой функции , дифференциал длины дуги можно вычислить по формуле

. Поэтому

Если гладкая дуга задана параметрически , то

. Поэтому .

Если дуга задана в полярной системе координат , то

. Поэтому .

Пример. Вычислить длину дуги графика функции, . .

Главная > Лекция

Лекция 18. Приложения определенного интеграла.

18.1. Вычисление площадей плоских фигур.

Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.

Для нахождения суммарной площади используется формула .

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x 2 , x = 2.

Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

18.2. Нахождение площади криволинейного сектора.

Для нахождения площади криволинейного сектора введем полярную систему координат. Уравнение кривой, ограничивающей сектор в этой системе координат, имеет вид  = f(), где  - длина радиус – вектора, соединяющего полюс с произвольной точкой кривой, а  - угол наклона этого радиус – вектора к полярной оси.

Площадь криволинейного сектора может быть найдена по формуле

18.3. Вычисление длины дуги кривой.

y y = f(x)

S i y i

Длина ломаной линии, которая соответствует дуге, может быть найдена как
.

Тогда длина дуги равна
.

Из геометрических соображений:

В то же время

Тогда можно показать, что

Т.е.

Если уравнение кривой задано параметрически, то с учетом правил вычисления производной параметрически заданной, получаем

,

где х = (t) и у = (t).

Если задана пространственная кривая , и х = (t), у = (t) и z = Z(t), то

Если кривая задана в полярных координатах , то

,  = f().

Пример: Найти длину окружности, заданной уравнением x 2 + y 2 = r 2 .

1 способ. Выразим из уравнения переменную у.

Найдем производную

Тогда S = 2r. Получили общеизвестную формулу длины окружности.

2 способ. Если представить заданное уравнение в полярной системе координат, то получим: r 2 cos 2  + r 2 sin 2  = r 2 , т.е. функция  = f() = r,
тогда

18.4. Вычисление объемов тел.

Вычисление объема тела по известным площадям его параллельных сечений.

Пусть имеется тело объема V. Площадь любого поперечного сечения тела Q, известна как непрерывная функция Q = Q(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки х i разбиения отрезка . Т.к. на каком- либо промежуточном отрезке разбиения функция Q(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно M i и m i .

Если на этих наибольшем и наименьшем сечениях построить цилиндры с образующими, параллельными оси х, то объемы этих цилиндров будут соответственно равны M i x i и m i x i здесь x i = x i - x i -1 .

Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно
и
.

При стремлении к нулю шага разбиения , эти суммы имеют общий предел:

Таким образом, объем тела может быть найден по формуле:

Недостатком этой формулы является то, что для нахождения объема необходимо знать функцию Q(x), что весьма проблематично для сложных тел.

Пример: Найти объем шара радиуса R.

В поперечных сечениях шара получаются окружности переменного радиуса у. В зависимости от текущей координаты х этот радиус выражается по формуле
.

Тогда функция площадей сечений имеет вид: Q(x) =
.

Получаем объем шара:

Пример: Найти объем произвольной пирамиды с высотой Н и площадью основания S.

При пересечении пирамиды плоскостями, перпендикулярными высоте, в сечении получаем фигуры, подобные основанию. Коэффициент подобия этих фигур равен отношению x/H, где х – расстояние от плоскости сечения до вершины пирамиды.

Из геометрии известно, что отношение площадей подобных фигур равно коэффициенту подобия в квадрате, т.е.

Отсюда получаем функцию площадей сечений:

Находим объем пирамиды:

18.5. Объем тел вращения.

Рассмотрим кривую, заданную уравнением y = f(x). Предположим, что функция f(x) непрерывна на отрезке . Если соответствующую ей криволинейную трапецию с основаниями а и b вращать вокруг оси Ох, то получим так называемое тело вращения .

y = f(x)

Т.к. каждое сечение тела плоскостью x = const представляет собой круг радиуса
, то объем тела вращения может быть легко найден по полученной выше формуле:

18.6. Площадь поверхности тела вращения.

М i B

Определение: Площадью поверхности вращения кривой АВ вокруг данной оси называют предел, к которому стремятся площади поверхностей вращения ломаных, вписанных в кривую АВ, при стремлении к нулю наибольших из длин звеньев этих ломаных.

Разобьем дугу АВ на n частей точками M 0 , M 1 , M 2 , … , M n . Координаты вершин полученной ломаной имеют координаты x i и y i . При вращении ломаной вокруг оси получим поверхность, состоящую из боковых поверхностей усеченных конусов, площадь которых равна P i . Эта площадь может быть найдена по формуле:

Здесь S i – длина каждой хорды.

Применяем теорему Лагранжа (см. Теорема Лагранжа ) к отношению
.