Означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна понятию гомоскедастичность , которое означает однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.

Наличие гетероскедастичности случайных ошибок приводит к неэффективности оценок , полученных с помощью метода наименьших квадратов . Кроме того, в этом случае оказывается смещённой и несостоятельной классическая оценка ковариационной матрицы МНК-оценок параметров. Следовательно статистические выводы о качестве полученных оценок могут быть неадекватными. В связи с этим тестирование моделей на гетероскедастичность является одной из необходимых процедур при построении регрессионных моделей.

Тестирование гетероскедастичности

В первом приближении наличие гетероскедастичности можно заметить на графиках остатков регрессии (или их квадратов) по некоторым переменным, по оцененной зависимой переменной или по номеру наблюдения. На этих графиках разброс точек может меняться в зависимости от значения этих переменных.

Для более строгой проверки применяют, например, следующие статистические тесты

  • Тест Голдфелда-Куандта
  • Тест Бройша - Пагана
  • Тест Парка
  • Тест Глейзера
  • Тест ранговой корреляции Спирмэна

Оценка модели при гетероскедастичности

Поскольку МНК-оценки параметров моделей остаются несмещёнными состоятельными даже при гетероскедастичности, то при достаточном количестве наблюдений возможно применение обычного МНК. Однако, для более точных и правильных статистических выводов необходимо использовать стандартные ошибки в форме Уайта .

Альтернативный подход - использование взвешенного метода наименьших квадратов (ВМНК, WLS) . В этом методе каждое наблюдение взвешивается обратно пропорционально предполагаемому стандартному отклонению случайной ошибки в этом наблюдении. Такой подход позволяет сделать случайные ошибки модели гомоскедастичными.

В частности, если предполагается, что стандартное отклонение ошибок пропорционально некоторой переменной Z , то данные делятся на эту переменную, включая константу.

Пример

Пусть рассматривается, например, зависимость прибыли от размера активов:

Однако, скорее всего не только прибыль зависит от активов, но и "колеблемость" прибыли не одинакова для той или иной величины активов. То есть скорее всего стандартное отклонение случайной ошибки модели следует полагать пропорциональным стоимости активов:

В этом случае разумнее рассматривать не исходную модель, а следующую:

предполагая что в этой модели случайные ошибки гомоскедастичны. Можно использовать эту преобразованную модель непосредственно, а можно использовать полученные оценки параметров как оценки параметров исходной модели (взвешенный МНК). Теоретически полученные таким образом оценки должны быть лучше.

См. также

Литература

  • Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. - М .: Дело, 2004. - 576 с.
  • William H. Greene Econometric analysis. - New York: Pearson Education, Inc., 2003. - 1026 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Гетероскедастичность" в других словарях:

    - (heteroscedasticity) Разнородность; наличие различных дисперсий. Данные являются гетероскедастическими, если их вариации не соответствуют случайным отклонениям по той же совокупности. Это понятие отличается от гомоскедастичности… … Экономический словарь

    Гетероскедастичность - , неоднородность понятие математической статистики и эконометрии; означает случай, когда дисперсия ошибки в уравнении регрессии изменяется от наблюдения к наблюдению. В этом случае приходится подвергать определенной… … Экономико-математический словарь

    гетероскедастичность - Неоднородность понятие математической статистики и эконометрии; означает случай, когда дисперсия ошибки в уравнении регрессии изменяется от наблюдения к наблюдению. В этом случае приходится подвергать определенной модификации метод наименьших… … Справочник технического переводчика

    гетероскедастичность - Неоднородность дисперсии. Антоним: гомоскедастичность … Словарь социологической статистики

    - (ARCH AutoRegressive Conditional Heteroskedastiсity) применяемая в эконометрике модель для анализа временных рядов (в первую очередь финансовых) у которых условная (по прошлым значениям ряда) дисперсия ряда зависит от прошлых значений … Википедия

    Куандта (англ. Goldfeld Quandt test) процедура тестирования гетероскедастичности случайных ошибок регрессионной модели, применяемая в случае, когда есть основания полагать, что стандартное отклонение ошибок может быть пропорционально… … Википедия

    - (англ. White test) универсальная процедура тестирования гетероскедастичности случайных ошибок линейной регрессионной модели, не налагающая особых ограничений на структуру гетероскедастичности, предложенная Уайтом в 1980 г. Тест является… … Википедия

    При проведении регрессионного анализа методом наименьших квадратов (МНК) важно учитывать предпосылки этого метода, одной из которых является равенство дисперсий случайных отклонений. Выполнение данной предпосылки называется гомоскедастичностью,… … Википедия

    Применяемая в эконометрике модель для отыскания зависимости дисперсии текущей ошибки от квадратов ошибок модели для предшествующих наблюдений. Спецификация ARCH(q) Обозначим через текущую ошибку модели и предположим, что, где и где временной ряд … Википедия

    - (ОМНК, GLS англ. Generalized Least Squares) метод оценки параметров регрессионных моделей, являющийся обобщением классического метода наименьших квадратов. Обобщённый метод наименьших квадратов сводится к минимизации «обобщённой… … Википедия

Книги

  • Введение в эконометрику (CDpc) , Яновский Леонид Петрович, Буховец Алексей Георгиевич. Даны основы эконометрики и статистического анализа одномерных временных рядов. Большое внимание уделено классической парной и множественной регрессии, классическому и обобщенному методам…

Обнаружение гетероскедастичности в каждом конкретном случае является довольно сложной задачей, так как для знания дисперсий отклонений необходимо знать распределение СВ Y , соответствующее выбранному значению СВ Х .

Не существует какого-либо однозначного метода определения гетероскедастичности. Однако к настоящему времени для такой проверки разработано довольно большое число тестов и критериев для них. Рассмотрим наиболее популярные и наглядные: графический анализ отклонений, тест ранговой корреляции Спирмена, тест Парка, тест Глейзера, тест Гольдфельда-Квандта.

1).Графический анализ остатков.

Использование графического представления отклонений позволяет определиться с наличием гетероскедастичности. В этом случае по оси абсцисс откладываются значения объясняющей переменной Х (либо линейной комбинации объясняющих переменных , а по оси ординат либо отклонения , либо их квадраты .Примеры таких графиков приведены на рис. 5.3.

На рис. 5.3,а все отклонения находятся внутри полуполосы постоянной ширины, параллельной оси абсцисс. Это говорит о независимости дисперсий от значений переменной Х и их постоянстве, т.е. в этом случае выполняются условия гомоскедастичности.

На рис. 5.3, б-д наблюдаются некоторые систематические изменения в соотношениях между значениями переменной Х и квадратами отклонений . Рис. 5.3, б соответствует примеру из пункта 1. На рис. 5.3, в отражена линейная, 5.3, г – квадратичная, 5.3, д – гиперболическая зависимости между квадратами отклонений и значениями объясняющей переменной Х . Другими словами, ситуации, представленные на рис. 5.3, в-д , отражают большую вероятность наличия гетероскедастичности для рассматриваемых статистических данных.

Рис. 5. 3

2).Тест ранговой корреляции Спирмена

При использовании данного теста предполагается, что дисперсия отклонения будет либо увеличиваться, либо уменьшаться с увеличением значений Х . Поэтому для регрессии, построенной по МНК, абсолютные величины отклонений и значения СВ Х будут коррелированны. Значения и ранжируются (упорядочиваются по величинам). Затем определяется коэффициент ранговой корреляции:

, (5.1)

где - разность между рангами и ; -число наблюдений.

Например, если является 25-м по величине среди всех наблюдений Х , а является 32-м, то .

Доказано, что если коэффициент корреляции для генеральной совокупности равен нулю, то статистика

имеет распределение Стьюдента с числом степеней свободы .

Следовательно, если наблюдаемое значение -статистики, вычисленное по формуле (5.2), превышает (определяемое по таблице критических точек распределения Стьюдента), то необходимо отклонить гипотезу о равенстве нулю коэффициента корреляции , а следовательно, и об отсутствии гетероскедастичности. В противном случае гипотеза об отсутствии гетероскедастичности принимается.

3).Тест Парка.

Р.Парк предложил критерий определения гетероскедастичности, дополняющий графический метод некоторыми формальными зависимостями. Предполагается, что дисперсия является функцией -го значения объясняющей переменной. Парк предложил следующую функциональную зависимость:

Прологарифмировав (5.3), получим:

Так как дисперсия обычно неизвестны, то их заменяют оценками квадратов отклонений .

Критерий Парка включает следующие этапы:

1. Строится уравнение регрессии .

2. Для каждого наблюдения определяются .

3. Строится регрессия

, (5.5)

В случае множественной регрессии зависимость (5.5) строится для каждой объясняющей переменной.

4. Проверяется статистическая значимость коэффициента уравнения (5.5) на основе -статистики . Если коэффициент статистически значим, то это означает наличие связи между и , т.е. гетероскедастичности в статистических данных.

4).Тест Глейзера.

Тест Глейзера по своей сути аналогичен тесту Парка и дополняет его анализом других (возможно, более подходящих) зависимостей между дисперсиями отклонений и значениями переменной . По данному методу оценивается регрессионная зависимость модулей отклонений (тесно связанных с ) от . При этом рассматриваемая зависимость моделируется следующим уравнением регрессии:

. (5.6)

Изменяя значение , можно построить различные регрессии. Обычно Статистическая значимость коэффициента в каждом конкретном случае фактически означает наличие гетероскедастичности. Если для нескольких регрессий (5.6) коэффициент оказывается статистически значимым, то при определении характера зависимости обычно ориентируются на лучшую из них.

5).Тест Гольдфельда-Квандта.

В данном случае также предполагается, что стандартное отклонение пропорционально значению переменной Х в этом наблюдении, т.е. . Предполагается, что имеет нормальное распределение и отсутствует автокорреляция остатков.

Тест Гольдфельда-Квандта состоит в следующем:

1. Все наблюдений упорядочиваются по величине Х.

2. Вся упорядоченная выборка после этого разбивается на три подвыборки размерностей соответственно.

Оценка точности регрессионных моделей.

Для оценки точности чаще всего используют два показателя, которые для линейных, так и для нелинейных моделей имеют вид:

1. Средняя ошибка аппроксимации

2. Среднеквадратическая ошибка аппроксимации

8.1. Сущность и причины гетероскедастичности

Второе условие Гаусса – Маркова о гомоскедастичности, то есть равноизменчивости остатков – это одно из важнейших предпосылок МНК.

Так как математическое ожидание остатков в каждом наблюдении равно нулю, то квадраты остатков могут служить оценками их дисперсий.

Эти квадраты остатков входят в ESS (которая минимизируется в МНК) с одинаковыми единичными весами, а это не всегда правомерно, так как на практике гетероскедастичность не так уж редко встречается.

Например, с ростом дохода растёт не только средний уровень потребления, но и разброс в потреблении. Он более присущ субъектам с высоким доходом, так как они имеют больший простор для распределения доходов. Проблема гетероскедастичности более характерна для пространственных выборок. Очевидно, что при наличии гетероскедастичности наблюдениям с большей дисперсией следует в ESS придавать меньший вес и наоборот, а не учитывать их равновзвешенными, как это делается в классическом МНК.

Точка на диаграмме рассеяния, полученная из наблюдения с меньшей дисперсией, более точно определяет направление линии регрессии, чем точка из наблюдения с большей дисперсией.

Последствия гетероскедастичности таковы:

1. Оценки параметров не будут эффективными, то есть не будут иметь наименьшую дисперсию по сравнению с другими оценками; при этом они будут оставаться несмещенными.

2. Дисперсии оценок будут смещены, так как будет смещена дисперсия на одну степень свободы которая используется при вычислении оценок дисперсий всех коэффициентов.

3. Выводы, получаемые на основе завышенных F и t статистик, и интервальные оценки будут ненадёжны.

8.2. Выявление гетероскедастичности

Это достаточно непростая задача; дисперсию σ 2 (ε i ) обычно определить не удаётся, так как для конкретного значения объясняющей переменой х i или конкретного значения вектора x при множественной регрессии мы располагаем лишь единственным значением зависимой переменой у i и можем вычислить единственное модельное значение переменной

Тем не менее, в настоящее время разработан ряд методов и тестов для обнаружения гетероскедастичности:

1. Графический – мы уже говорили, что М (ε i )=0; это значит что дисперсию остатка можно заменить её оценкой, а в качестве этой оценки можно взять величину . В таком случае можно построить график в координатах: есть функция от х i и по нему изучить характер указанной зависимости. Если объясняющих переменных несколько, то проверяется зависимость по каждой переменной х j , то есть изучается зависимость


Можно также исследовать зависимость , так как переменная у является линейной комбинацией всех объясняющих переменных.

2. Тест ранговой корреляции Спирмена

Значения x i и ε i упорядочиваются по возрастанию, и для каждого наблюдения в ряду х и в ряду ε устанавливается свой ранг (номер) в соответствии с этим упорядочением. Разность d i между рангами x и ε для каждого номера наблюдения рассчитывается как

Затем вычисляется коэффициент ранговой корреляции:

.

Известно, что если остатки не коррелируют с объясняющими переменными, то статистика

имеет распределение Стьюдента с числом степеней свободы

df = n−2 .

Если вычисленное значение t – статистики превышает табличное критическое значение при назначенном уровне значимости γ гипотезы Н 0 , то гипотеза об отсутствии гетероскедастичности отвергается и гетероскедастичность признаётся существенной. Критическое значение t– статистики определяется по таблице как

В том случае, если модель регрессии множественная, проверка гипотезы Н 0 выполняется для каждой объясняющей переменной.

3. Тест Гольдфельда–-Квандта

Предполагается, что дисперсия остатков в каждом наблюдении пропорциональна или обратно пропорциональна интересующему нас регрессору, также предполагается, что остатки распределены нормально и нет автокорреляции в остатках.

В случае множественной регрессии тест целесообразно проводить по каждому регрессору отдельно.

Последовательность проведения теста:

а) наблюдения (строки таблицы) упорядочиваются по возрастанию интересующего нас регрессора;

б) упорядоченная таким образом выборка разбивается на 3 подвыборки объемами , , , при этом Можно считать, что Авторы теста предлагают следующие значения: n = 30, k = 11; n = 60, k = 22; n = 100, k = 36…38; n = 300, k = 110 и так далее (см. табл. 8.1).

*графический

Прежде всего, проверяется случайный характер остатков еi (1ая предпосылка мнк). С этой целью строится график зависимости остатков еi от теоретических расчетных значений уi. Если на графике нет направленности в расположении точек остатков еi, то остатки представляют собой случайные величины, МНК оправдан, теоретические значения расчетного уi хорошо аппроксимируют значения фактического yi.

Для обеспечения несмещенности оценок коэффициента регрессии, полученного МНК, необходимо выполнение условий независимости случайных остатков еi и переменных хi (2ая предпосылка мнк). С этой целью строится график зависимости случайных остатков ei от факторов хi, включенных в регрессию. На графике поверяется отсутствие направленности в расположении ei.

*Тест ранговой корреляции Спирмена

При использовании данного теста предполагается, что дисперсия отклонения будет либо увеличиваться, либо уменьшаться с увеличением значения X. Поэтому для регрессии построенной по МНК абсолютные величины отклонений и значения будут коррелированы. Значения и ранжируются (упорядочиваются по величинам). Затем определяется коэффициент ранговой корреляции:

где - разность между рангами значений и ().

Если tрасч> tтабл, гипотеза о равенстве 0 коэф-та корел-ии отклоняется, отсутствие гетероскедастичности. В противном случае нулевая гипотеза принимается.

*Тест Голдфелда–Квандта. Этот тест применяется в том случае, если ошибки регрессии можно считать нормально распределенными случайными величинами.

Предположим, что средние квадратические (стандартные) отклонения возмущений о, пропорциональны значениям объясняющей переменной X (это означает постоянство часто встречающегося на практике относительного (а не абсолютного, как в классической модели) разброса возмущений е, регрессионной модели.

Упорядочим n наблюдений в порядке возрастания значений регрессора X и выберем т первых и т последних наблюдений.

В этом случае гипотеза о гомоскедастичности будет равносильна тому, что значения е 1 ,..., е т и е п-т+ 1,..., е n (т.е. остатки е i регрессии первых и последних т наблюдений) представляют собой выборочные наблюдения нормально распределенных случайных величин, имеющих одинаковые дисперсии.

Гипотеза о равенстве дисперсий двух нормально распределенных совокупностей, как известно (см., например, ), проверяется с помощью критерия Фишера–Снедекора.

Нулевая гипотеза о равенстве дисперсий двух наборов по т наблюдений (т.е. гипотеза об отсутствии гетероскедастичности) отвергается, если

где р – число регрессоров.

Заметим, что числитель и знаменатель в выражении (7.19)следовало разделить на соответствующее число степеней свободы, но в данном случае эти числа одинаковы и равны (т – р).


Мощность теста, т.е. вероятность отвергнуть гипотезу об отсутствии гетероскедастичности, когда действительно гетероскедастичности нет, оказывается максимальной, если выбирать т порядка n /3.

При применении теста Голдфелда–Квандта на компьютере нет необходимости вычислять значение статистики F вручную, так как величины представляют собой суммы квадратов остатков регрессии, осуществленных по “урезанным” выборкам.

ОМНК

Наиболее существенным достижением эконометрики является значительное развитие самих методов оценивания неизвестных параметров и усовершенствование критериев выявления статической значимости рассматриваемых эффектов. В этом плане невозможность или нецелесообразность использования традиционного МНК по причине проявляющейся в той или иной степени гетероскедастичности привели к разработке обобщенного метода наименьших квадратов (ОМНК).

Фактически при этом корректируется модель, изменяются ее спецификации, преобразуются исходные данные для обеспечения несмещенности, эффективности и состоятельности оценок коэффициентов регрессии.

Предполагается, что среднее остатков равно нулю, но их дисперсия уже не является постоянной, а пропорциональна величинам Кi, где эти величины представляют собой коэффициенты пропорциональности, различные для различных значений фактора х. Таким образом, именно эти коэффициенты (величины Кi) характеризуют неоднородность дисперсии. Естественно, считается, что сама величина дисперсии, входящая общим множителем при этих коэффициентах пропорциональности, неизвестна.

Исходная модель после введения этих коэффициентов в уравнение множественной регрессии продолжает оставаться гетероскедастичной (точнее говоря, таковыми являются остаточные величины модели). Пусть эти остаточные величины (остатки) не являются автокоррелированными. Введем новые переменные, получающиеся делением исходных переменных модели, зафиксированных в результате i-наблюдения, на корень квадратный из коэффициентов пропорциональности Кi. Тогда получим новое уравнение в преобразованных переменных, в котором уже остатки будут гомоскедастичны. Сами новые переменные - это взвешенные старые (исходные) переменные.

Поэтому оценка параметров полученного таким образом нового уравнения с гомоскедастичными остатками будет сводиться к взвешенному МНК (по существу это и есть ОМНК). При использовании вместо самих переменных регрессии их отклонения от средних выражения для коэффициентов регрессии приобретают простой и стандартизованный (единообразный) вид, незначительно различающийся для МНК и ОМНК поправочным множителем 1/К в числителе и знаменателе дроби, дающей коэффициент регрессии.

Следует иметь в виду, что параметры преобразованной (скорректированной) модели существенно зависят от того, какая концепция положена за основу для коэффициентов пропорциональности Кi. Часто считают, что остатки просто пропорциональны значениям фактора. Наиболее простой вид модель принимает в случае, когда принимается гипотеза о том, что ошибки пропорциональны значениям последнего по порядку фактора. Тогда ОМНК позволяет повысить вес наблюдений с меньшими значениями преобразованных переменных при определении параметров регрессии по сравнению с работой стандартного МНК с первоначальными исходными переменными. Но эти новые переменные уже получают иное экономическое содержание.

Гипотеза о пропорциональности остатков величине фактора вполне может иметь под собой реальное обоснование. Пусть обрабатывается некая недостаточно однородная совокупность данных, например, включающая крупные и мелкие предприятия одновременно. Тогда большим объемным значениям фактора может соответствовать и большая дисперсия результативного признака, и большая дисперсия остаточных величин. Далее, использование ОМНК и соответствующий переход к относительным величинам не просто снижают вариацию фактора, но и уменьшают дисперсию ошибки. Тем самым реализуется наиболее простой случай учета и коррекции гетероскедастичности в регрессионных моделях посредством применения ОМНК.

Изложенный выше подход к реализации ОМНК в виде взвешенного МНК является достаточно практичным - он просто реализуется и имеет прозрачную экономическую интерпретацию. Конечно, это не самый общий подход, и в контексте математической статистики, служащей теоретической основой эконометрики, нам предлагается значительно более строгий метод, реализующий ОМНК в самом общем виде. В нем необходимо знать ковариационную матрицу вектора ошибок (столбца остатков). А это в практических ситуациях, как правило, несправедливо, и отыскать эту матрицу как таковую бывает невозможно. Поэтому приходится каким-то образом оценивать искомую матрицу, чтобы использовать вместо самой матрицы такую оценку в соответствующих формулах. Таким образом, описанный вариант реализации ОМНК представляет одну из таких оценок. Иногда его называют доступный обобщенный МНК.

Обнаружение гетероскедастичности

В случае парной регрессии о проявлении гетероскедастичности можно судить по характеру расположения экспериментальных точек на корреляционном поле (рис. 5.1). На рис. 5.1 можно заметить, что дисперсии случайных отклонений неодинаковы и увеличиваются с возрастанием значений объясняющей переменной. Однако даже для парной регрессии выводы по определению гетероскедастичности могут являться неоднозначными при наличии локальных «выбросов» точек (пиков на диаграмме рассеивания). Естественно, что для множественной регрессии обнаружение гетероскедастичности является значительно более сложной задачей, чем для моделей с одним регрессором.

В настоящее время существует достаточно большое количество тестов для поверки на гетероскедастичность, базирующихся на дисперсионном анализе случайных отклонений. Рассмотрим наиболее распространенные из них.

Тест ранговой корреляции Спирмена . Идея данного теста заключается в том, что в случае гетероскедастичности дисперсия случайного отклонения будет либо увеличиваться, либо уменьшаться с увеличением значений регрессоров Х . Поэтому для регрессионной модели, построенной по МНК, абсолютные значения оценок отклонений e i и значения x i будут коррелированны.

Значения e i и x i ранжируются (упорядочиваются по величинам). Номеру i значения x i в упорядоченном ряду будет соответствовать ранг r xi . Аналогично упорядочим данные по абсолютным значениям остатков и каждому |e i | припишем ранг r ei . Тогда разность между рангами (d i ) запишем как d i = r xi - r ei . Например, если x 20 является 25-м по величие среди всех значений X , а e 20 является 30-м, то d i = 25 - 30 = -5.

Коэффициент ранговой корреляции Спирмена вычисляется по формуле

(5.2)

где n - число наблюдений.

Доказано, что при n > 10 статистика

(5.3)

имеет t -распределение Стьюдента с числом степеней свободы v = n - 2.

Следовательно, в соответствии со схемой проверки статистических гипотез, если наблюдаемое значение t -статистики, рассчитанное по формуле (5.3), превышает t кр = t a , n - 2 (табличное), то необходимо отклонить гипотезу Н 0 об отсутствии гетероскедастичности. В противном случае гипотеза Н 0 принимается, что соответствует гомоскедастичности.

Если анализируется модель множественной регрессии, то проверка гипотезы осуществляется с помощью t -статистики для каждой объясняющей переменной отдельно.

Следует заметить, что коэффициент ранговой корреляции Спирмена (r ) может иметь самостоятельное значение в эконометрических исследованиях. Он используется при установлении тесноты связи между порядковыми переменными. В этом случае анализируемые объекты упорядочивают по степени влияния (проявления) признака. Если объекты ранжированы по двум признакам Х иY , то имеется возможность оценить тесноту связи между этими переменными, основываясь на рангах. В том случае, если ранги всех объектов равны, то r = 1 (полная прямая связь). При полной обратной связи ранги объектов по двум переменным расположены в обратном порядке и r = -1. Во всех остальных случаях |r | < 1. Применение коэффициента ранговой корреляции не требует нормального распределения переменных и линейной связи между ними. Однако необходимо учитывать, что в случае количественных переменных переход от их первоначальных значений и размерностей к рангам сопровождается определенной потерей информации.

Тест Голдфелда-Квандта. Этот тест использует предположения о нормальности распределения случайных отклонений и о пропорциональности средних квадратических (стандартных) отклонений σ i = σ(e i ) значениям соответствующей объясняющей переменной X .

В рамках этих предположений Голдфелд и Квандт предложили следующую процедуру проверки на гетероскедастичность:

1. Все n наблюдений упорядочиваются в порядке возрастания значений регрессора X , и выборка после этого разбивается на три подвыборки размерностей k , n - 2k , k соответственно.

2. Оцениваются отдельные регрессии для первой и третьей подвыборок (рассматриваем k первых значений и k последних; средние n - 2k наблюдений отбрасываем).

3. Если, в соответствии с нашим предположением, дисперсия случайных отклонений увеличивается с ростом X , то дисперсия регрессии по первой подвыборке (сумма квадратов остатков ) будет существенно меньше дисперсии регрессии по третьей подвыборке (суммы квадратов остатков ).

4. Для сравнения соответствующих дисперсий определяется следующая F -статистика:

. (5.4)

Здесь (k - m - 1) – числа степеней свободы соответствующих выборочных дисперсий (m - одинаковое количество объясняющих переменных в уравнениях регрессии). При выполнении начальных предположений относительно остатков построенная F -статистика имеет распределение Фишера с числами степеней свободы v 1 = v 2 = k - m - 1.

5. Если наблюдаемое значение F -статистики (F набл ), рассчитанное по формуле (5.4), превосходит ее критическое значение , то гипотеза об отсутствии гетероскедастичности (о равенстве дисперсий) отклоняется на выбранном уровне значимости a.

Мощность теста Голдфелда-Квандта, т. е. вероятность отвергнуть гипотезу об отсутствии гетероскедастичности в случае, когда ее действительно нет, оказывается максимальной, если выбирать k » n /3.

Для множественной регрессии данный тест может осуществляться для каждой из объясняющих переменных или для одного выбранного регрессора, который в наибольшей степени связан с σ i .

Аналогичный тест может быть использован при условии обратной пропорциональности между стандартными отклонениями остатков σ i и значениями объясняющей переменной. При этом статистика Фишера примет вид: F = S 1 /S 3 .

Тест Уайта. Сущность данного теста заключается в том, что если в модели присутствует гетероскедастичность, то дисперсии случайных отклонений некоторым образом зависят от регрессоров; т. е. гетероскедастичность должна как-то проявляться в поведении остатков исходной регрессионной модели. Исходя из этого при использовании теста Уайта предполагается, что дисперсии остатков представляют собой некоторую функцию от наблюдаемых значений объясняющих переменных

Для получения соответствующих выводов осуществляется оценка функции (5.5) с помощью уравнения регрессии для квадратов остатков:

где v i - случайный член.

На практике чаще всего функция f выбирается квадратичной, а регрессоры в уравнении (5.6) – это регрессоры исходной модели, их квадраты и, возможно, попарные произведения. Для данного теста гипотеза об отсутствии гетероскедастичности, что соответствует условию f = const , принимается в случае незначимости регрессии (5.6) в целом.



Следует заметить, что во всех рассматриваемых тестах (критериях) осуществляется проверка нулевой гипотезы Н 0 об отсутствии гетероскедастичности.