При превращении жидкости в пар молекулы жидкости, преодолевая силы сцепления в поверхностном слое, совершают работу. Так как из жидкости улетают молекулы, имеющие большую скорость, то средняя скорость оставшихся молекул жидкости уменьшается, уменьшается их кинетическая энергия. Поэтому, когда нет притока энергии к жидкости извне, испарение ведет к уменьшению внутренней энергии жидкости, вследствие чего жидкость охлаждается.

Охлаждение жидкости при испарении легко наблюдать, обмотав кисеёй или ватой шарик термометра и полив его эфиром. Быстро испаряющийся эфир отнимает часть внутренней энергии шарика термометра, вследствие чего температура последнего значительно понижается. Если налить на деревянную подставку тонкий слой воды и поставить на него стакан с эфиром, то эфир при обдувании воздухом быстро испаряется и его температура настолько понижается, что стакан примерзает к подставке.

Явление охлаждения при испарении жидкости широко используется в практике. При перевозке скоропортящихся продуктов для охлаждения вагонов в специальных устройствах испаряют жидкий аммиак или жидкую двуокись углерода.

Для получения льда в холодильных установках испаряется жидкий аммиак в змеевиках, которые проходят через раствор соли и охлаждают его ниже 0°С. В раствор соли помещают формы из листовой стали, наполненные водой; в этих формах, омываемых охлаждённым рассолом, и образуются блоки льда.

В настоящее время широкое применение в быту получили электрические холодильники. Рассмотрим принцип действия компрессионного холодильник. Этот холодильник состоит из трёх основных частей; компрессора А, конденсатора В и испарителя С.

В змеевике-конденсаторе посредством компрессора А сжимают какое-нибудь вещество, которое легко переходит из газообразного состояния в жидкое и из жидкого состояния в газообразное. В качестве таких веществ применяют аммиак, фреон-12 (дифтордихлорметан – CF 2 Cl 2), сернистый ангидрид и др.

При сжатии холодильный агент переходит из газообразного состояния в в жидкое. Одновременно с этим компрессор создает в змеевике-испарителе С разрежение. Туда через регулирующий вентиль К, устремляется жид холодильный агент, который быстро там испаряется. Испарение сопровождается поглощением энергии от стенок змеевика С, воздуха, соприкасающегося с ним, и далее от продуктов, находящихся в холодильной камере Вследствие этого в холодильной камере понижается температура и продукты охлаждаются.

Компрессор приводится в действие электродвигателем.

В жарких странах воду обычно содержат в пористых глиняных сосудах. Вода, просачивающаяся через поры сосуда, испаряется, вследствие чего неиспарившаяся вода в сосуде остаётся холодной.

При вылете из жидкости молекулы преодолевают силы притяжения со стороны оставшихся молекул, т. е. совершают работу против этих сил. Не все молекулы жидкости могут совершить необходимую работу, а только те из них, которые обладают достаточной для этого кинетической энергией, достаточной скоростью.

Но если из жидкости выходят при испарении наиболее быстрые молекулы, то средняя скорость остальных молекул жидкости становится меньше, - следовательно, и средняя кинетическая энергия остающихся в жидкости молекул уменьшается. Это означает, что внутренняя энергия испаряющейся жидкости уменьшается. Поэтому, если нет притока энергии к жидкости извне, испаряющаяся жидкость охлаждается.

Охлаждение жидкости при испарении можно наблюдать на опыте. Для этого нужно обмотать шарик термометра ватой (или кусочком материи) и полить ее эфиром. Быстро испаряющийся эфир отнимает часть внутренней энергии от шарика термометра, вследствие чего температура последнего понижается. Если эфиром смочить руку, то мы будем ощущать охлаждение руки.

Выходя из воды даже в жаркий день, мы чувствуем холод. Вода, испаряясь с поверхности нашего тела, отнимает от него некоторое количество теплоты.

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно и температура воды поддерживается постоянной за счет количества теплоты, поступающего из окружающего воздуха. Значит, чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию. Так, чтобы испарить воду массой 1 кг при температуре 35°С, требуется 2,4 10 6 Дж, а для испарения эфира массой 1 кг, взятого при той же температуре (35 °С),- 0,4 10 6 Дж энергии.

Испарение имеет большое значение в жизни животных. Затруднение испарения нарушает теплоотдачу и может вызвать перегревание тела.

Мы говорили, что процесс перехода молекул из пара в жидкость называют конденсацией. Конденсация пара сопровождается выделением энергии. Летним вечером, когда воздух становится холоднее, выпадает роса. Это водяной пар, находившийся в воздухе, при охлаждении воздуха оседает на траве и листьях в виде маленьких капелек воды.

Конденсацией пара объясняется образование облаков. Пары воды, поднимающиеся над землей, образуют в верхних, более холодных слоях воздуха облака, состоящие из мельчайших капелек воды.

Вопросы.

  1. Какую работу совершают молекулы, выходящие из жидкости при испарении?
  2. Как объяснить понижение температуры жидкости при ее испарении?
  3. Как можно на опыте показать охлаждение жидкости при испарении?
  4. Как можно объяснить, что при одних и тех же условиях одни жидкости испаряются быстрее , другие - медленнее?
  5. При каких условиях происходит конденсация пара?
  6. Какие явления природы объясняются конденсацией пара?

Упражнения.

  1. В какую погоду скорее просыхают лужи от дождя: в тихую или ветреную? в теплую или холодную? Как это можно объяснить?
  2. Почему горячий чай остывает скорее, если на него дуют?
  3. Выступающий в жару на теле пот охлаждает тело. Почему?
  4. Почему в сухом воздухе переносить жару легче, чем в сыром?
  5. Чтобы получить прохладную воду в летнюю жару, ее наливают в сосуды, изготовленные из слабообожженной глины, сквозь которую вода медленно просачивается. Вода в таких сосудах холоднее окружающего воздуха. Почему?
  6. Небольшое количество воды находится в стакане и такое же количество воды находится в блюдце. Где быстрее вода испарится? Почему?
  7. На стекло или доску кисточкой наносят мазки различных жидкостей: эфира, спирта, воды и масла. Наблюдая за мазками, замечают, что жидкости испаряются с разной скоростью. Проделайте такой опыт и объясните его.
  8. Для чего летом после дождей или полива приствольные круги плодовых деревьев покрывают слоем перегноя, навоза или торфа?

При любой температуре с поверхности жидкости вылетает часть молекул, образуя над ней пар. Процесс перехода вещества из жидкого состояния в газообразное называется парообразованием. Парообразование, происходящее при любых температурах с открытой поверхности жидкости, называется испарением. Его скорость зависит от рода жидкости, величины ее свободной поверхности, температуры, внешнего давления и наличия над жидкостью потока воздуха, уносящего пар.

Уход молекул с поверхности жидкости при испарении связан с затратой внутренней энергии на работу выхода А в, которую молекуле необходимо совершить для преодоления сил молекулярного притяжения и сил внешнего давления. Эта работа совершается за счет кинетической энергии молекул. Молекула покинет жидкость только в том случае, если ее кинетическая энергия будет равна или больше работы выхода: (m - масса молекулы, v - составляющая скорости молекулы, направленная перпендикулярно к поверхности жидкости). При парообразовании жидкость охлаждается, так как вылетевшие молекулы уносят часть ее внутренней энергии.

Чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию. Скалярная величина, измеряемая количеством энергии, необходимой для превращения единицы массы жидкости в пар при постоянной температуре, называется удельной теплотой парообразования.

Для превращения единицы массы жидкости в пар при постоянной температуре ей сообщается количество теплоты, равное удельной теплоте парообразования. При парообразовании происходит увеличение объема вещества. Так, пары воды при, 100° С занимают объем почти в 1700 раз больше объема той же массы воды при 100° С. Поэтому вещество, испаряясь, часть удельной теплоты парообразования затрачивает на совершение работы против силы внешнего давления, а часть - на увеличение его внутренней потенциальной энергии. Поэтому при одинаковой температуре внутренняя энергия единицы массы вещества в газообразном состоянии больше, чем в жидком. Так, 1 кг водяного пара при 100° С имеет на 2*10 6 дж внутренней энергии больше, чем 1 кг воды при той же температуре.

Опыты показали, что удельная теплота парообразования вещества зависит от его температуры. Чем выше температура вещества, тем меньше его удельная теплота парообразования. Например, при 0°С удельная теплота парообразование воды 2499 кдж / кг , при 50° С - 2385 кдж / кг, при 100° С - 2257 кдж / кг, при 200°С - 1943 кдж / кг. Уменьшение теплоты парообразования объясняется тем, что чем выше температура вещества, тем больше кинетическая энергия его молекул и тем меньше энергии надо дополнительно сообщить жидкости, чтобы ее молекулы вылетели в окружающую среду.

Наименование удельной теплоты парообразования r кг / дж. Для превращения m кг массы жидкости в пар надо определенное количество энергии, в частности количество теплоты Q = rm.

Допустим, что жидкость испаряется в закрытом сосуде. Часть молекул пара вследствие теплового движения, приблизившись к поверхности жидкости, возвращается в нее. В закрытом сосуде одновременно происходит и процесс испарения и процесс конденсации Если число молекул, вылетевших из жидкости, больше числа молекул, возвратившихся в нее, то пар над жидкостью называется ненасыщенным. Опыты с ненасыщенными парами показали, что они подчиняются газовым законам.

В процессе испарения и конденсации наступает такой момент, начиная с которого число молекул, вылетевших из жидкости в единицу времени, окажется равным числу молекул, возвращающихся обратно в жидкость, то есть наступит динамическое равновесие между жидкостью и паром. Пар, находящийся в динамическим равновесием со своей жидкостью, называется насыщенным паром. Он может быть насыщенным не только в закрытом сосуде, но и в атмосфере. Так, при тумане пары воды в воздухе насыщены.

Откроем кран А (рис. 35) и впустим в колбу несколько капель эфира, который испаряется, образуя ненасыщенный пар. Чем больше эфира мы впускаем в колбу, тем больше становится давление его ненасыщенного пара. Эфир впускаем до тех пор, пока на дне колбы окажется немного жидкого эфира. Появление последнего указывает на то, что пары эфира стали насыщенными. С этого момента манометр перестает показывать увеличение давления - оно стало постоянным, несмотря на последующее добавление эфира. Следовательно, давление и плотность паров при данной температуре наибольшее, когда пар насыщен.

Если в колбу помещать поочередно различные жидкости и измерять давление их насыщенных паров, то оказывается, что при одной и той же температуре давление насыщенных паров разных жидкостей различно. Наибольшим давлением обладают пары эфира, меньшим - пары спирта и еще меньшим - пары воды.

При температуре 20° С давление насыщенных паров этих жидкостей равно (в мм рт. ст.):


Выясним, зависит ли давление насыщенного пара при постоянной температуре от его объема. Под поршнем в цилиндре, соединенном с манометром, находится жидкость и ее насыщенный пар (рис. 36). Изменяя его объем перемещением поршня вверх, а затем вниз, по показанию манометра видим, что при постоянной температуре давление насыщенного пара от объема не зависит, и оно при данной температуре для данной жидкости есть величина постоянная. Это означает, что насыщенные пары закону Бойля-Мариотта не подчиняются. Так, манометр парового котла при данной температуре показывает всегда одно и то же давление, независимо от того, какой объем занимает в нем насыщенный пар.

Объясняется это тем, что при изменении объема насыщенного пара происходит изменение его массы. Причувеличении объема масса пара увеличивается (происходит дополнительное испарение жидкости), при уменьшении объема масса пара уменьшается (часть его конденсируется).

Выясним, зависит ли при постоянном объеме давление насыщенного пара от его температуры. Нагреем насыщенный пар в колбе (см. рис. 35), поместив ее в горячую воду. Видим, с повышением температуры давление насыщенного пара увеличивается. Например, давление насыщенного пара воды при 50° С равно 92,5 мм рт. ст. , а при 100° С - 760 мм рт. ст.

Опыты и расчеты по изменению давления насыщенного пара от нагревания показывают, что давление увеличивается во много раз больше, чем следовало бы по закону Шарля, т. е. зависимость давления от температуры не подчиняется данному закону. Объясняется это тем, что давление насыщенного пара при нагревании возрастает, во-первых, вследствие увеличения средней кинетической энергии молекул этого пара и, во-вторых, из-за увеличения концентрации молекул пара, т. е. увеличения общей массы молекул.

Пока пар остается насыщенным, изменение его температуры или объема всегда сопровождается изменением массы пара, т.е. парообразованием, или конденсацией.

Свойство насыщенных паров воды увеличивать свое давление с повышением температуры применяется в паровых котлах для получения пара, имеющего большое давление, например 100 ат, при температуре кипения воды 310° С. Для использования пара в паровых машинах его отводят из котла, нагревают, превращают в ненасыщенный. Такой пар называется перегретым, он обладает большим запасом внутренней энергии. Если пар не перегрет, то он содержит капельки жидкости.

Получив в пробирке пары эфира, начнем охлаждать их, поместив ее в смесь льда и соли. На стенках пробирки появляется налет жидкого эфира, так как при охлаждении его пары превратились в жидкость. Существует два способа обращения пара в жидкость: увеличение давления на пар, сжатие его (см. рис.36) и понижение температуры пара, охлаждение его. Опыты показывают, что и газы можно превратить в жидкость (сжижение газов). Для этого их надо одновременно и сжимать и охлаждать, пока они не превратятся в жидкость.

На данном уроке мы изучим понятия испарения и конденсации. Эти два процесса встречаются повсеместно: при сушке белья, выпадении росы, приготовлении еды. Мы рассмотрим факторы, которые влияют на испарение и конденсацию, а также рассмотрим различные примеры.

Тема: Агрегатные состояния вещества

Урок: Испарение. Поглощение энергии при испарении жидкости и выделение её при конденсации пара

На этом уроке мы рассмотрим вопрос, связанный с испарением, а также с поглощением энергии при испарении жидкости и с выделением энергии при конденсации пара.

На предыдущих уроках мы рассматривали различные процессы и, в частности, говорили о плавлении, о нагревании тел, об отвердевании или кристаллизации тел.

Сегодня мы рассмотрим процессы, при которых образуется пар (разновидность газа) или газ.

Давайте вспомним схему, по которой происходят различные процессы превращения агрегатных состояний (Рис. 1).

Рис. 1.

Парообразование может происходить двумя способами: кипение и испарение . Как правило, указывают первый способ - кипение.

На сегодняшнем уроке мы подробно рассмотрим второй способ парообразования: испарение.

Определение

Испарение - это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. То есть тогда, когда поверхность жидкости открыта и с поверхности начинается переход вещества из жидкого состояния в газообразное.

Вспомним, для начала, схему, на которой представлена картина превращений одного состояния вещества в другое состояние.

Таблица, в которой описаны названия процессов переходов между агрегатными состояниями вещества, выглядит следующим образом:

Название

Твёрдое жидкое

Плавление

Жидкое твёрдое

Отвердевание (кристаллизация)

Жидкое газообразное

Парообразование

Газообразное жидкое

Конденсация

Твёрдое газообразное

Сублимация

Газообразное твёрдое

Десублимация

Процесс испарения происходит не мгновенно, поэтому мы говорим, что испарение - процесс непрерывный и, соответственно, испарение жидкости происходит в течение некоторого времени.

Как происходит испарение?

Рассмотрим поверхность жидкости. Мы знаем, что жидкость состоит из атомов и молекул, которые находятся в непрерывном движении. Соответственно, может найтись такая частица данного вещества, у которой скорость (а, соответственно, и энергия) будет достаточно велика для того, чтобы преодолеть притяжение своих соседей и покинуть жидкость, то есть перейти в газообразное состояние. Поэтому говорят, что испарение происходит со свободной поверхности.

Рассмотрим факторы, которые влияют на испарение (в частности, его скорость).

1. Строение вещества

В первую очередь испарение связано со строением самого вещества. Можно привести следующий пример: возьмём две бумажные салфетки, смочим одну салфетку водой, а другую - эфиром. Можно заметить, что та салфетка, которая смочена эфиром, высохнет гораздо быстрее. Это объясняется тем, что сила взаимодействия между молекулами эфира гораздо меньше, чем сила взаимодействия между молекулами воды. И поэтому испарение происходит у эфира быстрее.

2. Площадь поверхности

Площадь свободной поверхности жидкости играет очень важную роль: если площадь поверхности достаточно большая, то количество частиц, покидающих жидкость, будет, конечно же, больше, и в этом случае испарение будет происходить быстрее. Можно привести такой пример: если в блюдце налить воду и такое же количество воды налить в стакан, то из блюдца испарение будет происходить гораздо быстрее (Рис. 2). Другой пример: все знают, что бельё, перед тем как его повесить сушиться, встряхивают и расправляют. В этом случае площадь белья увеличивается, соответственно, площадь испарения также увеличивается, и сам процесс испарения происходит быстрее.

Рис. 2. Блюдце и стакан с водой () ()

3. Температура

Ещё одно явление, которое влияет на испарение, - это изменение температуры. Чем температура выше, тем быстрее происходит испарение. То есть, нагревая тело, мы можем увеличивать скорость процесса испарения, ускорять его, или, наоборот, если мы будем понижать температуру, то процесс испарения будет замедляться. Объясняется это тем, что с увеличением температуры возрастает скорость движения частиц. А раз скорость движения возрастает, то большее количество частиц может покинуть жидкость и перейти в газообразное состояние.

Поскольку движение частиц происходит непрерывно, то процесс испарения также непрерывен. Поскольку при любой температуре движение частиц не прекращается, то и испарение может происходить практически при любой температуре. Поэтому испарение происходит даже при низкой температуре. Например, лужи на улице высыхают не только летом, когда жарко, но и осенью, когда холодно (Рис. 3). Отличается лишь скорость высыхания луж.

Возникает вопрос: что можно сказать об энергии жидкости при испарении? Так как жидкость покидают наиболее быстрые частицы, то они обладают большей кинетической энергией. Следовательно, в целом энергия испаряющейся жидкости уменьшается. Пояснить это можно на следующем примере: возьмём несколько человек, построим их в ряд и измерим их средний рост. Затем из этого строя уберём самых высоких и снова измерим средний рост. В результате, вполне логично, получится меньшее значение. То же самое происходит и с энергией. Каждый раз частицы с наибольшей энергией уходят из жидкости, и внутренняя энергия жидкости уменьшается.

Однако в жизни это охлаждение мы замечаем крайне редко. С чем же это связано? Это происходит из-за того, что жидкость сообщается с окружающими телами, в первую очередь, конечно, с воздухом, и поэтому, охлаждаясь, одновременно получает энергию из окружающих тел, то есть из воздуха. В результате этого «теплообмена» температура поддерживается на одном уровне. А испарение происходит с приблизительно одинаковой интенсивностью.

4. Ветер

Следующий фактор, который влияет на испарение, - это наличие ветра. Представьте себе, что над поверхностью жидкости образуется газ. Процесс испарения, как мы выяснили, продолжается непрерывно. Но точно так же будет происходить процесс возвращения молекул обратно в жидкость. Если же дует ветер, то он уносит молекулы, которые перешли из жидкости в газ, и не даёт им вернуться обратно в жидкость. В этом случае процесс испарения ускоряется, то есть скорость испарения возрастает.

Очень важно заметить и то, что в быту часто встречается так называемое испарение в закрытых сосудах. К примеру, если взять кастрюлю, в которой находится вода, то на поверхности крышки с внутренней стороны образуются капельки воды. То есть, поскольку внутри кастрюли ветра нет, то процесс испарения и возвращения молекул обратно в жидкость в данном случае выравнивается. Вот такое состояние называют динамическим равновесием .

Определение

Динамическое равновесие - это состояние системы «пар - жидкость», при которой количество молекул, вышедших из жидкости (перешедших в пар), равно количеству молекул, которое вернулось из пара обратно в жидкость.

Если же преобладает испарение над возвращением частиц обратно в жидкость, то такой пар, который находится над жидкостью, называется ненасыщенным .

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным .

При динамическом равновесии общая масса системы «пар - жидкость» не меняется: количество молекул, которые «вылетели» с поверхности жидкости, равно количеству молекул, которые «вернулись». Поэтому в целом масса всей системы «пар - жидкость» не изменяется.

Кроме испарения существует и обратный ему процесс, который называется конденсацией (от латинского - «сгущаю»).

То есть, конденсация - это процесс перехода пара (газа) в жидкость. Этот процесс происходит всегда с выделением количества теплоты (так как внутренняя энергия вещества уменьшается). То есть температура окружающих тел будет повышаться (жидкость передаёт избыточную энергию окружающим телам).

Конденсация происходит так же непрерывно, как и испарение. Точнее, можно сказать, что эти два процесса происходят одновременно, непрерывно.

Подтверждением этого, например, является образование облаков, ведь облака - это сконденсированная жидкость. Выпадение росы или, например, дождь, который идёт, - это всё процессы, которые связаны с конденсацией.

Отметим, что существует испарение не только с поверхности жидкостей, но и твёрдых тел. Для этого существует наглядный пример: если зимой мокрое бельё повесить на улице, то оно замёрзнет, то есть покроется коркой льда. Но, через некоторое время выяснится, что бельё сухое, то есть вода, даже в твёрдом состоянии, куда-то исчезла. Это и есть процесс испарения твёрдого тела, в данном случае льда. Встречаются испарения и других веществ, например, нафталина. Запах нафталина, который мы чувствуем, говорит о том, что нафталин также способен к испарению.

На следующем уроке мы рассмотрим вопросы, связанные с другим процессом перехода из жидкого состояния в газообразное - парообразованием.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. - М.: Мнемозина.
  2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.
  1. Фестиваль педагогических идей «Открытый урок» ().
  2. Сайт учителя информатики ().
  3. Продленка ().

Домашнее задание

  1. П. 16, вопросы 1-8, упр. 9 (1-7). Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  2. При какой температуре происходит испарение воды?
  3. Почему мокрое бельё на ветру сохнет быстрее?
  4. Почему жидкость при испарении охлаждается?

Например с поверхности открытого сосуда, с поверхности водоема и т. д. Испарение происходит при любой температуре, но для всякой жидкости с повышением температуры скорость его увеличивается. Объем, занимаемый данной массой вещества, при испарении скачком возрастает.

Облака на небе, иней на деревьях - это все следствия процессов испарения воды и конденсации водяного пара.

Следует различать два основных случая. Первый, когда испарение происходит в замкнутом сосуде и температура во всех точках сосуда одинакова. Так, например, испаряется вода внутри парового котла или в чайнике, закрытом крышкой, если температура воды и пара ниже температуры кипения . В этом случае объем образующегося пара ограничен пространством сосуда. Давление пара достигает некоторого предельного значения, при котором он находится в тепловом равновесии с жидкостью; такой пар называется насыщенным , а его давление - упругостью пара . Второй случай, когда пространство над жидкостью незамкнутое; так испаряется вода с поверхности пруда. В этом случае равновесие не достигается практически никогда, и пар ненасыщенный, а скорость испарения зависит от многих факторов.

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс - конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

При испарении вылетающие из жидкости молекулы должны преодолеть притяжение соседних молекул и совершить работу против удерживающих их в поверхностном слое сил поверхностного натяжения . Поэтому, чтобы испарение происходило, испаряющемуся веществу надо сообщить тепло, черпая его из запаса внутренней энергии самой жидкости или отбирая у окружающих тел. Количество тепла, которое нужно сообщить жидкости, находящейся при данной температуре и фиксированном давлении, чтобы перевести ее в пар при этой же температуре и давлении, называется теплотой испарения . Упругость пара растет с ростом температуры тем сильнее, чем больше теплота испарения.

Если к испаряющейся жидкости не подводить тепла извне или подводить его недостаточно, то жидкость охлаждается. Вот почему, оставив мокрую руку на воздухе, мы ощущаем холод. Заставляя жидкость, помещенную в сосуд с нетеплопроводными стенками, усиленно испаряться, можно добиться значительного ее охлаждения. Согласно кинетической теории , испаряются наиболее быстрые молекулы, средняя энергия остающихся в жидкости молекул убывает - вот почему жидкость охлаждается.

Иногда испарением называют также сублимацию , или возгонку , т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

При температурах ниже температуры плавления давление насыщенных паров большинства твердых тел очень мало, и их испарение практически отсутствует. Бывают, однако, исключения. Так, вода при 0 °C имеет давление насыщенных паров 4,58 мм рт. ст., а лед при −1 °C - 4,22 мм рт. ст. и даже при −10 °C - всё еще 1,98 мм рт. ст. Этими сравнительно большими упругостями водяного пара объясняется легко наблюдаемое испарение твердого льда, в частности известный всем факт высыхания мокрого белья на морозе.