Начальный уровень

Геометрическая прогрессия. Исчерпывающий гид с примерами (2019)

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например:

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.

Число с номером называетмя -ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

В нашем случае:

Самые распространенные виды прогрессии это арифметическая и геометрическая. В этой теме мы поговорим о втором виде - геометрической прогрессии .

Для чего нужна геометрическая прогрессия и ее история возникновения.

Еще в древности итальянский математик монах Леонардо из Пизы (более известный под именем Фибоначчи) занимался решением практических нужд торговли. Перед монахом стояла задача определить, с помощью какого наименьшего количества гирь можно взвесить товар? В своих трудах Фибоначчи доказывает, что оптимальной является такая система гирь: Это одна из первых ситуаций, в которой людям пришлось столкнуться с геометрической прогрессией, о которой ты уже наверное слышал и имеешь хотя бы общее понятие. Как только полностью разберешься в теме, подумай, почему такая система является оптимальной?

В настоящее время, в жизненной практике, геометрическая прогрессия проявляется при вложении денежных средств в банк, когда сумма процентов начисляется на сумму, скопившуюся на счете за предыдущий период. Иными словами, если положить деньги на срочный вклад в сберегательный банк, то через год вклад увеличится на от исходной суммы, т.е. новая сумма будет равна вкладу, умноженному на. Ещё через год уже эта сумма увеличится на, т.е. получившаяся в тот раз сумма вновь умножится на и так далее. Подобная ситуация описана в задачах на вычисление так называемых сложных процентов - процент берется каждый раз от суммы, которая есть на счете с учетом предыдущих процентов. Об этих задачах мы поговорим чуть позднее.

Есть еще много простых случаев, где применяется геометрическая прогрессия. Например, распространение гриппа: один человек заразил человек, те в свою очередь заразили еще по человека, и таким образом вторая волна заражения - человек, а те в свою очередь, заразили еще … и так далее…

Кстати, финансовая пирамида, та же МММ - это простой и сухой расчет по свойствам геометрической прогрессии. Интересно? Давай разбираться.

Геометрическая прогрессия.

Допустим, у нас есть числовая последовательность:

Ты сразу же ответишь, что это легко и имя такой последовательности - арифметическая прогрессия с разностью ее членов. А как на счет такого:

Если ты будешь вычитать из последующего числа предыдущее, то ты увидишь, что каждый раз получается новая разница (и т.д.), но последовательность определенно существует и ее несложно заметить - каждое следующие число в раз больше предыдущего!

Такой вид числовой последовательности называется геометрической прогрессией и обозначается.

Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число . Это число называют знаменателем геометрической прогрессии.

Ограничения, что первый член { } не равен и не случайны. Допустим, что их нет, и первый член все же равен, а q равно, хм.. пусть, тогда получается:

Согласись, что это уже никакая не прогрессия.

Как ты понимаешь, те же самые результаты мы получим, если будет каким-либо числом, отличным от нуля, а. В этих случаях прогрессии просто не будет, так как весь числовой ряд будут либо все нули, либо одно число, а все остальные нули.

Теперь поговорим поподробнее о знаменателе геометрической прогрессии, то есть о.

Повторим: - это число, во сколько раз изменяется каждый последующий член геометрической прогрессии.

Как ты думаешь, каким может быть? Правильно, положительным и отрицательным, но не нулем (мы говорили об этом чуть выше).

Допустим, что у нас положительное. Пусть в нашем случае, а. Чему равен второй член и? Ты без труда ответишь, что:

Все верно. Соответственно, если, то все последующие члены прогрессии имеют одинаковый знак - они положительны .

А что если отрицательное? Например, а. Чему равен второй член и?

Это уже совсем другая история

Попробуй посчитать член данной прогрессии. Сколько у тебя получилось? У меня. Таким образом, если, то знаки членов геометрической прогрессии чередуются. То есть, если ты увидишь прогрессию, с чередующимися знаками у ее членов, значит ее знаменатель на отрицательный. Это знание может помочь тебе проверять себя при решении задач на эту тему.

Теперь немного потренируемся: попробуй определить, какие числовые последовательности являются геометрической прогрессией, а какие арифметической:

Разобрался? Сравним наши ответы:

  • Геометрическая прогрессия - 3, 6.
  • Арифметическая прогрессия - 2, 4.
  • Не является ни арифметической, ни геометрической прогрессиями - 1, 5, 7.

Вернемся к нашей последней прогрессии, а и попробуем так же как и в арифметической найти ее член. Как ты уже догадываешься, есть два способа его нахождения.

Последовательно умножаем каждый член на.

Итак, -ой член описанной геометрической прогрессии равен.

Как ты уже догадываешься, сейчас ты сам выведешь формулу, которая поможет найти тебе любой член геометрической прогрессии. Или ты ее уже вывел для себя, расписывая, как поэтапно находить -ой член? Если так, то проверь правильность твоих рассуждений.

Проиллюстрируем это на примере нахождения -го члена данной прогрессии:

Иными словами:

Найди самостоятельно значение члена заданной геометрической прогрессии.

Получилось? Сравним наши ответы:

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно умножали на каждый предыдущий член геометрической прогрессии.
Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

Выведенная формула верна для всех значений - как положительных, так и отрицательных. Проверь это самостоятельно, рассчитав и члены геометрической прогрессии со следующими условиями: , а.

Посчитал? Сравним полученные результаты:

Согласись, что находить член прогрессии можно было бы так же как и член, однако, есть вероятность неправильно посчитать. А если мы нашли уже -ый член геометрической прогрессии, а, то что может быть проще, чем воспользоваться «обрезанной» частью формулы.

Бесконечно убывающая геометрическая прогрессия.

Совсем недавно мы говорили о том, что может быть как больше, так и меньше нуля, однако, есть особые значения при которых геометрическая прогрессия называется бесконечно убывающей .

Как ты думаешь, почему такое название?
Для начала запишем какую-нибудь геометрическую прогрессию, состоящую из членов.
Допустим, а, тогда:

Мы видим, что каждый последующий член меньше предыдущего в раза, но будет ли какое-либо число? Ты сразу же ответишь - «нет». Вот поэтому и бесконечно убывающая - убывает, убывает, а нулем никогда не становится.

Чтобы четко понять, как это выглядит визуально, давай попробуем нарисовать график нашей прогрессии. Итак, для нашего случая формула приобретает следующий вид:

На графиках нам привычно строить зависимость от, поэтому:

Суть выражения не изменилась: в первой записи у нас была показана зависимость значения члена геометрической прогрессии от его порядкового номера, а во второй записи - мы просто приняли значение члена геометрической прогрессии за, а порядковый номер обозначили не как, а как. Все, что осталось сделать - построить график.
Посмотрим, что у тебя получилось. Вот какой график получился у меня:

Видишь? Функция убывает, стремится к нулю, но никогда его не пересечет, поэтому она бесконечно убывающая. Отметим на графике наши точки, а заодно и то, что обозначает координата и:

Попробуй схематично изобразить график геометрической прогрессии при, если первый ее член также равен. Проанализируй, в чем разница с нашим предыдущим графиком?

Справился? Вот какой график получился у меня:

Теперь, когда ты полностью разобрался в основах темы геометрической прогрессии: знаешь, что это такое, знаешь, как найти ее член, а также знаешь, что такое бесконечно убывающая геометрическая прогрессия, перейдем к ее основному свойству.

Свойство геометрической прогрессии.

Помнишь свойство членов арифметической прогрессии? Да, да, как найти значение определенного числа прогрессии, когда есть предыдущее и последующее значения членов данной прогрессии. Вспомнил? Вот это:

Теперь перед нами стоит точно такой же вопрос для членов геометрической прогрессии. Чтобы вывести подобную формулу, давай начнем рисовать и рассуждать. Вот увидишь, это очень легко, и если ты забудешь, то сможешь вывести ее самостоятельно.

Возьмем еще одну простую геометрическую прогрессию, в которой нам известны и. Как найти? При арифметической прогрессии это легко и просто, а как здесь? На самом деле в геометрической тоже нет ничего сложного - необходимо просто расписать по формуле каждое данное нам значение.

Ты спросишь, и что теперь нам с этим делать? Да очень просто. Для начала изобразим данные формулы на рисунке, и попытаемся сделать с ними различные манипуляции, чтобы прийти к значению.

Абстрагируемся от чисел, которые у нас даны, сосредоточимся только на их выражении через формулу. Нам необходимо найти значение, выделенное оранжевым цветом, зная соседствующие с ним члены. Попробуем произвести с ними различные действия, в результате которых мы сможем получить.

Сложение.
Попробуем сложить два выражения и, мы получим:

Из данного выражения, как ты видишь, мы никак не сможем выразить, следовательно, будем пробовать другой вариант - вычитание.

Вычитание.

Как ты видишь, из этого мы тоже не можем выразить, следовательно, попробуем умножить данные выражения друг на друга.

Умножение.

А теперь посмотри внимательно, что мы имеем, перемножая данные нам члены геометрической прогрессии в сравнении с тем, что необходимо найти:

Догадался о чем я говорю? Правильно, чтобы найти нам необходимо взять квадратный корень от перемноженных друг на друга соседствующих с искомым чисел геометрической прогрессии:

Ну вот. Ты сам вывел свойство геометрической прогрессии. Попробуй записать эту формулу в общем виде. Получилось?

Забыл условие при? Подумай, почему оно важно, например, попробуй самостоятельно просчитать, при. Что получится в этом случае? Правильно, полная глупость так как формула выглядит так:

Соответственно, не забывай это ограничение.

Теперь посчитаем, чему же равно

Правильный ответ - ! Если ты при расчете не забыл второе возможное значение, то ты большой молодец и сразу можешь переходить к тренировке, а если забыл - прочитай то, что разобрано далее и обрати внимание, почему в ответе необходимо записывать оба корня.

Нарисуем обе наши геометрические прогрессии - одну со значением, а другую со значением и проверим, имеют ли обе из них право на существование:

Для того, чтобы проверить, существует ли такая геометрическая прогрессия или нет, необходимо посмотреть, одинаковое ли между всеми ее заданными членами? Рассчитай q для первого и второго случая.

Видишь, почему мы должны писать два ответа? Потому что знак у искомого члена зависит от того, какой - положительный или отрицательный! А так как мы не знаем, какой он, нам необходимо писать оба ответа и с плюсом, и с минусом.

Теперь, когда ты усвоил основные моменты и вывел формулу на свойство геометрической прогрессии, найди, зная и

Сравни полученные ответы с правильными:

Как ты думаешь, а если нам были бы даны не соседние с искомым числом значения членов геометрической прогрессии, а равноудаленные от него. Например, нам необходимо найти, а даны и. Можем ли мы в этом случае использовать выведенную нами формулу? Попробуй точно так же подтвердить или опровергнуть эту возможность, расписывая из чего состоит каждое значение, как ты делал, выводя изначально формулу, при.
Что у тебя получилось?

Теперь опять посмотри внимательно.
и, соответственно:

Из этого мы можем сделать вывод, что формула работает не только при соседствующих с искомым членах геометрической прогрессии, но и с равноудаленными от искомого членами.

Таким образом, наша первоначальная формула приобретает вид:

То есть, если в первом случае мы говорили, что, то сейчас мы говорим, что может быть равен любому натуральному числу, которое меньше. Главное, чтобы был одинаков для обоих заданных чисел.

Потренируйся на конкретных примерах, только будь предельно внимателен!

  1. , . Найти.
  2. , . Найти.
  3. , . Найти.

Решил? Надеюсь, ты был предельно внимателен и заметил небольшой подвох.

Сравниваем результаты.

В первых двух случаях мы спокойно применяем вышеописанную формулу и получаем следующие значения:

В третьем случае при внимательном рассмотрении порядковых номеров данных нам чисел, мы понимаем, что они не равноудалены от искомого нами числа: является предыдущим числом, а удалена на позиции, таким образом применить формулу не предоставляется возможным.

Как же ее решать? На самом деле это не так сложно, как кажется! Давай с тобой распишем, из чего состоит каждое данное нам и искомое числа.

Итак, у нас есть и. Посмотрим, что с ними можно сделать? Предлагаю разделить на. Получаем:

Подставляем в формулу наши данные:

Следующим шагом мы можем найти - для этого нам необходимо взять кубический корень из полученного числа.

А теперь смотрим еще раз что у нас есть. У нас есть, а найти нам необходимо, а он, в свою очередь равен:

Все необходимые данные для подсчета мы нашли. Подставляем в формулу:

Наш ответ: .

Попробуй решить еще одну такую же задачу самостоятельно:
Дано: ,
Найти:

Сколько у тебя получилось? У меня - .

Как ты видишь, по сути, тебе необходимо запомнить лишь одну формулу - . Все остальные ты без какого-либо труда можешь вывести самостоятельно в любой момент. Для этого просто напиши на листочке самую простую геометрическую прогрессию и распиши, чему согласно вышеописанной формуле равно каждое ее число.

Сумма членов геометрической прогрессии.

Теперь рассмотрим формулы, которые позволяют нам быстро посчитать сумму членов геометрической прогрессии в заданном промежутке:

Чтобы вывести формулу суммы членов конечной геометрической прогрессии, умножим все части вышестоящего уравнения на. Получим:

Посмотри внимательно: что общего в последних двух формулах? Правильно, общие члены, например и так далее, кроме первого и последнего члена. Давай попробуем вычесть из 2-го уравнения 1-ое. Что у тебя получилось?

Теперь вырази через формулу члена геометрической прогрессии и подставь полученное выражение в нашу последнюю формулу:

Сгруппируй выражение. У тебя должно получиться:

Все, что осталось сделать - выразить:

Соответственно, в этом случае.

А что если? Какая формула работает тогда? Представь себе геометрическую прогрессию при. Что она из себя представляет? Правильно ряд одинаковых чисел, соответственно формула будет выглядеть следующим образом:

Как и по арифметической, так и по геометрической прогрессии существует множество легенд. Одна из них - легенда о Сете, создателе шахмат.

Многие знают, что шахматная игра была придумана в Индии. Когда индусский царь познакомился с нею, он был восхищен ее остроумием и разнообразием возможных в ней положений. Узнав, что она изобретена одним из его подданных, царь решил лично наградить его. Он вызвал изобретателя к себе и приказал просить у него все, что он пожелает, пообещав исполнить даже самое искусное желание.

Сета попросил время на размышления, а когда на другой день Сета явился к царю, он удивил царя беспримерной скромностью своей просьбы. Он попросил выдать за первую клетку шахматной доски пшеничное зерно, за вторую пшеничных зерна, за третью, за четвертую и т.д.

Царь разгневался, и прогнал Сета, сказав, что просьба слуги недостойна царской щедрости, но пообещал, что слуга получит свои зерна за все клетки доски.

А теперь вопрос: используя формулу суммы членов геометрической прогрессии, посчитай, сколько зерен должен получить Сета?

Начнем рассуждать. Так как по условию за первую клетку шахматной доски Сета попросил пшеничное зерно, за вторую, за третью, за четвертую и т.д., то мы видим, что в задаче речь идет о геометрической прогрессии. Чему равно в этом случае?
Правильно.

Всего клеток шахматной доски. Соответственно, . Все данные у нас есть, осталось только подставить в формулу и посчитать.

Чтобы представить хотя бы приблизительно «масштабы» данного числа, преобразуем, используя свойства степени:

Конечно, если ты хочешь, то можешь взять калькулятор и посчитать, что за число в итоге у тебя получится, а если нет, придется поверить мне на слово: итоговым значением выражения будет.
То есть:

квинтильонов квадрильонов триллиона миллиарда миллионов тысяч.

Фух) Если желаете представить себе огромность этого числа, то прикиньте, какой величины амбар потребовался бы для вмещения всего количества зерна.
При высоте амбара м и ширине м длина его должна была бы простираться на км, - т.е. вдвое дальше, чем от Земли до Солнца.

Если бы царь был бы силен в математике, то он мог бы предложить самому ученому отсчитывать зерна, ведь чтобы отсчитать миллион зерен, ему бы понадобилось не менее суток неустанного счета, а учитывая, что необходимо отсчитать квинтильонов, зерна пришлось бы отсчитывать всю жизнь.

А теперь решим простую задачку на сумму членов геометрической прогрессии.
Ученик 5 А класса Вася, заболел гриппом, но продолжает ходить в школу. Каждый день Вася заражает двух человек, которые, в свою очередь, заражают еще двух человек и так далее. Всего в классе человек. Через сколько дней гриппом будет болеть весь класс?

Итак, первый член геометрической прогрессии это Вася, то есть человек. -ой член геометрической прогрессии, это те два человека, которых он заразил в первый день своего прихода. Общая сумма членов прогрессии равна количеству учащихся 5А. Соответственно, мы говорим о прогрессии, в которой:

Подставим наши данные в формулу суммы членов геометрической прогрессии:

Весь класс заболеет за дней. Не веришь формулам и числам? Попробуй изобразить «заражение» учеников самостоятельно. Получилось? Смотри, как это выглядит у меня:

Посчитай самостоятельно, за сколько дней ученики заболели бы гриппом, если каждый заражал бы по человека, а в классе училось человек.

Какое значение у тебя получилось? У меня получилось, что все начали болеть спустя дня.

Как ты видишь, подобная задача и рисунок к ней напоминает пирамиду, в которой каждый последующий «приводит» новых людей. Однако, рано или поздно настает такой момент, когда последние не могут никого привлечь. В нашем случае, если представить, что класс изолирован, человек из замыкают цепочку (). Таким образом, если бы человек были вовлечены в финансовую пирамиду, в которой деньги давались в случае, если ты приведешь двух других участников, то человек (или в общем случае) не привели бы никого, соответственно, потеряли бы все, что вложили в эту финансовую аферу.

Все, что было сказано выше, относится к убывающей или возрастающей геометрической прогрессии, но, как ты помнишь, у нас есть особый вид - бесконечно убывающая геометрическая прогрессия. Как же считать сумму ее членов? И почему у данного вида прогрессии есть определенные особенности? Давай разбираться вместе.

Итак, для начала посмотрим еще раз на вот этот рисунок бесконечно убывающей геометрической прогрессии из нашего примера:

А теперь посмотрим на формулу суммы геометрической прогрессии, выведенную чуть ранее:
или

К чему у нас стремится? Правильно, на графике видно, что оно стремится к нулю. То есть при, будет почти равно, соответственно, при вычислении выражения мы получим почти. В связи с этим, мы считаем, что при подсчете суммы бесконечно убывающей геометрической прогрессии, данной скобкой можно пренебречь, так как она будет равна.

- формула сумма членов бесконечно убывающей геометрической прогрессии.

ВАЖНО! Формулу суммы членов бесконечно убывающей геометрической прогрессии мы используем только в том случае, если в условии в явном виде указано, что нужно найти сумму бесконечного числа членов.

Если указано конкретное число n, то пользуемся формулой суммы n членов, даже если или.

А теперь потренируемся.

  1. Найди сумму первых членов геометрической прогрессии с и.
  2. Найди сумму членов бесконечно убывающей геометрической прогрессии с и.

Надеюсь, ты был предельно внимателен. Сравним наши ответы:

Теперь ты знаешь о геометрической прогрессии все, и настала пора переходить от теории к практике. Самые распространенные задачи на геометрическую прогрессию, встречающиеся на экзамене - это задачи на вычисление сложных процентов. Именно о них и пойдет речь.

Задачи на вычисление сложных процентов.

Ты наверняка слышал о так называемой формуле сложных процентов. Понимаешь ли ты, что она значит? Если нет, давай разбираться, так как осознав сам процесс, ты сразу поймешь, причем здесь геометрическая прогрессия.

Все мы ходим в банк и знаем, что существуют разные условия по вкладам: это и срок, и дополнительное обслуживание, и процент с двумя различными способами его начисления - простым и сложным.

С простыми процентами все более или менее понятно: проценты начисляются один раз в конце срока вклада. То есть, если мы говорим о том, что мы кладем 100 рублей на год под, то зачислятся только в конце года. Соответственно, к окончанию вклада мы получим рублей.

Сложные проценты — это такой вариант, при котором происходит капитализация процентов , т.е. их причисление к сумме вклада и последующий расчет дохода не от первоначальной, а от накопленной суммы вклада. Капитализация происходит не постоянно, а с некоторой периодичностью. Как правило, такие периоды равны и чаще всего банки используют месяц, квартал или год.

Допустим, что мы кладем все те же рублей по годовых, но с ежемесячной капитализацией вклада. Что у нас получается?

Все ли тебе здесь понятно? Если нет, давай разбираться поэтапно.

Мы принесли в банк рублей. К концу месяца у нас на счете должна появиться сумма, состоящая из наших рублей плюс процентов по ним, то есть:

Согласен?

Мы можем вынести за скобку и тогда мы получим:

Согласись, эта формула уже больше похожа на написанную нами в начале. Осталось разобраться с процентами

В условии задачи нам сказано про годовых. Как ты знаешь, мы не умножаем на - мы переводим проценты в десятичные дроби, то есть:

Верно? Сейчас ты спросишь, а откуда взялось число? Очень просто!
Повторюсь: в условии задачи сказано про ГОДОВЫЕ проценты, начисление которых происходит ЕЖЕМЕСЯЧНО . Как ты знаешь, в году месяцев, соответственно, банк будет начислять нам в месяц часть от годовых процентов:

Осознал? А теперь попробуй написать, как будет выглядеть эта часть формулы, если я скажу, что проценты начисляются ежедневно.
Справился? Давай сравним результаты:

Молодец! Вернемся к нашей задаче: напиши, сколько будет начислено на наш счет на второй месяц, с учетом, что проценты начисляются на накопленную сумму вклада.
Вот что получилось у меня:

Или, иными словами:

Я думаю, что ты уже заметил закономерность и увидел во всем этом геометрическую прогрессию. Напиши, чему будет равен ее член, или, иными словами, какую сумму денежных средств мы получим в конце месяца.
Сделал? Проверяем!

Как ты видишь, если ты кладешь деньги в банк на год под простой процент, то ты получишь рублей, а если под сложный - рублей. Выгода небольшая, но так происходит только в течение -го года, а вот на более длительный период капитализация намного выгодней:

Рассмотрим еще один тип задач на сложные проценты. После того, в чем ты разобрался, это будет для тебя элементарно. Итак, задача:

Компания «Звезда» начала инвестировать в отрасль в 2000 году, имея капитал долларов. Каждый год, начиная с 2001 года, она получает прибыль, которая составляет от капитала предыдущего года. Сколько прибыли получит компания «Звезда» по окончанию 2003 года, если прибыль из оборота не изымалась?

Капитал компании «Звезда» в 2000 году.
- капитал компании «Звезда» в 2001 году.
- капитал компании «Звезда» в 2002 году.
- капитал компании «Звезда» в 2003 году.

Либо мы можем написать кратко:

Для нашего случая:

2000 год, 2001 год, 2002 год и 2003 год.

Соответственно:
рублей
Заметь, в данной задаче у нас нет деления ни на, ни на, так как процент дан ЕЖЕГОДНЫЙ и начисляется он ЕЖЕГОДНО. То есть, читая задачу на сложные проценты, обрати внимание, какой процент дан, и в какой период он начисляется, и только потом приступай к вычислениям.
Теперь ты знаешь о геометрической прогрессии все.

Тренировка.

  1. Найдите член геометрической прогрессии, если известно, что, а
  2. Найдите сумму первых членов геометрической прогрессии, если известно, что, а
  3. Компания «МДМ Капитал» начала инвестировать в отрасль в 2003 году, имея капитал долларов. Каждый год, начиная с 2004 года, она получает прибыль, которая составляет от капитала предыдущего года. Компания «МСК Денежные потоки» стала инвестировать в отрасль в 2005 году в размере 10000 долларов, начиная получать прибыль с 2006 года в размере. На сколько долларов капитал одной компании больше другой по окончанию 2007 года, если прибыль из оборота не изымалась?

Ответы:

  1. Так как в условии задачи не сказано, что прогрессия бесконечная и требуется найти сумму конкретного числа ее членов, то расчет идет по формуле:

  2. Компания «МДМ Капитал»:

    2003, 2004, 2005, 2006, 2007 года.
    - увеличивается на 100%, то есть в 2 раза.
    Соответственно:
    рублей
    Компания «МСК Денежные потоки»:

    2005, 2006, 2007 года.
    - увеличивается на, то есть в раза.
    Соответственно:
    рублей
    рублей

Подведем итоги.

1) Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.

2) Уравнение членов геометрической прогрессии - .

3) может принимать любые значения, кроме и.

  • если, то все последующие члены прогрессии имеют одинаковый знак - они положительны ;
  • если, то все последующие члены прогрессии чередуют знаки;
  • при - прогрессия называется бесконечно убывающей.

4) , при - свойство геометрической прогрессии (соседствующие члены)

либо
, при (равноудаленные члены)

При нахождении не стоит забывать о том, что ответа должно быть два .

Например,

5) Сумма членов геометрической прогрессии вычисляется по формуле:
или

Если прогрессия является бесконечно убывающей, то:
или

ВАЖНО! Формулу суммы членов бесконечно убывающей геометрической прогрессии мы используем только в том случае, если в условии в явном виде указано, что нужно найти сумму бесконечного числа членов.

6) Задачи на сложные проценты также вычисляются по формуле -го члена геометрической прогрессии, при условии, что денежные средства из оборота не изымались:

ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

Геометрическая прогрессия { } - это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.

Знаменатель геометрической прогрессии может принимать любые значения, кроме и.

  • Если, то все последующие члены прогрессии имеют одинаковый знак - они положительны ;
  • если, то все последующие члены прогрессии чередуют знаки;
  • при - прогрессия называется бесконечно убывающей.

Уравнение членов геометрической прогрессии - .

Сумма членов геометрической прогрессии вычисляется по формуле:
или

Геометрическая прогрессия не менее важная в математике по сравнению с арифметической. Геометрической прогрессией называют такую последовательность чисел b1, b2,..., b[n] каждый следующий член которой, получается умножением предыдущего на постоянное число. Это число, которое также характеризует скорость роста или убывания прогрессии называют знаменателем геометрической прогрессии и обозначают

Для полного задания геометрической прогрессии кроме знаменателя необходимо знать или определить первый ее член. Для положительного значения знаменателя прогрессия является монотонной последовательностью, причем если это последовательность чисел является монотонно убывающей и при монотонно возрастающей. Случай, когда знаменатель равен единице на практике не рассматривается, поскольку имеем последовательность одинаковых чисел, а их суммирование не вызывает практического интереса

Общий член геометрической прогрессии вычисляют по формуле

Сумма n первых членов геометрической прогрессии определяют по формуле

Рассмотрим решения классических задач на геометрическую прогрессию. Начнем для понимания с простейших.

Пример 1. Первый член геометрической прогрессии равен 27, а ее знаменатель равен 1/3. Найти шесть первых членов геометрической прогрессии.

Решение: Запишем условие задачи в виде

Для вычислений используем формулу n-го члена геометрической прогрессии

На ее основе находим неизвестные члены прогрессии

Как можно убедиться, вычисления членов геометрической прогрессии несложные. Сама прогрессия будет выглядеть следующим образом

Пример 2. Даны три первых члена геометрической прогрессии : 6; -12; 24. Найти знаменатель и седьмой ее член.

Решение: Вычисляем знаменатель геомитрической прогрессии исходя из его определения

Получили знакопеременную геометрическую прогрессию знаменатель которой равен -2. Седьмой член вычисляем по формуле

На этом задача решена.

Пример 3. Геометрическая прогрессия задана двумя ее членами . Найти десятый член прогрессии.

Решение:

Запишем заданные значения через формулы

По правилам нужно было бы найти знаменатель, а затем искать нужное значение, но для десятого члена имеем

Такую же формулу можно получить на основе нехитрых манипуляций с входными данными. Разделим шестой член ряда на другой, в результате получим

Если полученное значение умножить на шестой член, получим десятый

Таким образом, для подобных задач с помощью несложных преобразований в быстрый способ можно отыскать правильное решение.

Пример 4. Геометрическая прогрессия задано рекуррентными формулами

Найти знаменатель геометрической прогрессии и сумму первых шести членов.

Решение:

Запишем заданные данные в виде системы уравнений

Выразим знаменатель разделив второе уравнение на первое

Найдем первый член прогрессии из первого уравнения

Вычислим следующие пять членов для нахождения суммы геометрической прогрессии

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

Министерство образования Российской Федерации ГОУ ВПО «Уральский государственный технический университет – УПИ»

Введение в анализ

Индивидуальные задания по курсу «Математика» для студентов всех специальностей дневной формы обучения факультета

экономики и управления

Екатеринбург 2003

Составители Г.Ф.Пестерева, О.Я. Шевалдина

Научный редактор канд. физ.-мат. наук О.Я. Шевалдина

Введение в анализ: Индивидуальные задания по курсу «Математика» для студентов всех специальностей дневной формы обучения факультета экономики и управления/ Г.Ф.Пестерева, О.Я. Шевалдина

Екатеринбург: ГОУ ВПО «УГТУ – УПИ», 2003. 30 с.

Индивидуальные задания содержат 26 вариантов упражнений по разделу «Введение в математический анализ» дисциплины «Математика». Каждый вариант включает 7 задач, в том числе одну задачу с экономическим содержанием. Набор предлагаемых задач можно использовать в процессе аудиторной и самостоятельной работы студентов, при проведении контрольных работ, собеседований и экзаменов. Индивидуальные задания предназначаются для студентов всех специальностей факультета экономики и управления.

Подготовлено кафедрой «Анализ систем и принятия решений»

ГОУ ВПО «УГТУ – УПИ» , 2003

Учебная литература:

1. Абчук В .А . Экономико-математические методы. – СПб.: Союз, 1999. – 320 с.

2. Виноградова И.А., Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. В 2 кн. Кн. 1.– М.: Высш. шк. 2000. – 725 с.

3. Ермаков В.И. и др. Общий курс высшей математики для экономистов.

– М.: ИНФРА – М, 2000. – 656 с.

4. Колесников А.Н. Краткий курс математики для экономистов. – М.: ИН-

ФРА-М, 1997. – 208 с.

5. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании. – М.: Дело, 2001. – 688 с.

6. Кремер Н.Ш. и др. Высшая математика для экономистов. - М.: ЮНИ-

ТИ, 1998. – 472 с.

7. Ляшко С.И. и др. Сборник задач и упражнений по математическому анализу. Ч. 1 – М.: Издательский дом «Вильямс», 2001. – 432 с.

8. Малыхин В.И. Математика в экономике. – М.: ИНФРА-М, 2001. – 356 с.

9. Сборник задач по математике для втузов: Ч. 1 / Под ред. А.В. Ефимова,

Б.П. Демидовича. – М.: Наука, 1986. – 464 с.

10. Томпсон А., Формби Д. Экономика фирмы. – М.: ЗАО «Изд-во БИ-

НОМ», 1998. – 544 с.

11. Шикин Е.В., Чхартишвили А.Г . Математические методы и модели в экономике. – М.: Дело, 2000. – 440 с.

Издательство ГОУ ВПО «УГТУ-УПИ» 620002, Екатеринбург, Мира, 19

Рецензия

на методическую работу “Введение в анализ. Индивидуальные задания по курсу «Математика» для студентов всех специальностей факультета «Экономика и управление»

Названное пособие является методической разработкой к практическим занятиям по дисциплине “ Математика”. Индивидуальные задания содержат 26 вариантов упражнений по разделу «Введение в математический анализ». Каждый вариант включает 7 заданий, в том числе одну задачу с экономическим содержанием. Набор предлагаемых задач можно использовать в процессе аудиторной и домашней работы студентов, при проведении контрольных работ, собеседований и экзаменов. Система индивидуальных заданий активизирует самостоятельную работу студентов и способствует более глубокому изучению курса математики.

В.А.Табуева

Рецензия

на методическую работу «Применение производной и исследование функций. Индивидуальные задания по курсу “Математика” для студентов всех специальностей факультета экономики и управления»

cт. преподаватель каф. АСиПР Э.С. Оноприенко, доц., к.ф.-м.н. каф. АСиПР О.Я. Шевалдина

Названное пособие является методической разработкой к практическим занятиям по дисциплине “ Математика”. Индивидуальные задания содержат 26 вариантов упражнений по разделу «Исследование функций с помощью производных. Приложение производной в экономической теории». Каждый вариант включает 8 заданий, в том числе две задачи с экономическим содержанием. Набор предлагаемых задач можно использовать в процессе аудиторной и домашней работы студентов, при проведении контрольных работ, собеседований и экзаменов. Система индивидуальных заданий активизирует самостоятельную работу студентов и способствует более глубокому изучению курса математики.

Индивидуальные задания составлены в соответствии с рабочей программой дисциплины “Математика” и предназначаются для студентов всех специальностей дневной формы обучения факультета экономики и управления ГОУ ВПО «УГТУ УПИ».

Методическая работа «Применение производной и исследование функций» авторов Л.В. Архангельской, О.Ю. Жильцовой, Э.С. Оноприенко, О.Я. Шевалдиной соответствует своему назначению и может быть рекомендована к изданию.

Профессор, к.ф.-м.н. кафедры ВМиУМФ

В.А.Табуева

Введение в анализ

Индивидуальные задания

Задача 1 . Дана числовая последовательность(x n ) ;

1) найти 2-й, 100-й, n+1-й члены последовательности(x n ) ;

2) проверить, является ли последовательность (x n ) монотонной;

3) пользуясь определением предела последовательности, доказать, что

x n = A , определив дляε > 0 натуральное числоN = N(ε ) такое,

n →∞

n > N справедливо неравенство

натурального

xn − A

< ε.

lim f (x )= A .

Задача 2 . С помощью« ε −δ » рассуждений доказать, что

x→ xο

Заполнить следующую таблицу

Задача 3 . Найти пределы функций.

Задача 4 . При каком значенииm

функция y= f (x)

будет непрерывной в

точке x 0 ?

Построить график этой функции.

Задача 5 . Найти точки разрыва функции, установить их характер, в точках устранимого разрыва доопределить функцию по непрерывности.

Задача 6 . Исследовать на непрерывность и построить схематично графики функций.

Вариант 1

1. x n = 2 n 2 + 1 ,A = 2 ,

ε =10 − 3 .

3n 2 − 1

3 x −6 +2

x3 + 8

x →−2

x3 − 1

sin(1 − x)

x→ 1

lim x2 ctg2 3 x;

x→ 0

sin x

a− x

x→ a

sin a

3 1 + ln x− 1

7 ln x+ 1 − 1

x→ 1

log x ,

0 < x ≤ 1,

x = 1.

4. y =

x > 1,

m + x,

2x + 2

x > −2,

x + 3

− 2 ≤x ≤1,

y =2 −

4 − x ,

x − 3,

x > 1;

y = 4

9− x

2x 2

−8 x +6

x − 3

x→ 3

5x + 2− 5 x 5 − 3

3 3 x 3 +1 +4 x 3 −4

x →+∞

(x−

x(x− 1 ) ;

x →+∞

− x

x →∞

− x +1

E − 3 x

− 2

cos 4x − 1

x→ 0

sin 3 x .

x →π

sin8 x

2 x arctgx 4 − 1 .

б) y = x 3 + 2 x 2 + 3 x ;x

7. Спрос и предложение на некоторый товар на рынке описываются линейными зависимостями вида: q = 15− 3p ,s = 1+ 4p . Определите равновесную цену.

Установите графическим способом, является ли модель паутинного рынка «скручивающейся».

Вариант 2

1. x n =

ε =10 − 3 .

2n 2 + 3

3. a) lim

2 − 3

10 − x

− 2

x→ 2

в) lim

16 − x 4

x → 2 sin(x−

д) lim x

3 ctgx

x→ 0

ж) lim

lncos 2 x

π 2

x →π

1 −

6x 2 − 5x + 1

= −1.

x→

x −

x + 3 3 x− 5 x;

x →+∞

3 x− 3 7 x

9x + 1

−3 x

x →+∞

X −5

1− x 2

X +3

x →∞x

72 x

5 3 x −2

2 x− arctg3 x

x→ 0

и) lim

4 1 + ln2 x− 1

к) lim

tg3 x

3 ln2 x+ 1 − 1

x→ 1

x →π tg4 x

x ≤ 1,

2 x− m,

5. y =

4. y =

− 4 x 2

x > 1,

x ≤ 0,

−3 x 2 +2 x

б) y =

6. а) y = log

0 < x ≤ 2,

x − 2

x > 2;

2x − 3,

в) y = 2tgx .

7. Найти время удвоения вклада в банке, если ставка банковского процента составляет 7% годовых.

Вариант 3

1. x n = 1 + (0 ,1 ) n , A= 1 ,ε = 10 − 4 .

x + 1

x →−1 6 x 2

3+ 3x

3 −4 x

x →+∞

д) lim

ln x − 1

x→ e

x − e

ж) lim

9 x − 1

7 x − 1

x→ 1

tg 2

lim (sin 2 x)

x→

x + 1

x ≤ −1

= −1.

x > −1

x ≤ 0,

a) y =

1 − 4− x , 0< x ≤ 2,

5 − 2x ,

x > 2;

в) y =

1 − x

x→

x −

2x 2 + 3− 5 x

4x + 7

x →−∞

− x +3

3x 2

−1

− x −8

x →∞x

е) lim

x → 0 arctg

e arcsin5 x− e arcsin2 x

x→ 0

3 ctg

− x

lim ctgx lncos 2 x.

x→ 0

y = 2 −

16 − x 2

б) y =

x x − 3

10p и предложенияs = 100+ 10p от це-

ны р . Найдите равновесную цену, выручку при равновесной цене. Постройте график функции выручки и укажите на нем ценур, при которой выручка максимальна; найдите и саму эту максимальную выручку.

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который заложил основы математического анализа и дал строгие определения, определение предела, в частности. Надо сказать, этот самый Коши снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причем одна теорема отвратительнее другой. В этой связи мы не будем рассматривать строгое определение предела, а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

Примечание: строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» примет такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.