Постоянная Хаббла и эволюция стационарной вселенной

Дмитренко Геннадий Геннадьевич, кандидат геолого-минералогических наук.

Рассмотрен физический смысл параметра Хаббла и вытекающие из него следствия. Показано, что эволюция Вселенной может быть описана в рамках стационарной модели, если параметр Хаббла преобразовать в ускорение скорости расширения видимой части Вселенной, а гравитационную постоянную интерпретировать как ускорение скорости увеличения удельного объема пространства Вселенной с момента разделения неизвестной нам формы существования материи на вещество и пространство. Соответственно, формула Хаббла будет определять не скорость удаления объекта от наблюдателя, а разницу в скоростях распространения электромагнитных волн между современной эпохой и тем временем, когда измеряемое нами излучение покинуло тот или иной объект.

В 1929 году американский адвокат и выдающийся астроном Эдвин Хаббл выдвинул предположение о том, что звезды, находящиеся за пределами нашей галактики, удаляются от нас с огромной скоростью. Это предположение было основано на многочисленных измерениях величин красного смещения в спектрах далеких от нашей галактики цефеид и представлениях Христиана Допплера о непосредственной связи изменения длин световых волн со скоростью и вектором движения источника излучения. Обнаружив, что смещение спектральных линий одних тех же элементов в спектрах внегалактических объектов в красную сторону пропорционально расстоянию до этих объектов, Хаббл заключил, что чем дальше находится источник излучения, тем больше скорость его удаления, равно как и скорость удаления Земли от наблюдаемого нами объекта. Так возникло представление о расширяющейся Вселенной, согласно которому несколько миллиардов лет назад в результате так называемого большого взрыва, по образному определению одного из критиков этой гипотезы Фреда Хойла, и автору этой примитивной модели устройства Вселенной американскому гражданину русского происхождения Георгию Гамову, в неизвестной точке не существовавшего еще пространства и неизвестно из чего образовалось все вещество Вселенной. Оценкой скорости расширения пространства является постоянная Хаббла, определяющая величину приращения этой скорости на один мегапарсек расстояния до наблюдаемых источников электромагнитного излучения.

В настоящей работе показано, что постоянная Хаббла, если придать ей обычную для физических величин размерность, работает не только за пределами нашей галактики, но и внутри последней. Однако никакого расширения Вселенной при этом не происходит.

Формула Хаббла для расширяющейся Вселенной проста:

где V – скорость удаления от наблюдателя того или иного космического объекта (равно как и наблюдателя от того же объекта) в км/с, r – расстояние до объекта, измеряемое в мегапарсеках, H0 – постоянная Хаббла, имеющая размерность (км/с)/Мпк. Принято, что мегапарсек равен 3.26 миллионам световых лет, а световой год – 3.1536·107 секундам и соответствует расстоянию, которое проходит свет за один год. Точное численное значение постоянной Хаббла, из-за отсутствия возможности непосредственного измерения расстояний между космическими объектами, трудно поддается расчету и постоянно уточняется. По последним данным, полученным с орбитального телескопа Хаббл, численное значение этого параметра составляет примерно 70 (км/с)/Мпк, хотя в разных источниках приводятся различные величины данного параметра – от 50 до 100 (км/с)/Мпк. В 2007 году планируется запуск космического телескопа нового поколения Планк, что позволит измерить параметр Хаббла, по замыслу авторов этого проекта, с точностью около ± 5 (км/с)/Мпк.

Физический смысл постоянной Хаббла можно интерпретировать по разному. Если мегапарсек в этом параметре перевести в километры пройденного светом пути, как это практикуется во всех учебных пособиях и специальной литературе, то обратная ему величина будет означать возраст Вселенной. Если же мегапарсек представить в секундах, что не противоречит заложенной в нем размерности исчисления времени, то получим ускорение:

g = (70 · 105)/(3.26 · 106 · 3.1536 · 107) = 6.81·10-8 см/с2,

с которым должна расширяться наша Вселенная. Последний вариант интерпретации физического смысла постоянной Хаббла почему-то замалчивался в литературе на протяжении многих лет – со времени появления данного понятия. Считалось, что расширение Вселенной происходит с постоянной скоростью. И только в 1998 году, когда были получены новые данные по некоторым наиболее отдаленным от нас квазарам, научная общественность признала, что Вселенная обладает определенными признаками ускоренного расширения пространства.

В этой связи обращает на себя внимание следующее обстоятельство. Численное значение параметра Хаббла (при всем многообразии опубликованных его величин), преобразованное в ускорение скорости расширения Вселенной, оказывается соизмеримым с величиной гравитационной постоянной G = 6.6726·10-8 см3/г·с2, что наводит на вполне определенные размышления.

Допустим, что это совпадение неслучайно, и оба параметра имеют одну и ту же природу. Тогда параметр Хаббла и гравитационная постоянная должны иметь одинаковое по своему содержанию значение. Параметр Хаббла, как следует из выше изложенного, можно преобразовать в ускорение линейной скорости удаления объектов друг от друга и понимать как ускорение скорости расширения пространства относительно произвольно выбранной точки в этом пространстве. Что касается гравитационной постоянной, то ее принято рассматривать изначально как некий коэффициент пропорциональности в эмпирически установленном законе природы, и не более того. Я предлагаю придать этому коэффициенту следующий конкретный физический смысл.

Предположим, что гравитационная постоянная, учитывая ее размерность, соответствует скорости приращения удельного объема Вселенной в процессе ее расширения (ниже показано, что правильнее будет говорить об ускорении скорости увеличения удельного объема вакуума или скорости уменьшения его плотности с момента разделения первичной материи на вещество и пространство). Очевидно, что для перехода к ускорению лучевой скорости расширения объема всей Вселенной необходимо знать массу и размеры последней на любой момент процесса расширения, что в принципе невозможно, либо численное значение отношения массы к квадрату радиуса этого объема, которое должно оставаться постоянным на протяжении всего процесса, т.е. численное значение отношения m/R2 в формуле Ньютона для отдельно взятого тела. Понятно, что только при m/R2 = const ускорение лучевой скорости приращения объема пространства на воображаемой поверхности его сферы всегда будет оставаться постоянным.

Если принять, что m/R2 = 1 г/см2, то величина ускорения составит 6.6726·10-8 см/с2. Отсюда, постоянная Хаббла:

H0 = 6.6726 · 10-8 см/с2 · 10.280736 · 1013 с = 68.599 (км/с)/Мпк,

что соизмеримо с последними оценками этого параметра (при m/R2 = 1,02 г/см2 H0 = 70 (км/с)/Мпк).

Соизмеримость рассчитанных разным путем величин параметра Хаббла означает, что отношение m/R2 для пространства Вселенной можно рассматривать в качестве масштабной константы, которая определяет величину ускорения скорости ее расширения.

Допустим, что наша Вселенная действительно расширяется с некоторым ускорением. Тогда, зная скорость расширения пространства в настоящее время, можно оценить возраст Вселенной. Если предположить, что после разделения первичной материи на вещество и пространство, последнее приобрело свойство электромагнитного поля, лучевая скорость расширения которого в настоящее время соответствует скорости света Vc = 2.99792458·1010 см/с, то возраст Вселенной будет равен:

t = Vc/g = (2.99792458·1010 см/с) / (6.6726·10-8 см/с2) = 14 246 855 021 год,

что идентично обратной величине параметра Хаббла, если мегапарсек времени пересчитать в километры пройденного светом пути при существующей его скорости. Такой, на первый взгляд, парадокс объясняется тем, что в последнем случае радиус видимой части Вселенной, выраженный в абсолютных величинах, оказывается в два раза большим по сравнению с тем расчетом, который предполагает ускоренное прохождение светового сигнала.

Таким образом, мы невольно приходим к выводу о том, что скорость света не является конечной скоростью распространения электромагнитных волн, а постоянно увеличивается с ускорением g = 6.6726·10-8 см/с2. Так, с каждым столетием скорость света увеличивается на 2.104 м/с и через 9 862 893 года она достигнет величины 300 000 км/с, что может явиться веским аргументом для того, что бы "ЮНЕСКО" объявило этот год "годом Света".

Далее следует определиться с понятием "расширение Вселенной", поскольку в современной литературе нет однозначного определения последнему. С точки зрения гипотезы большого взрыва оно трактуется как раздвижение вещества или разбегание галактик (по образному описанию этого процесса космологами) с определенной скоростью на увеличивающейся в диаметре сфере пространства, в центре которой произошел большой взрыв. В итоге остается лишь догадываться, о какой скорости расширения Вселенной идет речь при каждом употреблении этого термина: о скорости раздвижения вещества на расширяющейся после взрыва сфере пространства, где якобы сосредоточено все вещество Вселенной, или о скорости приращения радиуса этой сферы от неизвестно где расположенной точки взрыва, которая рассматривается современной теорией как центр тяжести Вселенной?

Очевидно, что формула Хаббла работает в трехмерном пространстве, так как эффект от явления красного смещения одинаков во всех направлениях относительно любого наблюдателя, – где бы он ни находился. Однако интерпретация закона в современной литературе оказывается совсем другой: увеличение скорости раздвижения вещества пропорционально увеличению расстояния между объектами рассматривается лишь как результат расширения воображаемой сферы пространства, что ограничивает наши представления об окружающем мире двухмерным образом. При этом никто и никогда не объяснил, что же должно находиться вне и внутри этой сферы, согласно данной теории, и каков радиус этой сферы. Самым неудачным следствием гипотезы большого взрыва является необходимость признания факта существования во Вселенной центра тяжести, от которого зависит наше будущее: если плотность Вселенной превышает некий критический предел (порядка 10-29 г/см3), то расширение пространства должно смениться его сжатием, если же этот предел не достигнут, расширение будет происходить бесконечно долго.

Мне больше импонирует представление о бесконечном строении Вселенной и относительно равномерном (или не очень) распределении вещества в пространстве, когда расширяться этому пространству некуда и незачем. Понятно, что в этой модели центр тяжести Вселенной отсутствует. В этой же модели закон Хаббла работает в любом направлении, если постоянную Хаббла понимать как ускорение лучевой скорости расширения видимой части Вселенной, т.е. радиуса последней относительно произвольно выбранной точки пространства.

В этой связи рассчитанный выше возраст Вселенной знаменует собой не возникновение вещества из ничего с последующим раздвижением этого вещества на некой расширяющейся шарообразной сфере пространства относительно неизвестно где расположенной точки большого взрыва, а акт разделения первичной (доисторической и недоступной для восприятия человечеством) материи на вещество и пространство с одновременным приобретением веществом свойства гравитации, а пространством – свойства электромагнитного поля. Возраст Вселенной – это радиус того объема пространства, который доступен наблюдению из любой точки Вселенной. Но далее 14 с небольшим миллиардов световых лет мы ничего не увидим: за этим горизонтом находится наше недосягаемое прошлое – первичная материя. Однако это вовсе не означает, что в настоящее время эта материя там присутствует. В настоящее время мир за этим горизонтом выглядит точно так же, как и вокруг нас, но мы узнаем об этом лишь через несколько миллиардов лет, когда расширится горизонт видимой части Вселенной и свет от ее окраин достигнет Земли.

Если "расширение" Вселенной реализуется путем увеличения удельного объема пространства, что тождественно уменьшению его плотности, то совсем не обязательно участие в этом процессе вещества и нет никакой необходимости привлекать гипотезу о некогда произошедшем большом взрыве – его просто не было. В противном случае мы бы не наблюдали такое распространенное в далеком космосе явление, как столкновение (или слияние) галактик. Кроме того, участие вещества в процессе расширения (при условии возникновения этого расширения в результате первоначального взрыва) предполагает признание факта удаления от нас галактик, расположенных на окраинах видимой части Вселенной, со скоростью света, что противоречит здравому смыслу. По-моему, следует признать, что наблюдаемая нами Вселенная, включая вещество и пространство, вовсе не расширяется: увеличивается удельный объем пространства и радиус видимой части Вселенной, а плотность так называемой темной материи, или вакуума, – уменьшается. При этом плотность энергии вакуума остается постоянной и не зависит ни от возраста Вселенной, ни от скорости света:

E = ρVc2 = (mVc2)/(4/3πR3) = 3g2/2πG = 3.1875·10-8 г/(см · с2).

В настоящее время радиус видимой части Вселенной из любой ее точки составляет:

R = ½gt2 = ½Vc2/g = 6.73467·1022 км

или 4370.2 Мпк в новом его исчислении, т.е. с учетом ускорения скорости света, а удельный объем вакуума:

Wm = (4/3πR3)/m = 2/3πGt2 = 2.8196·1028 см3/г.

Соответственно, плотность вакуума будет равна обратной величине удельного объема – 3.5466·10-29 г/см3, а плотность энергии вакуума – 3.1875·10-8 г/(см · с2).

Если наши предположения о распространении света с некоторым ускорением соответствуют действительности, то реальные параметры светового года, как единицы измерения расстояний (в обычных для физических величин размерностях) до наблюдаемых нами космических объектов, будут уменьшаться пропорционально степени отдаленности последних от наблюдателя. Поэтому рассчитанный выше радиус видимой части Вселенной оказывается в два раза меньше, чем при условии, когда скорость света является постоянной величиной. В результате следует признать, что мы наблюдаем гораздо меньший объем окружающего нас пространства, чем это считалось ранее. Более того, нам пока не известна величина исходного удельного объема пространства, с которого начался процесс его увеличения и, соответственно, – первоначальная скорость распространения электромагнитных волн. Следовательно, обозреваемая нами Вселенная оказывается еще более ограниченной в пространстве. Может быть, поэтому наши приборы способны регистрировать находящиеся на окраинах видимой части Вселенной объекты?

Теперь вернемся к явлению красного смещения спектральных линий всех элементов в спектрах далеких звезд, которое было воспринято Эдвином Хабблом как результат расширения Вселенной.

Действительно, в пределах нашей галактики по величине и направлению смещения спектральных линий отдельных элементов в спектрах различных объектов удается определять их относительную скорость движения и моделировать структуру всей галактики в целом. Более того, эффект Допплера позволяет достаточно надежно оценивать скорости вращения Солнца, ближайших к нам звезд и целых галактик. Однако на очень больших расстояниях в смещении спектральных линий доминирует, по-видимому, вторая составляющая данного эффекта – увеличение длин волн от далеких источников их излучения по мере приближения этого излучения к Земле в связи с общим ускорением скорости света. Соответственно, следует признать, что частоты доходящих до нас электромагнитных волн, которые идентифицируются по лабораторным, т.е. современным, аналогам, – меньше частот последних и эта разница тем больше, чем дальше от нас находится источник излучения. Иными словами, частоты колебаний всех элементов в далеком прошлом были меньше частот колебаний тех же элементов в настоящее время. Следовательно, частота электромагнитного излучения, как и скорость его распространения, является функцией времени, равно как и возраста пространства (но не источника излучения).

Поясним это предположение следующими рассуждениями. Электромагнитное излучение от далекого космического объекта с частотой ν0 = V0/λ воспринимается нами с большей длиной волны и современной скоростью света: ν0 = Vс/(λ + ∆λ). Отсюда стартовая скорость отрыва излучения от наблюдаемого объекта V0 = Vcλ/(λ + ∆λ). У современного аналога того же источника излучения частота колебаний составляет νc = Vс/λ. Отсюда ν0 = νсλ/(λ + ∆λ). При этом время прохождения сигнала t = (Vc – V0)/g. Соответственно, формула Хаббла для стационарной Вселенной с расширяющимся удельным объемом пространства должна выглядеть следующим образом:

(Vc – V0) = H0 · r,

определяя не скорость удаления объекта от наблюдателя, а разницу в скоростях распространения электромагнитных волн между современной эпохой и тем временем, когда измеряемое нами излучение покинуло тот или иной объект.

В свете изложенного реликтовое излучение, интенсивность которого одинакова во всех направлениях звездного неба и факт обнаружения которого считается главным аргументом в пользу гипотезы о некогда произошедшем большом взрыве, можно рассматривать как результирующий эффект от излучения газообразной оболочки примитивного вещества, по-видимому, того же водорода, примыкающей к краю видимой части Вселенной, где скорость света составляет порядка 97 км/с, а возраст Вселенной – около 4.6 миллионов лет. Эти оценки соответствуют 2 мм длин волн фонового излучения при условии, что источником данного излучения является водород. Очевидно, что со временем длина волн фонового излучения будет расти пропорционально увеличению скорости света и радиуса видимой части Вселенной. Таким образом, "шелест" реликтового излучения, по очень удачному определению этого явления американским астрономом Стивеном Мараном, отражает завершающую стадию формирования вещества на окраинах расширяющегося объема видимой части Вселенной, где это вещество по неизвестным нам причинам начинает взаимодействовать с пространством, и результат этого взаимодействия мы обнаруживаем в настоящее время.

В заключение несколько слов о перспективах проекта Планк в отношении более точного определения значения постоянной Хаббла инструментальными методами. Если эффект Допплера имеет два составляющих фактора: относительную скорость движения источника света и предполагаемое нами ускоренное распространение электромагнитных волн во времени, то эти надежды, по-видимому, не могут быть реализованы в полной мере, поскольку неизвестны относительные скорости и направления векторов движения тех источников излучения, которые обычно используются в подобных экспериментах (в астрофизике их называют индикаторами расстояний).

Так, при небольших расстояниях между источником излучения и наблюдателем величина смещения спектральных линий ∆λ1 от движущегося объекта определяется по формуле ∆λ1 = λυ/V0, где υ – относительная скорость движения объекта, а при значительных расстояниях – к этой величине добавляется вторая составляющая ∆λ2 = λ(Vc – V0)/V0, которая определяет степень отдаленности этого объекта от наблюдателя. Очевидно, что чем дальше от наблюдателя будет находиться источник излучения, тем более весомым будет вклад ∆λ2 в итоговое значение величины красного смещения спектральных линий ∆λ = ∆λ1 + ∆λ2 = λ(υ + Vc – V0)/V0. Отсюда следует, что скорость удаления наблюдаемого объекта, которая рассчитывается обычно по всей величине красного смещения, имеет более сложную зависимость: υ = Vc·∆λ1/(λ + ∆λ2), и определить ее можно лишь зная расстояние до этого объекта.

Например, при неподвижном нахождении, относительно наблюдателя, источника излучения, красное смещение зеленой линии водорода (λ = 5000 Å = 5·10-5 см) на 100 Å будет означать, что стартовая скорость отрыва света от него составляет 0.9804Vc, а время прохождения сигнала – 85.691 Мпк. Если же мы уверены, что этот объект расположен ближе, скажем, на расстоянии 80 Мпк, то 93.24 Å в величине красного смещения той же линии водорода должно приходиться на эффект ускоренного прохождения светового сигнала до Земли, а 6.76 Å – на удаление от нас наблюдаемого объекта со скоростью 397.9 км/с. Если тот же объект расположен дальше, например, на расстоянии 90 Мпк, то при соответствующей этому расстоянию скорости света в 0.9794Vc красное смещение должно быть 105.14 Å. Следовательно, данный объект приближается к нам со скоростью 301.5 км/с, что проявляется в уменьшении ожидаемой величины красного смещения на 5.14 Å.

Что касается размера исходного удельного объема пространства (равно как и плотности вакуума), с которого начался процесс его расширения, и каков источник формирования вещества, то ответы на эти вопросы следует искать, по-видимому, в гравитационных линзах и наиболее удаленных от нас квазарах, – с максимальными величинами красного смещения. Не исключено, что исходный удельный объем пространства связан с реликтовым излучением, длина волн которого, если рассматривать ее как величину красного смещения характеристических линий водорода, определяет первоначальную скорость света и, соответственно, – исходную плотность вакуума. С этих позиций определенный интерес представляет установленное недавно явление анизотропии реликтового излучения, свидетельствующее, по-видимому, о существовании в "доисторическую" эпоху Вселенной бесконечного количества доменов, расширение удельного объема пространства в которых начиналось с различными скоростями распространения электромагнитных волн.

Таким образом, постоянная Хаббла, при изначально принятой для нее размерности и в условиях стационарной Вселенной, является показателем степени увеличения скорости распространения электромагнитных волн во времени относительно того или иного космического объекта, расположенного далеко за пределами нашей галактики.

Вполне очевидно, что изложенные выше представления о природе окружающего нас мира являются гипотезой, основанной на предположении об ускоренном характере распространения электромагнитного излучения в пространстве. Однако эти представления снимают известные трудности, связанные с интерпретацией величин красного смещения спектральных линий отдельных элементов в спектрах очень далеких от нас объектов, превышающих длины волн их современных аналогов, и не требуют привлечения для объяснения природы этого явления довольно громоздкого математического аппарата, в котором теряется не только физический, но и здравый смысл. По этим же представлениям мы избавляемся от непонятного для человеческого мышления факта существования в плоском пространстве и, что самое главное, – от не очень приятного ощущения, что наша Вселенная подобна тонкой оболочке воздушного шара, который постоянно расширяется по мере снижения давления в окружающем его пространстве, а мы все летим неизвестно куда с огромной скоростью от некой точки первоначального взрыва.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.sciteclibrary.ru

Постоянная Хаббла — это константа, используемая для описания расширения Вселенной. Она устанавливает связь между удаленностью космического объекта и скоростью его удаления. становится все больше и больше с тех пор, как начал расширяться с момента Большого Взрыва, произошедшего 13,82 миллиарда лет назад. Вселенная постоянно расширяется, и это расширение постоянно ускоряется.

По утверждению НАСА , у ученых существует не только интерес к самому расширению и его ускорению, но и к последствиям этого процесса. Если расширение вдруг начинает замедляться, это будет означать, что во Вселенной есть что-то, что замедляет ее рост — возможно, это гипотетическая темная материя, которая не может быть обнаружена современными инструментами. Если расширение Вселенной будет продолжать ускоряться, возможно, что именно темная материя несет ответственность за это явление. В общем, ученым пока не понятен механизм, заставляющий пространство менять свой объем. Но во всем виновата, несомненно, темная материя (поскольку она не обнаружена, а значит все непонятное в космосе можно списать на нее).

По состоянию на январь 2018 года измерения, полученные с нескольких телескопов показали, что скорость расширения Вселенной различается в зависимости от того, куда смотреть. Ближняя к нам часть Вселенной (исследуется с помощью орбитальных телескопов «Хаббл» и «Гайя») имеет скорость расширения около 73,5 километров в секунду на мегапарсек. В то время как более отдаленная Вселенная (измеряется космическим телескопом «Планк») расширяется немного медленнее, со скоростью около 67 км в секунду на мегапарсек. Мегапарсек — это расстояние в один миллион парсеков, или около 3,3 миллиона световых лет, так что это немыслимо большая скорость.

Открытие Хаббла

Постоянная была впервые предложена американским астрономом . Он занимался изучением галактик, и особенно его интересовали те, которые находятся наиболее далеко от Земли.

В 1929 году, на основании данных, полученных астрономом , говорящих о том, что галактики, похоже, удаляются от Млечного Пути, Хаббл обнаружил, что чем дальше эти галактики с Земли, тем быстрее они движутся.

В то время ученые решили, что это явление — это всего лишь разлет галактик друг от друга. Однако сегодня астрономы знают, что на самом деле наблюдается расширение всей Вселенной. Независимо от того, где вы будете находиться в космосе , вы будете наблюдать одно и то же явление, происходящее с той же самой скоростью.

Первоначальные расчеты Хаббла уточнялись на протяжении многих лет, поскольку для проведения измерений использовались все более чувствительные телескопы, в том числе «Хаббл» и «Гайя», данные с которых уточняли значение постоянной на основе измерений космического микроволнового фона — постоянного температурного фона Вселенной, иногда еще называемый «послесвечением» Большого Взрыва.

Цефеиды — маяки Вселенной

Существует много видов переменных звезд, но те, которые наиболее полезны для уточнения значения постоянной Хаббла, называется цефеидами. Это звезды, которые регулярно меняют свою яркость в определенном интервале, который обычно колеблется от 1 до 100 дней (Полярная Звезда входит в число самых известных членов этой группы). проводят измерения расстояния до этих звезд, измеряя изменчивость их светимости.

Чем ярче выглядит цефеида с , тем легче измерить расстояние до нее. Некоторые цефеиды можно увидеть с Земли, но для получения более точных измерений лучше всего это делать в космосе.

Эдвин Хаббл смог измерить расстояния до цефеид, удаленных на расстояния до 900 000 световых лет от Земли — поразительное значение на то время — находящихся в пространстве, которое было все еще относительно близким к Земле. Дальше в пространстве цефеиды слабеют и их видно все меньше. Лишь запуск космического телескопа «Хаббл» смог изменить ситуацию в 1990-х годах. В 2013 году появился космический телескоп «Гайя», которому удалось точно определить позиции и светимость около 1 . Его данные также помогли уточнить значение постоянной Хаббла.

Однако цефеиды не идеальны для измерения космических расстояний. Они часто расположены в пыльных областях (которые затеняют некоторые длины волн на снимках). А более отдаленные из них — трудно обнаружить, потому что они слабо светятся с нашей точки зрения.

По словам Шоко Сакаи, научного сотрудника Национальной оптической астрономической обсерватории, астрономами используются и другие методы, которые дополняют измерения расстояний до цефеид, такие как например, отношение Талли-Фишера, использующее обнаруженную корреляцию между яркостью спиральной и скоростью ее вращения. «Идея состоит в том, что чем больше галактика, тем быстрее она вращается», — писал он. «Это означает, что если вы знаете скорость вращения спиральной галактики, вы можете определить, используя зависимость Талли-Фишера, ее внутреннюю яркость. Сравнивая внутреннюю яркость с кажущейся величиной (той, на самом деле наблюдается — потому что чем дальше галактика, тем она становится «темнее»), можно рассчитать расстояние до нее».

Телескопы, умеющие измерять космический микроволновый фон, например телескоп «Планк», используют другой метод измерения расстояний, который для уточнения значения постоянной Хаббла анализирует флуктуации космического микроволнового фона.

Когда говорят, что нашей Вселенной 13,7 миллиардов лет, обычно забывают указать неточность, с которой определена эта величина. А неопределённость эта складывается из множества составляющих и в итоге достигает примерно 6-7%, если принимать стандартную на сегодняшний день космологическую модель, а то и всех 15%, если «отпустить» параметры. Так что астрономам на деле следовало бы писать, что нашему миру примерно от 12 до 15 миллиардов лет, и не смешить метрологов выписыванием трёх значащих цифр для этого плохо измеренного параметра.

Тем не менее, установить некоторый «канонический» возраст удобно. Дело в том, что эволюцию Вселенной в относительных величинах мы представляем себе очень неплохо. Например, можно без зазрения совести утверждать, что гамма-всплеск GRB 090423, являющийся на данный момент самым далёким видимым объектом во Вселенной , произошёл, когда возраст нашего мира составлял 4,6% от нынешнего. А вот говорить, что он случился 13,1 миллиарда лет назад — некоторое лукавство. По-хорошему, в таких случаях всегда надо добавлять «принимая возраст Вселенной равным 13,7 миллиарда лет», а для полных педантов потребуется дополнение «и стандартную космологическую модель».

Задача определения абсолютного возраста мира упирается в измерение современного значения так называемой постоянной Хаббла, H 0 , определяющей истинную, метрически выраженную, скорость расширения нашего мира.

Эта величина показывает насколько галактики, которые расположены дальше от нас, быстрее от нас убегают.

Например, если постоянная Хаббла равна 70 км/c на мегапарсек (H 0 =70 км/c/Мпк), то галактики, которые мы видим на расстоянии в 10 Мпк, убегают от нас со средней скоростью 700 км/c, а галактики, которые мы видим на расстоянии в 11 Мпк - со скоростью 770 км/c. Там, где скорость расширения достигает скорости света, находится «граница» нашего мира, за которой мы уже ничего не видим, и чем больше значение H 0 , тем ближе этот горизонт, и тем моложе наша Вселенная.

Чтобы определить постоянную Хаббла надо, очевидно, измерить скорость галактик и расстояние до них. С первым проблем нет: смещение линий в спектрах объектов из-за эффекта Доплера позволяет легко и непринуждённо вычислить скорость убегания.

А вот определение расстояний в астрономии — большая проблема. Дотянуть линейку невозможно ни до одного небесного объекта, возможности радарного и лазерного зондирования ограничиваются пределами Солнечной системы, а дальше приходится выстраивать целую «лестницу» космических расстояний, в которой каждая новая ступенька опирается на предыдущую. И если вы ошибочно измерили расстояние от Земли до Солнца, то эта ошибка будет присутствовать и в расстояниях до звёзд, и в расстояниях до далёких галактик, и в возрасте нашего мира.

Учёные из США и Великобритании под руководством Адама Рисса из американского Университета имени Джона Хопкинса провели самую точную на сегодняшний день такую оценку. Для этого они воспользовались космическим телескопом имени Хаббла (того же американского астронома, в честь которого названа постоянная). Работа учёных (PDF-файл) вскоре будет опубликована в Astrophysical Journal.

Как оказалось, «канонический» возраст Вселенной надо чуть сократить.

Примерно до 13,1 миллиарда лет: постоянная Хаббла H 0 =74,2 км/c/Мпк — чуть больше, чем ранее считалось. И точность определения этой величины теперь составляет около 5%, даже если не ограничивать себя рамками стандартной космологической модели.

«Лестница космических расстояний» Рисса и его коллег состоит из трёх основных ступенек. На первой ступени находится галактика NGC 4258 (или M 106), расположенная в созвездии Гончих Псов. Вокруг чёрной дыры, расположенной в её центре, крутится диск вещества, в состав которого входят молекулы воды. Эти молекулы излучают очень тонкие, так называемые мазерные линии, по которым можно точно измерить скорость вращения диска. Несложная геометрия этого движения и точные наблюдения с помощью радиотелескопов позволили астрономам вычислить расстояние до галактики, которое составляет 7,2 Мпк (примерно 23 миллиона световых лет).

Это измерение, в свою очередь, позволило очень точно определить истинную светимость переменных звёзд из класса цефеид. Для этих периодически пульсирующих звёзд известна чёткая зависимость: чем больше период колебаний, тем больше истинный блеск. Период колебаний померить несложно: острое зрение телескопа имени Хаббла позволяет построить кривые блеска для отдельных звёзд в этой не такой уж близкой галактике. А по среднему наблюдаемому блеску и точно измеренному расстоянию учёные восстановили и истинный блеск цефеид, который понадобился для калибровки следующей ступеньки «лестницы».

На ней оказались 6 галактик на промежуточных расстояниях, в которых ещё видны отдельные цефеиды и в которых за последние три десятилетия вспыхивали сверхновые типа Ia. Расстояния до этих галактик определили по видимому среднему блеску переменных звёзд и их светимости, используя закон, откалиброванный на предыдущей ступеньке.

При этом ключевым является то обстоятельство, что цефеиды во всех 7 галактиках наблюдались одним и тем же инструментом.

А значит, взаимные расстояния до 6 галактик - и сверхновых в них - прочно опираются на расстояние до NGC 4258, определённое точным геометрическим методом.

Из этих измерений и наблюдаемого блеска сверхновых типа Ia Рисс и его коллеги вывели истинную светимость последних. Эта величина практически постоянна, так как соответствует взрыву белого карлика, который «перебрал» вещества со звезды-соседки и взорвался. Предел, за которым следует взрыв, одинаков для всех звёзд, потому одинакова и светимость.

После этого оставалось лишь сравнить скорости удаления далёких галактик, в которых сверхновые ещё видны, а цефеиды — уже нет, с наблюдаемым блеском сверхновых, что, благодаря чётко определённой предыдущей ступеньке, тут же даёт расстояние. Поделив разницу в скорости на разницу в расстоянии, учёные получили новое значение постоянной Хаббла H 0 .

Примечательно, что эта оценка прямая и не зависит от космологической модели. И следовательно, сравнивая её с теми оценками, которые от модели зависят, можно протестировать сами модели.

Именно это и сделали учёные на последнем этапе своей работы. Результаты показывают, что стандартная космологическая модель — так называемая ΛCDM-модель — пока держит удар. Она предполагает, что наша Вселенная плоская, наполнена холодной тёмной материей, и содержит загадочную «космологическую постоянную» Λ , которая последние несколько миллиардов лет заставляет наш мир расширяться с ускорением.

По данным Рисса и его коллег, Λ — величина действительно постоянная на протяжении большей части жизни Вселенной. Если быть более точным, то новые данные показывают, что так называемое уравнение состояния w+1, показывающее степень переменности Λ, равно нулю с точностью +/-12%. До сих пор этот параметр был известен почти втрое хуже.

В настоящее время та же команда планирует улучшить точность определения космологических параметров минимум в 5 раз. И в этом проекте они рассчитывают на помощь космического телескопа имени Хаббла. В понедельник с последней ремонтной миссией к 18-летнему космическому аппарату отправится шаттл Atlantis. Астрономы скрещивают пальцы, чтобы всё прошло благополучно.

Если кто-то думает, что слово «разбегаться» имеет сугубо спортивный, в крайнем случае, «антисупружеский» характер, то ошибается. Существуют куда более интересные толкования. К примеру, космологический Закон Хаббла свидетельствует о том, что разбегаются… галактики!

Три вида туманностей

Представьте: в черном, огромном безвоздушном пространстве тихо и медленно удаляются друг от друга: «Прощай! Прощай! Прощай!». Пожалуй, оставим в стороне «лирические отступления» и обратимся к научным сведениям. В 1929 году самый влиятельный астроном XX века американский ученый Эдвин Пауэлл Хаббл (1889-1953) пришел к выводу: происходит неуклонное расширение Вселенной.

Человек, всю свою сознательную жизнь посвятивший разгадке структуры космоса, родился в Маршфилде С младых ногтей интересовался астрономией, хотя в итоге стал дипломированным юристом. После окончания Кембриджского университета Эдвин работал в Чикаго, в Йоркской обсерватории. В Первую мировую войну (1914-1918 гг.) воевал. Фронтовые годы лишь отодвинули открытие во времени. Сегодня весь ученый мир знает, что такое постоянная Хаббла.

На пути к открытию

Возвратившись с фронта, ученый обратил свой взор на высокогорную обсерваторию Маунт-Вилсон (штат Калифорния). Его приняли туда на работу. Влюбленный в астрономию, молодой человек проводил немало времени, глядя в объективы огромных телескопов размером в 60 и 100 дюймов. Для того времени - крупнейшие, почти фантастика! Над приборами изобретатели работали почти десятилетие, добиваясь максимально возможного увеличения и четкости изображения.

Напомним, видимая граница Вселенной именуется Метагалактикой. Она исходит к состоянию на момент Большого Взрыва (космологическая сингулярность). Современные положения гласят, что значения физических постоянных однородны (имеется в виду скорость света, элементарный заряд и др.). Считается, что Метагалактика вмещает 80 миллиардов галактик (удивительная цифра звучит еще так: 10 секстиллионов и 1 септильонов звезд). Форма, масса и размер - для Вселенной это совершенно иные, нежели принятые на Земле, понятия.

Загадочные цефеиды

Чтобы обосновать теорию, объясняющую расширение Вселенной, потребовались продолжительные глубокие исследования, сложные сопоставления и вычисления. В начале двадцатых годов XX века вчерашний солдат наконец смог классифицировать туманности, наблюдаемые отдельно от Млечного пути. Согласно его открытию, они спиральные, эллиптические и неправильные (три вида).

В ближайшей к нам звездной системе, но не самой близкой спиральной туманности Андромеды, Эдвин разглядел цефеиды (класс пульсирующих звезд). Закон Хаббла стал как никогда близок к своему окончательному формированию. Астроном вычислил расстояние до этих маячков и размеры крупнейшей Согласно его выводам, Андромеда содержит примерно один триллион звезд (в 2,5-5 раз больше Млечного пути).

Константа

Некоторые ученые, объясняя природу цефеидов, сравнивают их с надувными резиновыми мячами. Они то увеличиваются, то уменьшаются, то приближаются, то отдаляются. Лучевая скорость при этом колеблется. При сжатии температура «путешественниц» увеличивается (хотя поверхность уменьшается). Пульсирующие звезды представляют собой необычный маятник, который, рано или поздно, остановится.

Как и остальные туманности, Андромеда охарактеризована ученым, как островное вселенское пространство, напоминающее нашу галактику. В 1929 году Эдвин обнаружил: лучевые скорости галактик и их расстояния взаимосвязаны, линейно зависимы. Был определен коэффициент, выражаемый в км/с на мегапарсек так называемая постоянная Хаббла. Расширяется Вселенная - меняется константа. Но в конкретный момент во всех точках системы мироздания она одинакова. В 2016 году - 66,93 ± 0,62 (км/с)/Мпк.

Представления о системе мироздания, продолжающей эволюцию, расширяющейся, тогда получили наблюдательную основу. Процесс активно изучался астрономом до самого начала Второй мировой войны. В 1942 году он возглавил Отдел внешней баллистики на Абердинском испытательном полигоне (США). Разве об этом мечтал сподвижник, пожалуй, самой загадочной науки на свете? Нет, ему хотелось «расшифровывать» законы потаенных уголков далеких галактик! Что касается политических взглядов, то астроном открыто осуждал лидера Третьего рейха Адольфа Гитлера. На исходе своей жизни Хаббл прослыл мощным противником применения оружия массового поражения. Но вернемся к туманностям.

Великий Эдвин

Многие астрономические константы со временем корректируются, появляются новые открытия. Но все они не идут в сравнение с Законом расширения Вселенной. Знаменитого астронома XX века Хаббла (со времен Коперника равных ему не было!) ставят в один ряд с основателем экспериментальной физики Галилео Галилеем и автором новаторского вывода о существовании звездных систем Уильямом Гершелем.

Еще до того, как был открыт закон Хаббла, его автор стал членом Национальной академии наук Соединенных Штатов Америки, позже академий в разных странах, имеет множество наград. Многие, наверное, слышали про то, что свыше десяти лет назад выведен на орбиту и успешно действует космический телескоп «Хаббл». Это имя носит одна из малых планет, вращающихся между орбитами Марса и Юпитера (астероид).

Будет не совсем справедливо утверждать, что астроном только и мечтал об увековечивании своего имени, но есть косвенные свидетельства того, что Эдвин любил привлечь внимание. Сохранились фото, где он весело позирует рядом с кинозвездами. Чуть ниже мы расскажем о его попытках «зафиксировать» достижение на лауреатском уровне, еще и таким образом войти в историю космологии.

Метод Генриетты Ливитт

Знаменитый британский астрофизик в своей книге «Краткая история времени» писал, что «открытие того, что Вселенная расширяется, стало величайшей интеллектуальной революцией XX века». Хаббл был достаточно удачлив, чтобы оказаться в нужном месте в нужное время. Обсерватория Маунт-Вильсон являлась центром наблюдательной работы, лежащей в основе новой астрофизики (позже получившей название космологии). Самый мощный на Земле телескоп Хукера тогда только вступил в строй действующих.

Но постоянная Хаббла вряд ли была открыта лишь на основании везения. Требовались терпение, упорство, умение побеждать научных соперников. Так американский астроном Харлоу Шепли предлагал свою модель Галактики. Его уже знали, как ученого, определившего размеры Млечного Пути. Он широко применял методику определения расстояний по цефеидам, используя методику, составленную в 1908 году Генриеттой Суон Ливитт. Она устанавливала расстояние до объекта, опираясь на стандартные вариации света от ярких звезд (переменные цефеиды).

Не пыль и газ, а другие галактики

Харлоу Шепли считал, что ширина галактики 300 000 световых лет (приблизительно в десять раз выше допустимого значения). Однако Шепли, как и большинство астрономов того времени, был уверен: Млечный Путь - это и есть вся Вселенная. Несмотря на предположение, впервые сделанное Уильямом Гершелем в XVIII веке, он разделял распространенное мнение, что все туманности для относительно близлежащих объектов - всего лишь пятна пыли и газа в небе.

Сколько горьких, холодных ночей провел Хаббл, сидя у мощного телескопа Хукера, прежде чем смог доказать, что Шепли не прав. В октябре 1923 года Эдвин заметил в М31 туманности (созвездие Андромеды) «вспыхнувший» объект и предположил, что он не относится к Млечному Пути. После тщательного изучения фотопластин, на которых была запечатлена та же площадь, ранее исследованная другими астрономами, в том числе, Шепли, Эдвин понял, что это цефеида.

Обнаружен Космос

Хаббл использовал метод Шепли для измерения расстояния до переменной звезды. Оказалось, что оно исчисляется миллионами световых лет от Земли, что находится далеко за пределами Млечного Пути. Сама галактика содержит миллионы звезд. Известная Вселенная резко расширилась в тот же день и - в некотором смысле - был обнаружен сам Космос!

Газета "Нью-Йорк Таймс" писала: "Обнаруженные спиральные туманности являются звездными системами. Доктор Hubbel (так в оригинале) подтверждает мнение, что они похожи на "островные вселенные", похожие на нашу собственную". Открытие имело большое значение для астрономического мира, но величайший момент Хаббла был еще впереди.

Никакой статичности

Как мы говорили, победа к «Копернику №2» пришла в 1929 году, когда он классифицировал все известные туманности и измерил их скорости от спектров излучаемого света. Его поразительная находка, что все галактики отступают от нас со скоростями, увеличивающимися пропорционально их удаленности от Млечного Пути, потрясла мир. Закон Хаббла отменил традиционное представление о статической Вселенной и показал, что сама она полна динамики. Сам Эйнштейн склонял голову перед столь потрясающей наблюдательностью.

Автор теории относительности подкорректировал собственные уравнения, которыми обосновывал расширение Вселенной. Теперь Хаббл показал, что Эйнштейн был прав. Хаббловское время - величина, обратная постоянной Хаббла (t H = 1/H). Это характерное время расширения Вселенной на текущий момент.

Взорвались и разлетелись

Если постоянная в 2016 году равна 66,93 ± 0,62 (км/с)/Мпк, то расширение в настоящее время характеризуется следующими цифрами: (4,61 ± 0,05)·10 17 с или (14,610 ± 0,016)·10 9 лет. И снова немного юмора. Оптимисты говорят: это хорошо, что галактики «разбегаются». Если представить, что они сближаются, рано или поздно наступил бы Большой взрыв. Но именно с него началось зарождение Вселенной.

Галактики «рванули» (начали движение) в разные стороны одновременно. Если бы скорость удаления не была пропорциональной расстоянию - теория взрыва бессмысленна. Еще одна производная константа - хаббловское расстояние - произведение времени на скорость света: D H = ct H = c/H. В текущий момент - (1,382 ± 0,015)·10 26 м или (14,610 ± 0,016)·10 9 световых лет.

И снова о надувном шаре. Есть мнение, что даже астрономы не всегда правильно трактуют расширение Вселенной. Часть знатоков считает, что она раздувается, словно резиновый шар, не ведая никаких физических ограничений. Сами галактики при этом не только удаляются от нас, но и хаотично «суетятся» внутри неподвижных скоплений. Иные уверяют, что дальние галактики «уплывают» осколками Большого взрыва, но делают это степенно.

Мог бы стать Нобелевским лауреатом

Хаббл пытался получить Нобелевскую премию. В конце 1940-х годов даже нанимал рекламного агента (сейчас его назвали бы пиар-менеджер), чтобы тот продвинул дело. Но усилия были напрасными: категории для астрономов не существовало. Эдвин умер в 1953 году, в ходе научных изысканий. В течение нескольких ночей он наблюдал внегалактические объекты.

Его последняя честолюбивая мечта осталась несбывшейся. Но ученый наверняка бы порадовался тому, что в его честь назван космический телескоп. И поколения братьев по разуму продолжают исследовать огромное и чудесное пространство. Оно до сих пор таит немало загадок. Сколько открытий впереди! И производные постоянные Хаббла, наверняка, помогут кому-то из молодых ученых стать «Коперником №3».

Оспаривая Аристотеля

Что будет доказано или опровергнуто, как тогда, когда в пух и прах полетела теория о бесконечности, вечности и неизменности пространства вокруг Земли, которую поддерживал сам Аристотель? Он приписывал Вселенной симметрию и совершенство. Космологический принцип подтвердил: все течет, все изменяется.

Есть мнение, что через миллиарды лет небеса будут пусты и темны. Расширение «унесет» галактики за космический горизонт, откуда свет не сможет дойти до нас. Будет ли актуальна постоянная Хаббла для пустой Вселенной? Что станет с наукой космологией? Она исчезнет? Все это предположения.

Красное смещение

Пока же телескоп «Хаббл» сделал снимок, который свидетельствует: до вселенской пустоты нам пока далеко. В профессиональной среде в ходу мнение, что ценно открытие Эдвина Хаббла, но не его закон. Однако именно он был почти сразу признан в научных кругах того времени. Наблюдения «красного смещения» не просто завоевало право на существование, оно актуально и в XXI веке.

И сегодня, определяя расстояние до галактик, опираются на супероткрытие ученого. Оптимисты утверждают: даже если наша галактика останется единственной, «скучать» нам не придется. Будут существовать миллиарды карликовых звезд и планет. А значит, рядом с нами по-прежнему будут «параллельные миры», которые нужно будет исследовать.

Космологическая модель возникла не сразу. Многие ученые своими исследованиями внесли важный вклад в ее создание, и далеко не последним астрономом, сыгравший большую роль в становлении космологии, стал Эдвин Хаббл.

Однако прежде чем знакомиться с открытиями великого космолога и их последствиями, нам следует совершеннее разобраться в физическом эффекте, который лежит в их основе. Речь идет об эффекте Доплера-Физо.

Романтическая история рассказывает, что однажды Допплер гулял со своим сыном в парке, как вдруг мимо проехал небольшой паровичок и посигналил. Сын спросил отца, почему свист паровичка был «тонким», когда он приближался, и стал ниже тоном, когда начал от них удаляться. Поставленный в тупик вопросом ребенка, Доплер провел несколько дней в размышлениях и открыл эффект, названный затем его именем. Несколькими годами позже другой ученый — Физо — применил эффект Доплера для света, и в спектроскопии он носит теперь имя Доплера-Физо.

Правда это или вымысел — неизвестно, однако эффект Доплера-Физо своей доказательности от этого не теряет. Суть его можно понять на примере того же паровичка. Когда он приближается, то звуковые волны как бы «подталкиваемые» им вперед. Как результат — короче длина волны и выше тон звука. Когда паровичок начинает удаляться, он как бы «тянет» за собой звуковые волны. Они становятся длиннее, что приводит ниже тоном звук.

Такой же влияние эффект Доплера-Физо имеет световые волны. Если объект, который является источником света, приближается к нам, его спектр смещается в коротковолновую область. Так что короче видимым волнам соответствует синий цвет, такое смещение называют синим смещением. Если же объект удаляется от нас, то его спектр смещается в длинноволновую область — мы называем это красным смещением.

Еще в 10- х годах XX века ученые знали, что большинство галактик удаляются от нас. Это было установлено по красным смещением, что наблюдалось в их спектрах. Начав измерять расстояния во Вселенной, Хаббл несколько лет также измерял значение красного смещения для многих галактик. В 1929 году Хаббл опубликовал свои результаты: чем отдаленнее есть галактика, тем быстрее она от нас удаляется (тем более красное смещение ее спектра). Удивительно то, что это утверждение, известное теперь как закон Хаббла, базируется на достаточно малом количестве галактик. К тому же эталоны для измерения расстояний, выбранные Хабблом, оказались ложными. Получается, что Хабблу просто повезло? Возможно, но, основываясь на богатом материале наблюдений нескольких десятилетий, сейчас можно точно сказать: его закон справедлив!

Конечно, на формулировке самого закона Хаббл не остановился. Он впервые сделал попытку определить коэффициент пропорциональности между удаленностью и скоростью галактики. Теперь эта величина также известная как постоянная Хаббла (Н0).

Однако постоянная Хаббла имеет гораздо более физический смысл, чем просто коэффициент пропорциональности. В рамках модели расширяющейся Вселенной, его возраст можно предположить по данным, которые характеризуют расстояния до самых объектов Вселенной. Таким образом, постоянная Хаббла непосредственно связана и с возрастом Вселенной. С физической точки зрения, величина, обратная постоянной Хаббла — 1/Н0 — указывает на то, как долго Вселенная расширяется. Но ведь это и есть его возраст! Современные оценки значения постоянной Хаббла приводят к возрасту Вселенной в пределах от 12 до 18 миллиардов лет.