Взаимодействие материи – неотъемлемое свойство материи, выступающее как причина движения материи.

Фундаментальные взаимодействия - различные, не сводящиеся друг к другу типы взаимодействия элементарных частиц и составленных из них тел.

Существуют четыре типа взаимодействия:

1. Гравитационное взаимодействие – ответственно за взаимодействие между телами, обладающими массой. Является определяющим в мегамире – мире планет, звезд, галактик.

2. Электромагнитное взаимодействие - ответственно за взаимодействия между электрически заряженными частицами и телами. Существенно в макромире и атомных явлениях. Определяет строение и свойства атомов и молекул.

3. Сильное взаимодействие - ответственно за взаимодействие между кварками и адронами, за связь нуклонов в ядре. Является определяющим в микромире.

4. Слабое взаимодействие - ответственно за другие виды взаимодействия между элементарными частицами - все виды бета-распада ядер, процессы взаимодействия нейтрино с веществом, за многие распады элементарных частиц. Проявляет себя в микромире.

Рационалистическое мировоззрение предполагает, что любое событие имеет материальную причину: воздействие со стороны материального тела (тел). Поэтому любая программа рационального объяснения окружающего мира включает в себя представления о механизмах взаимодействия материальных объектов.

Концепция близкодействия предполагает, что взаимодействие возможно только при непосредственном контакте взаимодействующих объектов, любое действие на расстоянии должно передаваться через материальных посредников, так называемых переносчиков взаимодействия, с конечной скоростью.

Концепция дальнодействия предполагает, что взаимодействие материальных тел не требует материального посредника и может передаваться мгновенно.

Концепция близкодействия была выдвинута Аристотелем, который был убежден в отсутствие пустоты в мире. Следовательно, между любыми двумя взаимодействующими телами располагается ряд примыкающих друг к другу других тел, которые передают взаимодействие при непосредственном контакте.

В XVII в. концепция близкодействия была развита Рене Декартом. В механике Декарта взаимодействие происходит только путём давления или удара, т.е. при соприкосновении тел.

Концепция дальнодействия прослеживалась в атомистической теории Демокрита и Левкиппа, так как взаимодействие между атомами передавалось через пустоту.

В механической картине мира , основоположником которой был Исаак Ньютон, принята концепция дальнодействия, при этом считалось, что действие одного тела на другое – это всегда и действие второго на первое, то есть взаимодействие.

В конце XIX в. возникла новая идея – идея поля, основная роль которого – передача взаимодействия. Майкл Фарадей выдвинул идею электромагнитного поля, передающего взаимодействие при электризации проводников и намагничивании вещества. Развил и математически оформил эту идею Максвелл. Таким образом, в основе электромагнитной научной картине мира лежит концепция близкодействия. Механизм передачи взаимодействия с помощью поля состоит в следующем. Тело, участвующее во взаимодействии, создает вокруг себя поле, которое занимает область пространства радиусом равным радиусу взаимодействия. Другие тела взаимодействуют не непосредственно с первым телом, а с созданным им полем в тех точках, где они находятся. Изменение состояния одного из взаимодействующих тел вызывает возмущение созданного им поля, которое распространяется в виде волны, достигает других тел, и только тогда их состояние начинает изменяться. Наряду с электромагнитным полем, которое переносит электромагнитные взаимодействия, в электромагнитной картине мира рассматривается также гравитационное поле – переносчик гравитационных сил.

В современной картине мира идея поля получила дальнейшее развитие. Полевой механизм взаимодействия был уточнен в квантово-полевой механизм . С позиций современной физики все формы существования материи дискретны. Возмущение поля – волна – согласно корпускулярно-волновому дуализму, может одновременно рассматриваться как совокупность частиц – квантов полей. Поэтому взаимодействие, переносимое полем, рассматривается как процесс обмена квантами поля между взаимодействующими телами и частицами вещества. Кванты, которыми обмениваются взаимодействующие тела, представляют собой не обычные частицы, а виртуальные частицы. Виртуальные частицы отличаются тем, что обнаружить их за время их существования невозможно. Об их существовании и свойствах можно судить только косвенно – по силе переносимого взаимодействия. Непосредственно зарегистрировать виртуальную частицу нельзя. Например, виртуальный фотон по зрительному ощущению на сетчатке глаза зарегистрировать нельзя. Описание механизма взаимодействия на языке обмена виртуальными частицами не исключает, а дополняет классическое описание на языке полей и волн. Таким образом, концепция дальнодействия в науке оказалась отброшенной окончательно.

Издавна люди знают, что между телами существуют различные виды взаимодействий. Эти взаимодействия можно изучать и использовать, выводить законы и принципы их осуществления.

Однако всегда оставался открытым вопрос как осуществляется это взаимодействие? Что обусловливает его? Необходимо ли наличие непосредственного контакта между взаимодействующими объектами или возможно взаимодействие на расстоянии без связующих элементов?

В связи с этими вопросами в науке образовалось две теории, которые с переменным успехом существовали долгое время бок о бок. Это теория близкодействия и теория действия на расстоянии. В чем их суть? Разберемся по порядку.

Теория близкодействия

Сторонники этой теории всегда ищут какую-либо связь между двумя взаимодействующими телами. В случаях, когда тела непосредственно контактируют, и особенно, если эти тела находятся на расстоянии друг от друга и на первый взгляд не имеют непосредственной связи друг с другом.

Нахождение связей объясняет действие одного тела на другое при помощи промежуточных звеньев.

Например, в случае, когда одно тело издает звук, а другое слышит этот звук на расстоянии, может показаться, что звук уши слышат самостоятельно, без участия передающего тела, что уши непосредственно взаимодействуют с источником звука.

Однако, мы знаем, что звук передается по воздуху, как колебания среды, и на его передачу требуется определенное время. Соответственно, речь также идет о близкодействии.

То есть через цепочку передающих звеньев, в данном случае: источник-воздух-уши, взаимодействие передается от одного тела к другому.

Теория близкодействия утверждает также, что всякое взаимодействие происходит с определенной конечной скоростью.

Для объяснения гравитационных и электромагнитных сил, действующих без видимых промежуточных звеньев, придумывались невидимые истечения или атмосферы, исходящие от планет и магнитов.

Теория действия на расстоянии

Сторонники данной теории говорят о прямом действии одних тел на другие на расстоянии непосредственно через пустоту. Тела как-бы «чувствуют» друг друга. При этом действие передается мгновенно.

Один из их главных доводов был в том, что даже если тела соприкасаются непосредственно, то на самом деле между ними все равно находится пустота так как элементарные частицы никогда не касаются друг друга. Они взаимодействуют через пустоту.

Действие магнитных и гравитационных сил, например, также не связано с какой-либо средой. Они взаимодействуют и через вакуум и через инородные тела, как например, постоянный магнит , который будет притягивать железо, даже будучи завернутым в бумагу или помещенным в деревянный ящик.

Обе теории имели свои достоинства и недостатки. На данный момент победила теория близкодействия. Открытие гравитационного и

Фундаментальные физические взаимодействия.

Явление самоиндукции.Индуктивность

Закон эл-магнитн индукции.Правило Ленца

Работа магн сил.Магнитный поток

Явление электромагнитн индукции.ЭДС индукц в движ проводнике

Движение заряж частиц в м.п

Траектория частици движ перпендикулярно сил лин однор м.п. представл собой окруж, а част движ под углом к сил лин - спираль

Заключ в том что при внесении првода в эл-магнит в нем возник ток(индукционный) этот ток нагревает провод.Энерг выдел током в цепи опред так W= εiIt из закона сохран энергии след A=W=W-0 след BIlx= εiIt след εi=Blдx/t=Blv, εi=Blvsina x-растояние перемещения.

Магнитн поток-скал физ велич характ число линий магн индукции поля прониз замкнут круг Ф(Вб)=BScosa 1Вебер-это магнит поток созающ однородн магнитным полем с индукцией 1Тл через плоск поверхность S 1м 2 размещен перпендикул вектору магн индукции. E(энергия контура)=IФ. Работа A=IФ=Fx=BILx=BIS след A / =-A=-IФ=I(Ф 1 -Ф 2)=I Ф 1 -I Ф 2

ЭДС эл-магнитн индукции возник в контуре прямо пропорционал скорости изменен магнитного потока через него εi=-Ф/t Правилао Ленца: возникающий в контуре индукцион ток имеет такое направление что созданный им магнит поток через площадь ограничен контуром стремится компенсировать изменен магнит потока вызвавшее дан ток. Направлен индукц тока пожно определ по правилу прав руки: провод. мысленно обхватываем прав. рук. так чтобы б палец указ. направ. тока, тогда остальные пальцы окаж. согнуты в направлен. линий магнит. индукц.(B)

Ф=LI Индуктивность(L)-скал физ величин численно=собствен магнитн потоку прониз контур при силе тока в контуре 1А Измеряется в генри. 1Гн-это такая индуктивность которой облад контур если в нём при силе тока 1А за 1 сек возник ЭДС самоиндукц 1В Ε si =-LI/t

Понятие о движении в физике
В широком смысле движение трактовалось как любое изменение, происходящее в природе. Но в физике движение понималось как механическое перемещение, изменение положения тела в пространстве с течением времени относительно выбранной точки отсчета. Есть и иные формы движения – в живой природе, в обществе. В неживой природе также можно выделить такие формы, как химическое и геологическое движение.

Тем не менее именно физика занимается исследованием процессов, которые происходят в неживой природе и являются фундаментом гораздо более сложных процессов, происходящих на более высоких уровнях организации материи. И механическое движение является основой всех более сложных форм движения, как физических, так и нефизических. Так, механическим является движение по определенной траектории, но существует бестраекторное пространственное перемещение типа сферического распространения фронта электромагнитных или гравитационных волн в полях. Движение элементарных частиц тоже нельзя представить в виде определенной траектории, как у материальной точки. Совершенно другим законам подчиняются изменения (движения), происходящие в живых организмах и обществе.



Понятие взаимодействия в физике
Однако у всех форм движения материи есть нечто Общее. Все они сводятся к взаимодействию тел, которое обусловливает соединение различных материальных элементов в системы, их структурные связи и контакты с другими материальными системами. Таким образом, все свойства тел производны от взаимодействий. Для всякого объекта существовать – значит взаимодействовать, как-то проявлять себя по отношению к другим телам, находиться с ними в объективных отношениях.

Взаимодействие представляет собой развертывающийся во времени и пространстве процесс воздействия одних объектов на другие путем обмена материей и движением.

Взаимодействие всегда выступает как движение материи, а любое движение включает в себя различные, виды взаимодействия. По существу, эти понятия совпадают, хотя часто употребляются в разных контекстах. Когда мы говорим о движении, то имеем в виду не столько внутренние изменения, основанные на структурных взаимодействиях элементов системы, сколько внешнее пространственное перемещение тел, где взаимодействия как будто не видно. Но если взглянуть глубже, то и при пространственном перемещении тел обязательно есть их взаимодействие с окружающей средой и материальными полями, в результате чего изменяются свойства тел. Не существует такого

движения, в содержании которого не было бы взаимодействия элементов материи. В то же время всякое взаимодействие выступает как определенное изменение и движение.

Дальнодействие . После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие электрических заряженных тел, возник вопрос, почему физические тела, обладающие массой, действуют друг на друга на больших расстояниях через пустое пространство и почему заряженные тела взаимодействуют между собой даже через электрически нейтральную среду? До введения понятия «поле» на этот вопрос не было удовлетворительного ответа. Долгое время считалось, что взаимодействие между телами может непосредственно осуществляться через пустое пространство, которое не принимает участия в передаче взаимодействий, а передача взаимодействия от тела к телу передается мгновенно, т.е. с бесконечной скоростью. Такое предположение составляет сущность концепции дальнодействия, которую обосновал Р. Декарт. Большинство ученых придерживалось этой концепции вплоть до конца XIX в. Принцип дальнодействия утвердился в физике еще и потому, что гравитационное взаимодействие макроскопических тел в соответствии с законом всемирного тяготения И. Ньютона малозаметно, – притяжение слишком слабо, чтобы его ощутить. Поэтому экспериментально это было трудно подтвердить или опровергнуть. Только известные опыты Г. Кавендиша были первыми лабораторными наблюдениями гравитационного притяжения. Близкодействие . Напротив, законы взаимодействия электрически заряженных тел допускали возможность их относительно простой проверки. Вскоре было установлено, что взаимодействие электрических зарядов происходит не мгновенно. Каждая электрически заряженная частица создает электрическое поле, действующее на другие частицы не в тот же момент, а спустя некоторое время. Иными словами, взаимодействие передается через посредника – электромагнитное поле, а скорость распространения электромагнитного поля равна скорости света. Это составляет суть концепции близкодействия.

  • Взаимосвязь естественнонаучной и гуманитарной культур заключается в следующем:
  • 4. Характеристика знаний в древнем мире (Вавилон, Египет, Китай).
  • 5. Естествознание средневековья (мусульманский Восток, христианский Запад).
  • 6. Наука Нового времени (н. Коперник, Дж. Бруно, г. Галилей, и. Ньютон и другие).
  • 7. Классическое естествознание – характеристика.
  • 8. Неклассическое естествознание – характеристика.
  • 9. Стадии развития естествознания (синкретическая, аналитическая, синтетическая, интегрально-дифференциальная).
  • 10. Древнегреческая натурфилософия (Аристотель, Демокрит, Пифагор и др.).
  • 11. Научные методы. Эмпирический уровень (наблюдение, измерение, эксперимент) и теоретический уровень (абстрагирование, формализация, идеализация, индукция, дедукция).
  • 12. Пространство и время (классическая механика и. Ньютона и теория относительности а. Эйнштейна).
  • 13. Естественнонаучная картина мира: физическая картина мира (механическая, электромагнитная, современная – квантово-релятивистская).
  • 14. Структурные уровни организации материи (микро-, макро- и мегамир).
  • 15. Вещество и поле. Корпускулярно-волновой дуализм.
  • 16. Элементарные частицы: классификация и характеристика.
  • 17. Понятие взаимодействия. Концепция дальнодействия и близкодействия.
  • 18. Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое).
  • 19. Основы квантовой механики: открытия м. Планка, н. Бора, э. Резерфорда, в. Паули, э. Шрёдингера и др.
  • 20. Динамические и статистические законы. Принципы современной физики (симметрии, соответствия, дополнительности и соотношения неопределённостей, суперпозиции).
  • 21. Космологические модели Вселенной (от геоцентризма, гелиоцентризма к модели Большого взрыва и расширяющейся Вселенной).
  • 5. Модель Большого взрыва.
  • 6. Модель расширяющейся Вселенной.
  • 22. Внутреннее строение Земли. Геологическая шкала времени.
  • 23. История развития концепций геосферных оболочек Земли. Экологические функции литосферы.
  • 1) От элементного и молекулярного состава вещества;
  • 2) От структуры молекул вещества;
  • 3) От термодинамических и кинетических (наличие катализаторов и ингибиторов, воздействие материала стенок сосудов и т.Д.) условий, в которых вещество находится в процессе химической реакции;
  • 4) От высоты химической организации вещества.
  • 25. Основные законы химии. Химические процессы и реакционная способность веществ.
  • 26. Биология в современном естествознании. Характеристика «образов» биологии (традиционная, физико-химическая, эволюционная).
  • 1) Метод меченых атомов.
  • 2) Методы рентгеноструктурного анализа и электронной микроскопии.
  • 3) Методы фракционирования.
  • 4) Методы прижизненного анализа.
  • 5) Использование эвм.
  • 27. Концепции происхождения жизни на Земле (креационизм, самопроизвольное (спонтанное) зарождение, теория стационарного состояния, теория панспермии и теория биохимической эволюции).
  • 1. Креационизм.
  • 2. Самопроизвольное (спонтанное) зарождение.
  • 3. Теория стационарного состояния.
  • 4. Теория панспермии.
  • 5. Теория биохимической эволюции.
  • 28. Признаки живых организмов. Характеристика форм жизни (вирусы, бактерии, грибы, растения и животные).
  • 29. Структурные уровни организации живой материи.
  • 30. Происхождение и этапы эволюции человека как биологического вида.
  • 31. Клеточная организация живых систем (структура клетки).
  • 1. Животная клетка:
  • 2. Растительная клетка:
  • 32. Химический состав клетки (элементарный, молекулярный – неорганические и органические вещества).
  • 33. Биосфера – определение. Учение в. И. Вернадского о биосфере.
  • 34. Понятие о живом веществе биосферы. Функции живого вещества в биосфере.
  • 35. Ноосфера – определение и характеристика. Этапы и условия становления ноосферы.
  • 36. Физиология человека. Характеристика физиологических систем человека (нервная, эндокринная, сердечно-сосудистая, дыхательная, выделительная и пищеварительная).
  • 37. Концепция здоровья. Условия ортобиоза. Валеология – понятие.
  • 38. Кибернетика (исходные понятия). Качественная характеристика информации.
  • 39. Концепции самоорганизации: синергетика.
  • 40. Искусственный разум: перспективы развития.
  • 17. Понятие взаимодействия. Концепция дальнодействия и близкодействия.

    Под взаимодействием в более узком смысле понимают такие процессы, в ходе которых между взаимодействующими структурами и системами происходит обмен квантами определенных полей, энергией, а иногда и информацией.

    В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных видов фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному . Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий.

    Концепции дальнодействия и близкодействия.

    Близкодействие и дальнодействие -это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепцииблизкодействия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени.Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме.

    18. Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое).

    1. Гравитационное взаимодействие является универсальным, однако в микромире не учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица- гравитон- пока не обнаружена.

    (И. Ньютон) – самое слабое взаимодействие.

    2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t ~ 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица-переносчик – фотон (γ-квант).

    (Кулон).

    3. Слабое взаимодействие связано со всеми видами β-распада, им обусловлены многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t ~ 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10 -18 м. Частицы-переносчики – промежуточный векторный бозон:W + , W - , Z 0 .(Ферми).

    4. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия принимается равной1, радиус действия порядка 10 -15 м, время протекания t ~10 -23 с. Сильное взаимодействие осуществляется между кварками – частицами, из которых состоят протоны и нейтроны –cпомощью т.н. глюонов. (Юкава).

    Дальнодействие . После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие электрических заряженных тел, возник вопрос, почему физические тела, обладающие массой, действуют друг на друга на больших расстояниях через пустое пространство и почему заряженные тела взаимодействуют между собой даже через электрически нейтральную среду?

    До введения понятия «поле» на этот вопрос не было удовлетворительного ответа. Долгое время считалось, что взаимодействие между телами может непосредственно осуществляться через пустое пространство, которое не принимает участия в передаче взаимодействий, а передача взаимодействия от тела к телу передается мгновенно, т.е. с бесконечной скоростью. Такое предположение составляет сущность концепции дальнодействия, которую обосновал Р. Декарт. Большинство ученых придерживалось этой концепции вплоть до конца XIX в.

    Принцип дальнодействия утвердился в физике еще и потому, что гравитационное взаимодействие макроскопических тел в соответствии с законом всемирного тяготения И. Ньютона малозаметно, – притяжение слишком слабо, чтобы его ощутить. Поэтому экспериментально это было трудно подтвердить или опровергнуть. Только известные опыты Г. Кавендиша были первыми лабораторными наблюдениями гравитационного притяжения.

    Близкодействие . Напротив, законы взаимодействия электрически заряженных тел допускали возможность их относительно простой проверки. Вскоре было установлено, что взаимодействие электрических зарядов происходит не мгновенно. Каждая электрически заряженная частица создает электрическое поле, действующее на другие частицы не в тот же момент, а спустя некоторое время.

    Иными словами, взаимодействие передается через посредника – электромагнитное поле, а скорость распространения электромагнитного поля равна скорости света. Это составляет суть концепции близкодействия.

    Близкодействие и дальнодействие -это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепцииблизко действия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени. Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме.



    Вся совокупность элементарных частиц с их взаимодействиями проявляет себя макроскопически в форме вещества и

    поля. Поле в отличие от вещества обладает особыми свойствами. Физическая реальность электромагнитного поля видна хотя бы из того, что существуют радиоволны. Источником электромагнитного поля являются движущиеся заряженные частицы. Взаимодействие зарядов происходит по схеме: частица - поле - частица. Поле является переносчиком взаимодействия. В некоторых условиях поле может "оторваться" от своих источников и свободно распространяться в пространстве. Такое поле носит волновой характер.

    Как получают сведения о состоянии вещества звезд? Атомные процессы, которые разыгрываются во внешних оболочках звезд, сопровождаются излучением электромагнитных волн. Одним из таких процессов является возбуждение атомов, ведущее к излучению ряда характерных "порций" энергии электромагнитного поля (спектр). У каждого химического элемента имеется свой, только ему присущий спектр излучения. Анализируя, например, солнечный свет (свет является электромагнитным излучением) с помощью оптических приборов, можно определить химический состав и процентное содержание элементов во внешних оболочках Солнца.

    В современной естественно-научной картине мира как вещество, так и поле состоят из элементарных частиц, а частицы взаимодействуют друг с другом, взаимопревращаются. На уровне элементарных частиц происходит взаимопревращение поля и вещества. Так, фотоны могут превратиться в электронно-позитронные пары, а эти пары в процессе взаимодействия уничтожаются (аннигилируются) с образованием фотонов. Более того, вакуум тоже состоит из частиц (виртуальных частиц), которые взаимодействуют как друг с другом, так и с обычными частицами. Таким образом, исчезают фактически границы между веществом и полем и даже между вакуумом, с одной стороны, и веществом и полем - с другой. На фундаментальном уровне все грани в природе действительно оказываются условными. В современной естественно-научной картине мира вещество и поле взаимопревращаются. Поэтому в настоящее

    время предпринимаются настойчивые попытки создать единую теорию всех видов взаимодействий.

    При наличии нескольких полей для определения результирующего взаимодействия применяют принцип суперпозиции. Принцип суперпозиции в естествознании позволяет получать результирующий эффект от наложения (суперпозиции) нескольких независимых взаимодействий как сумму эффектов, вызываемых каждым взаимодействием в отдельности. Он справедлив для систем, описываемых линейными уравнениями. Принцип суперпозиции широко используется в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям. Согласно этому, если физическая система может находиться в состояниях, описываемых двумя или несколькими функциями, то система может также находиться в состоянии, описываемом любой линейной комбинацией этих функций.