"Стохастический" – это слово, которое физики, математики и другие ученые используют для описания процессов, обладающих элементом случайности. Происхождение его древнегреческое. В переводе оно означает "умеющий угадывать".

Значение слова "стохастический"

"Стохастический" - это понятие, которое используется во множестве различных областей науки. Оно означает случайность, хаотичность, неопределенность чего-либо. В этике Аристотеля (его скульптурный портрет представлен выше) понятие "стохастический" – это определение, относящееся к способности угадывать. Очевидно, математики употребляли его на том основании, что элемент случайности появляется как раз при необходимости угадывать. Слово "стохастический" – это понятие, которое определено в "Новом международном словаре" как "предположительный".

Таким образом, можно заметить, что техническое значение данного понятия не точно соответствует его словарному (лексическому) значению. Некоторые авторы используют выражение "стохастический процесс" как синоним понятия "случайный процесс".

Стохастичность в математике

Употребление данного термина в математике в настоящее время широко распространено. К примеру, существует такое понятие в теории вероятности, как стохастический процесс. Его итог нельзя определить по изначальному состоянию данной системы.

Употребление в математике понятия "стохастичность" относят к трудам Владислава Борцкевича. Именно он использовал данный термин в значении "выдвигать гипотезы". В математике, в особенности в таком разделе этой науки, как теория вероятности, область случайных исследований играет большую роль. Существует, к примеру, такое понятие, как стохастическая матрица. Колонки или строки данной матрицы в сумме дают единицу.

Стохастическая математика (финансовая)

Данный раздел математики анализирует финансовые структуры, действующие в условиях неопределенности. Он призван находить самые рациональные методы управления финансовыми средствами и структурами, учитывая такие факторы, как стохастическая эволюция, риск, время и др.

В науке принято выделять следующие структуры и объекты, которые используются в финансовой математике в целом:

  • фирмы (к примеру, компании);
  • индивидуумы;
  • посреднические структуры (пенсионные фонды, банки);
  • финансовые рынки.

Основным объектом изучения финансовой математики стохастической является именно последний из них. Данный раздел базируется на таких дисциплинах, как статистика случайных процессов, теория случайных процессов и др.

В настоящее время даже людям, далеким от науки, хорошо известно по многочисленным новостям и публикациям в СМИ, что значения так называемых глобальных финансовых индексов (например, индекса Доу Джонса), цены акций меняются хаотически. Л. Башелье предпринял первую попытку описать с использованием математики эволюцию стоимости акций. Его стохастический метод опирается на теорию вероятностей. Диссертация Л. Башелье, где представлена эта попытка, была опубликована в 1900 году. Ученый доказал формулу, известную в настоящее время как формула справедливой стоимости опциона-колл. В ней отражается стохастическая вероятность.

Важные идеи, которые в дальнейшем привели к возникновению теории эффективного рынка, были изложены в труде М. Кендалла, изданном в 1953 году. В этой работе рассматривается вопрос динамики цен акций. Исследователь описывает ее с помощью стохастических процессов.

Стохастичность в физике

Благодаря физикам Э. Ферми, С. Уламу, Н. Метрополису и Д. Нейману большое распространение получил метод Монте-Карло. Его название произошло от казино, расположенного в одноименном городе такой страны, как Монако. Именно здесь занимал деньги для игры дядя Улама. Использование природы повторов и случайностей для изучения процессов является аналогичным происходящей в казино деятельности.

При применении данного метода моделирования сначала происходит поиск вероятностного аналога. До этого моделирование осуществлялось в противоположном направлении: оно использовалось для проверки результата детерминированной проблемы, полученной ранее. И хотя и до открытия метода Монте-Карло существовали подобные подходы, они не были популярными и общими.

Энрико Ферми в 1930 году применил стохастические приемы для расчета свойств нейтрона, в то время только что обнаруженного. Методы Монте-Карло в дальнейшем использовались при работе над манхэттенским проектом, хотя в то время были существенно ограничены возможности вычислительных машин. По этой причине они получили широкое распространение только после того, как появились компьютеры.

Стохастические сигналы

Регулярные и стохастические сигналы имеют разные формы колебаний. Если повторно измерить последние, мы получим колебания, имеющие новую форму, которая отлична от предыдущей, однако проявляет определенное сходство в существенных чертах. Пример стохастического сигнала – запись колебаний волн моря.

Почему же вообще необходимо вести речь об этих достаточно необычных сигналах? Дело в том, что при изучении автоматических систем они встречаются даже чаще, чем предсказуемые.

Стохастичность и искусственный интеллект

Стохастические программы в сфере искусственного интеллекта работают с применением вероятностных методов. В качестве примера можно привести такие алгоритмы, как стохастическая оптимизация или нейронные сети. Это же относится к имитации отжига и генетическим алгоритмам. Во всех этих случаях стохастичность может содержаться в проблеме как таковой или же в планировании чего-либо в условии неопределенности. Детерминированное окружение для агента моделирования является более простым, чем стохастическое.

Итак, как мы видим, интересующее нас понятие используется во многих областях науки. Мы перечислили и охарактеризовали лишь основные сферы его применения. Изучение всех этих процессов, согласитесь, очень важно и актуально. Именно поэтому интересующее нас понятие, вероятно, будет еще долго использоваться в науке.

Рассмотрим переменную, подчиняющуюся марковскому стохастическому процессу. Предположим, что ее текущее значение равно 10, а изменение в течение года описывается функцией 0(0, 1), где а) - нормальное распределение вероятностей с математическим ожиданием // и стандартным отклонением о. Какое распределение вероятностей описывает изменение этой переменной в течение двух лет?
Изменение переменной через два года описывается суммой двух нормальных распределений с нулевыми математическими ожиданиями и единичными стандартными отклонениями. Поскольку переменная является марковской, эти распределения не зависят друг от друга. Складывая два независимых нормальных распределения, мы получим нормальное распределение, математическое ожидание которого равно сумме математических ожиданий каждого из слагаемых, а дисперсия - сумме их дисперсий. Таким образом, математическое ожидание изменений рассматриваемой переменной на протяжении двух лет равно нулю, а дисперсия - 2,0. Следовательно, изменение значения переменной через два года является случайной величиной с распределением вероятностей ф(0, %/2).
Рассмотрим далее изменение переменной за шесть месяцев. Дисперсия изменений этой переменной в течение одного года равна сумме дисперсий этих изменений на протяжении первых и вторых шести месяцев. Предположим, что эти дисперсии одинаковы. Тогда дисперсия изменений переменной на протяжении шести месяцев равна 0,5, а стандартное отклонение - 1/0,5. Следовательно, распределение вероятностей изменения переменной на протяжении шести месяцев равно ф(0, \ДЩ)
Аналогичные рассуждения позволяют доказать, что изменение переменной на протяжении трех месяцев имеет распределение 0(0, ^/0,25). Вообще говоря, изменение переменной на протяжении временного периода, имеющего длину Т, описывается распределением вероятностей ф(0, \[Т) В частности, изменение переменной за очень короткий промежуток времени, имеющий длину АТ, описывается распределением вероятностей ф(0, л/ДТ).
Квадратные корни в этих выражениях могуг показаться странными. Они возникают изза того, что при анализе марковского процесса дисперсии изменений переменной в последовательные моменты времени складываются, а стандартные отклонения - нет. В нашем примере дисперсия изменений переменной в течение одного года равна 1,0, поэтому дисперсия изменений этой переменной в течение длух лет равна 2,0, а через три года3,0. В то же время стандартные отклоне
ния изменений переменных через два и три года равны \/2 и \/3 соответственно. Строго говоря, мы не должны говорить, что стандартное отклонение изменений переменной за один год равно 1,0 в год. Следует говорить, что оно равно “корню квадратному из единицы в год”. Это объясняет, почему величину неопределенности часто считают пропорциональной квадратному корню из времени.
Винеровские процессы
Процесс, которому подчиняется рассмотренная выше переменная, называется винеровским (Wiener process). Он представляет собой частный случай марковского стохастического процесса, когда математическое ожидание изменений переменной равно нулю, а их дисперсия равна 1,0. Этот процесс широко используется в физике для описания движения частицы, участвующей в большом количестве столкновений с молекулами (это явление называется броуновским движением (Brownian motion)).
Говоря формально, переменная z подчиняется винеровскому процессу, если она имеет следующие свойства.
СВОЙСТВО 1. Изменение Az на протяжении малого промежутка времени At удовлетворяет равенству
Az = ey/At, (12.1)
где е - случайная величина, подчиняющаяся стандартизованному нормальному распределению ф(0,1).
Свойство 2. Величины Az на двух малых промежутках времени At являются независимыми.
Из первого свойства следует, что величина Az имеет нормальное распределение, у которого математическое ожидание равно нулю, стандартное отклонение равно VAt, а дисперсия равна At. Второе свойство означает, что величина 2 подчиняется марковскому процессу.
Рассмотрим увеличение переменной z на протяжении относительно долгого периода времени Т. Это изменение можно обозначить как z(T) - z(0). Его можно представить в виде суммы увеличения переменной г на протяжении N относительно малых промежутков времени, имеющих длину At. Здесь
Следовательно,
z(т)z(o) = J2?^t’ (12.2)
г=1
где?г,г = 1,2,...,ЛГслучайные величины, имеющие распределение вероятностей ф(0,1). Из второго свойства винеровского процесса следует, что величины?
?; являются независимыми друг от друга. Из выражения (12.2) следует, что случайная величина z(T) - z(0) имеет нормальное распределение, математическое ожидание которого равно нулю, дисперсия равна NAt = Т, а стандартное отклонение - у/Т. Эти выводы согласуются с результатами, указанными выше. Пример 12.1
Предположим, что значение г случайной переменной, подчиняющейся винеровскому процессу, в первоначальный момент времени равно 25, а время измеряется годами. В конце первого года значение переменной имеет нормальное распределение с математическим ожиданием, равным 25, и стандартным отклонением, равным 1,0. В конце пятого года значение переменной имеет нормальное распределение с математическим ожиданием, равным 25, и стандартным отклонением, равным л/5, т.е. 2,236. Неопределенность значения переменной в определенный момент в будущем, измеренная его стандартным отклонением, возрастает как квадратный корень из длины прогнозируемого интервала. ?
В математическом анализе широко используется переход к пределу, когда величина малых изменений стремится к нулю. Например, при At -> 0 величина Ах = aAt превращается в величину dx = adt. При анализе стохастических процессов используются аналогичные обозначения. Например, при At -> 0 описанный выше процесс Az стремится к винеровскому процессу dz.
На рис. 12.1 показано, как изменяется траектория переменной z при At -> 0. Обратите внимание на то, что этот график является “зазубренным”. Это объясняется тем, что изменение переменной z за время At пропорционально величине v^Af, а когда величина At становится малой, число \/Аt намного больше, чем At. Благодаря этому, винеровский процесс обладает двумя интригующими свойствами.
1. Ожидаемая длина траектории, которую проходит переменная z в течение любого промежутка времени, является бесконечной.
2. Ожидаемое количество совпадений переменной z с любым конкретным значением на любом промежутке времени является бесконечным.
Обобщенный винеровский процесс
Скоростью дрейфа (drift rate), или коэффициентом сноса, стохастического процесса называется средняя величина изменения переменной величины за единицу времени, а дисперсией (variance rate), или коэффициентом диффузии - величина колебаний за единицу времени. Скорость дрейфа основного винеровского процесса dz, рассмотренного выше, равна нулю, а дисперсия равна 1,0. Нулевой дрейф означает, что ожидаемое значение переменной z в любой момент времени равно ее текущему значению. Единичная дисперсия процесса означает, что дисперсия изменения переменной z на интервале времени Т равна его длине.
Рис. 12.1. Изменение цены акции в примере
Обобщенный винеровский процесс (generalized Wiener process) для переменной х можно определить через величину dz следующим образом.
dx - adt + bdz, (12.3)
где а и b - константы.
Чтобы понять смысл уравнения (12.3), полезно рассмотреть два слагаемых в правой части по отдельности. Слагаемое a dt означает, что ожидаемая скорость дрейфа переменной х равна о единиц в единицу времени. Без второго члена уравнение (12.3) превращается в уравнение
dx = adt,
откуда следует, что
dx
Интегрируя это уравнение по времени, получаем
х = хо + а?,
где хо - значение переменной х в нулевой момент времени. Таким образом, за период времени Т переменная х увеличивается на величину ей. Член Ь dz можно рассматривать как шум, или изменчивость траектории, которую проходит переменная х. Величина этого шума в Ь раз больше значения винеровского процесса. Стандартное отклонение винеровского процесса равно 1,0. Отсюда следует, что стандартное отклонение величины Ь dz равно Ь. На небольших промежутках времени АЬ изменение Ах переменной х определяется уравнениями (12.1) и (12.3).
Ах = аАЬ + ЪЕУ/АЬ,
где е, как и прежде, - случайная величина, имеющая стандартизованное нормальное распределение. Итак, величина Ах имеет нормальное распределение, математическое ожидание которого равно аАЬ, стандартное отклонение - 6л/Д7, а дисперсия - Ь2Д/. Аналогичными рассуждениями можно показать, что изменение переменной х в течение произвольного интервала времени Т имеет нормальное распределение с математическим ожиданием с.Т, стандартным отклонением Ьу/Т и дисперсией Ь2Т. Таким образом, ожидаемая скорость дрейфа обобщенного винеровского процесса (12.3) (т.е. среднее изменение дрейфа в единицу времени) равна а, а дисперсия (т.е. дисперсия переменной за единицу времени) - Ь2. Этот процесс изображен на рис. 12.2. Проиллюстрируем скачанное следующим примером.
Пример 12.2
Рассмотрим ситуацию, в которой доля активов компании, вложенных в краткосрочные денежные эквиваленты (cash position), измеренные тысячами долларов, подчиняется обобщенному винеровскому процессу со скоростью дрейфа, равной 20 тыс. долл. в год, и дисперсией, равной 900 тыс. долл. в год. В первый момент времени доля активов равна 50 тыс. долл. Через год эта доля активов будет иметь нормальное распределение с математическим ожиданием, равным 70 тыс. долл., и стандартным отклонением, равным л/900, т.е. 30 долл. Через шесть месяцев она будет иметь нормальное распределение с математическим ожиданием, равным 60 тыс. долл., и стандартным отклонением, равным 30\ДЦ> = 21,21 долл. Неопределенность, связанная с долей активов, вложенных в краткосрочные эквиваленты наличности, измеренная с помощью стандартного отклонения увеличивается как корень квадратный из длины прогнозируемого интервала. Обратите внимание на то, что эта доля активов может стать отрицательной (когда компания делает займы). ?
Процесс Ито
Стохастическим процессом Ито (Ito process) называется обобщенный винеровский процесс, б котором параметры а и Ь являются функциями, зависящими от переменной х и времени t. Процесс Ито можно выразить следующей формулой.
dx = а(х, t)dt + b(x, t)d,z,?
И ожидаемая скорость дрейфа, и дисперсия этого процесса со временем изменяются. За небольшой промежуток времени от t до At переменная изменяется от
х до х + Ах, где
Ах = а{х, t) At + Ъ(х, t)e\fAt.
Это отношение содержит небольшую натяжку. Она связана с тем, что мы считаем дрейф и дисперсию переменной х постоянными величинами, которые на интервале времени от t до At равны а(х, t) и b(x, t)2 соответственно.

Материал из synset

Эти материалы являются сокращённой электронной версией книги "Стохастический мир". После конвертации из LaTex появились неизбежные артефакты, которые будут постепенно устраняться. Об ошибках или опечатках, найденных в последней версии убедительная просьба сообщать, например, в закладке "обсуждение" вверху на этой странице или почтой mathсайт. Вы этим очень поможете в улучшении книги. Приветствуются также комментарии общего плана: что понравилось, а что нет. Для чтения книги в web-браузере стоит прочитать совет по настройке браузера для более комфортного просмотра формул.

С уважением, Степанов Сергей Сергеевич.

Случайные события

Стохастические уравнения

Средние значения стохастических процессов

Вероятности стохастических процессов

Стохастические интегралы

Системы уравнений

Стохастическая природа

Стохастическое общество

Краткое содержание

Случайные события

Абсолютно детерминированных событий и процессов не бывает. Вселенная разговаривает с нами на языке теории вероятностей. Предполагается, что Читатель хорошо знаком с ней, поэтому напоминаются только факты, необходимые для дальнейшего изучения предмета.

Первый раздел является вводным, он подводит к необходимости использования стохастических дифференциальных уравнений при исследовании различных систем. Затем обсуждается понятие плотности вероятностей, позволяющей вычислять наблюдаемые в среднем величины. Гауссова вероятность лежит в основе шума, воздействующего на детерминированную динамику. Стохастическая связь между случайными величинами и, наоборот, их независимость важны при обнаружении закономерностей между различными объектами и их характеристиками. Ключевым разделом главы является Модель аддитивного блуждания . Именно обобщение этой простой модели приведёт нас в следующей главе к стохастическим дифференциальным уравнениям. Последний раздел Мартингалы и бесплатный сыр содержит ряд формальных определений, которые при желании можно опустить.

Стохастические уравнения

Эта глава является ключевой. В ней вводится основной математический объект нашего интереса -- стохастические дифференциальные уравнения. Мы будем использовать максимально неформальный, интуитивный путь, считая, что получение конкретных практических результатов важнее, чем математически строгое их обоснование.

Стохастические уравнения представляют собой достаточно естественный непрерывный по времени предел дискретных случайных процессов, рассмотренных в предыдущей главе. Даже решая непрерывное уравнение, мы будем постоянно возвращаться к его дискретному аналогу, как для получения общих аналитических результатов, так и для численного моделирования. Исключительно важным результатом главы является лемма Ито, при помощи которой мы научимся находить точные решения уравнений в некоторых простых, но важных для практических приложений задачах. Затем обсуждаются способы вычисления автокорреляционной функции случайного процесса и его спектральные свойства. В заключение мы затронем тему систем уравнений, к которой более последовательно вернёмся в шестой главе.

Средние значения

Дифференциальное уравнение для случайной функции x(t) - это лишь один из возможных языков описания стохастического процесса. В ситуации, когда система эволюционирует со временем, средние значения также изменяются и подчиняются определённым дифференциальным уравнениям. Фактически, их решение является наиболее прямым способом получения практически полезных результатов.

Мы начнём эту главу с вывода динамического уравнения для средних. С его помощью будет получено простое выражение для плотности вероятности в ситуации, когда система имеет стационарный режим. Затем мы подробно проанализируем две стохастические задачи: уравнение Феллера и логистическое уравнение. В заключение будут рассмотрены метод разложения средних величин в степенной ряд по времени и квазидетерминированное приближение.

Вероятности

Ещё одним способом получения информации о поведении стохастического процесса является решение уравнений для условной плотности вероятности которым посвящена эта глава.

На простых примерах будут продемонстрированы методы решения подобных уравнений. Затем мы рассмотрим вопрос о граничных условиях, которые наиболее естественным образом учитываются при помощи уравнения Фоккера-Планка. Будет вычислено среднее время достижения границы и построен простой метод решения уравнения Фоккера-Планка при наличии граничных условий. Решения уравнений x(t) мы часто записываем при помощи гауссовой случайной переменной.

Стохастические интегралы

Как и в обычном анализе, если определено стохастическое дифференцирование, то естественно ввести и стохастическое интегрирование. Соответствующая техника даст нам ещё один инструмент получения соотношений для иногда достаточно общих случайных процессов. Это очень красивый раздел стохастической математики, который к тому же активно используется в учебной и научной литературе.

В дифференциальных уравнениях присутствуют два бесконечно малых изменения -- снос, пропорциональный dt, и волатильность шума. Соответственно, возможно два вида интегралов. В первом разделе мы рассмотрим стохастические интегралы по dt, изучим их основные свойства и найдём представление некоторых интегралов через обычные случайные величины. Во втором разделе рассматривается интеграл Ито по . Далее будут получены условия, при которых решение стохастического дифференциального уравнения единственно, и рассмотрен итерационный метод построения этого решения.

Системы уравнений

Одномерные стохастические уравнения позволяют описывать только сравнительно простые системы. Даже для обычного физического осциллятора необходимо решать систему из двух уравнений первого порядка. Реальность в общем случае -- многомерна. Она даёт нам множество примеров достаточно сложных, но исключительно интересных случайных процессов.

Как и в одномерном случае, мы начнём с дискретных процессов, обобщение которых на непрерывный случай приведёт нас к системе стохастических дифференциальных уравнений. Фактически, эта глава повторяет большинство результатов предыдущих глав. Для тех, кто уверенно владеет тензорной и матричной алгеброй, соответствующие обобщения служат лишь способом повторения уже известного материала. После вывода основных многомерных уравнений будут рассмотрены решения некоторых задач.

Стохастическая природа

В этой главе приведены примеры природных систем, которые естественным образом описываются при помощи стохастических дифференциальных уравнений. Эти системы охватывают широкий спектр приложений от физики до биологии, однако не требуют глубоких познаний в соответствующих областях. Большинство разделов не связаны друг с другом и могут быть прочитаны в любом порядке, независимо друг от друга. Первое стохастическое дифференциальное уравнение в 1908 году записал Поль Ланжевен (Paul Langevin). Именно с него начинается эта глава.

Стохастическое общество

В этой главе собраны некоторые примеры применения стохастических методов к финансовым рынкам и экономике. Волатильный характер цен и экономических индикаторов приводит к тому, что динамика соответствующих систем является существенно стохастической, и член в уравнениях Ито играет ведущую роль.

Сначала мы сделаем небольшой экскурс в финансовые рынки и эмпирические свойства цен финансовых инструментов. Затем рассмотрим теорию диверсификации и бета - коэффициенты. Стохастические методы оказываются очень полезными при изучении сложных финансовых инструментов. Примером такого инструмента является опцион. Мы рассмотрим основные его свойства и двумя различными способами выведем формулу Блэка-Шоулза. После этого будет рассмотрена простая однофакторная модель кривой доходности.

Слово стохастический используется математиками и физиками для описания процессов, в которых имеется элемент случайности. Оно происходит непосредственно от греческого слова «атоааизеоа». В этике Аристотеля это слово используется в смысле «способности угадывать». Математики применили это слово, очевидно, на том основании, что при необходимости угадывать появляется элемент случайности. В «Новом международном словаре» Вебстера слово стохастический определено как предположительный. Мы, таким образом, замечаем, что техническое значение этого слова не находится в точном соответствии с его лексическим (словарным) определением. В том же смысле, что и «стохастический процесс», некоторые авторы пользуются выражением «случайный процесс». В дальнейшем мы будем говорить о процессах и сигналах, которые не являются чисто случайными, но содержат в себе случайность в той или иной степени. По этой причине мы предпочитаем слово «стохастический».

Рис. 3.1-1. Сравнение типичного стохастического и предсказуемого сигналов.

На рис. 3.1-1 сравниваются простые формы колебаний стохастического и регулярного сигналов. Если повторить эксперимент по измерению стохастического сигнала, то мы получим колебания новой формы, отличной от предыдущей, но все еще проявляющей некоторое сходство в характерных чертах. Запись колебаний волн океана

является еще одним примером стохастического сигнала. Почему необходимо говорить об этих, довольно необычных, стохастических сигналах? Ответ на этот вопрос основан на том факте, что входные сигналы систем автоматики зачастую не являются полностью предсказуемыми подобно синусоиде или простейшему переходному процессу. В действительности, стохастические сигналы встречаются при исследованиях автоматических систем чаще, чем предсказуемые сигналы. Тем не менее то обстоятельство, что предсказуемые сигналы имеют большое значение до настоящего времени, не является серьезным упущением. Весьма часто можно прийти к приемлемой методике, подбирая сигналы из класса предсказуемых сигналов так, чтобы отобразить характерные особенности истинного сигнала, являющегося по своей природе стохастическим. Примером такого рода является использование нескольких соответственно подобранных синусоид с целью представить стохастические изменения моментов, обусловливающих качку, в задаче об устойчивости корабля. С другой стороны, мы встречаем такие задачи, в которых представление истинного стохастического сигнала с помощью предсказуемой функции весьма затруднительно. В качестве первого примера рассмотрим схему системы автоматического слежения за целью и управления огнем. Здесь наводящее радиолокационное устройство измеряет ошибку наведения не точно, а только приблизительно. Разность между истинной ошибкой наведения и тем, что измеряет радиолокатор, часто называют радиолокационным шумом. Обычно очень трудно аппроксимировать радиолокационный шум несколькими синусоидами или другими простыми функциями. Другим примером является плетение текстильных волокон. В процессе плетения из беспорядочно запутанных связок волокна (называемых пряжей) вытягивается нить. Толщину нити, в некотором смысле, можно рассматривать как входной сигнал при регулировании процесса плетения. Отклонения в этом процессе происходят из-за изменения числа и толщины отдельных волокон в различных переплетающихся участках пряжи. Очевидно, этот тип отклонений является по своей природе стохастическим, и его затруднительно аппроксимировать любыми регулярными функциями.

Предыдущие рассуждения показывают, что стохастические сигналы при исследовании систем регулирования играют важную роль. Пока мы говорили о стохастических сигналах как о сигналах, вызванных процессами, содержащими некоторый элемент случайности. Чтобы перейти к дальнейшему, мы должны уточнить понятия о таких сигналах. Современная физика, в особенности квантовая механика, учит, что все физические процессы при детальном исследовании

оказываются разрывными и недетерминированными. Законы классической механики заменяются статистическими законами, основанными на вероятности событий. Например, мы обычно считаем напряжение колебаний, возникающих на экране вакуумной трубки осциллографа, гладкой функцией. Однако мы знаем, что если исследовать эти колебания при помощи микроскопа, они не будут выглядеть столь гладко из-за дробового шума в трубке, сопровождающего возбуждение колебаний. После некоторого размышления нетрудно склониться к тому, что все сигналы в природе являются стохастическими. Хотя сначала мы предположили, что по сравнению с синусоидой или функцией единичного скачка стохастический сигнал является относительно абстрактным понятием, но в действительности вернее обратное: синусоида, функция единичного скачка и вообще регулярные сигналы представляют абстракцию. Однако, подобно евклидовой геометрии, - это полезная абстракция.

Стохастический сигнал не может быть представлен графически наперед заданным образом, так как он обусловлен процессом, содержащим элемент случайности. Мы не можем сказать, какова величина стохастического сигнала в будущий момент времени. О стохастическом сигнале в будущий момент времени можно сказать только какова вероятность, что его величина попадает в определенный интервал. Мы, таким образом, видим, что понятия функции для стохастического сигнала и для регулярного сигнала совершенно различны. Для регулярной переменной величины идея функции подразумевает определенную зависимость переменной от ее аргумента. С каждой величиной аргумента мы связываем одно или несколько значений переменной. В случае стохастической функции мы не можем связать единственным образом величину переменной с некоторым частным значением аргумента. Все, что мы можем сделать - это связать с частными значениями аргумента некоторые распределения вероятности. В определенном смысле все регулярные сигналы являются тем предельным случаем стохастических сигналов, когда распределения вероятности обладают высокими пиками, так что неопределенность положения переменной для частной величины аргумента равна нулю. На первый взгляд стохастическая переменная может показаться настолько неопределенной, что ее аналитическое рассмотрение невозможно. Однако мы увидим, что анализ стохастических сигналов может быть проведен с помощью функций плотности вероятности и других статистических характеристик, таких как средние величины, среднеквадратичные величины и функции корреляции. Ввиду статистической природы стохастические сигналы зачастую удобно считать элементами множества сигналов, каждый из которых обусловлен одиим и тем же процессом. Это множество сигналов называется ансамблем. Понятие ансамбля для стохастических сигналов соответствует понятию населения в статистике. Характеристики стохастического сигнала

относятся обычно к ансамблю, а не к частному сигналу ансамбля. Таким образом, когда мы говорим об определенных свойствах стохастического сигнала, то обычно подразумеваем, что этими свойствами обладает ансамбль. Вообще невозможно считать, что отдельный стохастический сигнал имеет произвольные свойства (с возможным исключением несущественных свойств). В следующем параграфе мы обсудим важное исключение из этого общего правила.

Это процесс, поведение которого не является детерминированным , и последующее состояние такой системы описывается как величинами, которые могут быть предсказаны, так и случайными. Однако, по М. Кацу и Э. Нельсону , любое развитие процесса во времени (неважно, детерминированное или вероятностное) при анализе в терминах вероятностей будет случайным процессом (иными словами, все процессы, имеющие развитие во времени, с точки зрения теории вероятностей, стохастические).

Стохастичность в математике

Использование термина стохастичность в математике относят к работам Владислава Борцкевича , который использовал его в значении выдвигать гипотезы , которое, в свою очередь, отсылает нас к древнегреческим философам, а также к работе Я. Бернулли Ars Conjectandi (лат. искусство загадывать) .

Область исследований случайных в математике , особенно в теории вероятностей , играет большую роль.

Использование методов Монте-Карло требует большого числа случайных величин, что, как следствие, привело к развитию