Людям постоянно приходится иметь дело с различными совокупностями предметов, что повлекло за собой возникновение понятия числа, а затем и понятия множества, которое является одним из основных простейших математических понятий и не поддается точному определению. Нижеследующие замечания имеют своей целью пояснить, что такое множество , но не претендуют на то, чтобы служить его определением.

Множеством называется собрание, совокупность, коллекция вещей, объединенных по какому-либо признаку или по какому-либо правилу. Понятие множества возникает путем абстракции. Рассматривая какую-либо совокупность предметов как множество, отвлекаются от всех связей и соотношений между различными предметами, составляющими множества, но сохраняют за предметами их индивидуальные черты. Таким образом, множество, состоящее из пяти монет, и множество, состоящее из пяти яблок, - это разные множества. С другой стороны, множество из пяти монет, расположенных по кругу, и множество из тех же монет, положенных одна на другую, - это одно и то же множество.

Приведем несколько примеров множеств. Можно говорить о множестве песчинок, составляющих кучу песка, о множестве всех планет нашей солнечной системы, о множестве всех людей, находящихся в данный момент в каком-либо доме, о множестве всех страниц этой книги. В математике тоже постоянно встречаются различные множества, например множество всех корней заданного уравнения, множество всех натуральных чисел, множество всех точек на прямой и т. д.

Математическая дисциплина, изучающая общие свойства множеств, т. е. свойства множеств, не зависящие от природы составляющих их предметов, называется теорией множеств. Эта дисциплина начала бурно развиваться в конце XIX и начале XX в. Основатель научной теории множеств - немецкий математик Г. Кантор.

Работы Кантора по теории множеств выросли из рассмотрения вопросов сходимости тригонометрических рядов. Это весьма обычное явление: очень часто рассмотрение конкретных математических задач ведет к построению весьма абстрактных и общих теорий. Значение таких абстрактных построений определяется тем, что они оказываются связанными не только с той конкретной задачей, из которой они выросли, но имеют приложения и в ряде других вопросов. В частности, именно так обстоит дело и с теорией множеств. Идеи и понятия теории множеств проникли буквально во все разделы математики и существенно изменили ее лицо. Поэтому нельзя получить правильного представления о современной математике, не познакомившись с элементами теории множеств. Особенно большое значение имеет теория множеств для теории функций действительного переменного.

Множество считается заданным, если относительно любого предмета можно сказать, принадлежит он множеству или не принадлежит. Иными словами, множество вполне определяется заданием всех принадлежащих ему предметов. Если множество \(M\) состоит из предметов \(a,\,b,\,c,\,\ldots\) и только из этих предметов, то пишут

\(M=\{a,\,b,\,c,\,\ldots\}\)

Предметы, составляющие какое-либо множество, принято называть его элементами. Тот факт, что предмет т является элементом множества \(M\) , записывается в виде

\(\Large{m\in M}\)


и читается: " \(m\) принадлежит \(M\) ", или " \(m\) есть элемент \(M\) ". Если же предмет \(m\) не принадлежит множеству \(M\) , то пишут: \(m\notin M\) . Каждый предмет может служить лишь одним элементом заданного множества; иными словами, все элементы (одного и того же множества отличны
друг от друга.

Элементы множества \(M\) могут сами быть множествами, однако, во избежание противоречий, приходится требовать, чтобы само множество \(M\) не было одним из своих собственных элементов: \(M\notin M\) .

Множество, не содержащее ни одного элемента, называется пустым множеством . Например, множество всех действительных корней уравнения

\(x^2+1=0\)


есть пустое множество. Пустое множество в дальнейшем будем обозначать через \(\varnothing\) .

Если для двух множеств \(M\) и \(N\) каждый элемент \(x\) множества \(M\) является также элементом множества \(N\) , то говорят, что \(M\) входит в \(\) , что \(M\) есть часть \(N\) , что \(M\) есть подмножество \(M\) или что \(M\) содержится в \(N\) ; это записывается в виде

\(M\subseteq N\) или \(N\supseteq M\)

Например, множество \(M=\{1,2\}\) есть часть множества \(N=\{1,2,3\}\) .

Ясно, что всегда \(M\subseteq M\) . Удобно считать, что пустое множество есть часть любого множества.

Два множества равны , если они состоят из одних и тех же элементов. Например, множество корней уравнения \(x^2-3x+2=0\) и множество \(M=\{1,2\}\) между собою равны.

Определим правила действий над множествами .

Объединение или сумма множеств

Пусть имеются множества \(M,N,P,\ldots\) . Объединением или суммой этих множеств называется множество \(X\) , состоящее из всех элементов, принадлежащих хотя бы одному из "слагаемых"

\(X=M+N+P+\ldots\) или \(X=M\cup N\cup P\cup\ldots\)

При этом, даже если элемент \(x\) принадлежит нескольким слагаемым, то он входит в сумму \(M\) лишь один раз. Ясно, что

\(M+M=M\cup M=M\)


и если \(M\subseteq N\) , то

\(M+N=M\cup N=N\)

Пересечение множеств

Пересечением или общей частью множеств \(M,N,P,\ldots\) . называется множество \(Y\) , состоящее из всех тех элементов, которые принадлежат одновременно всем множествам \(M,N,P,\ldots\) .

Ясно, что \(M\cdot M=M\) , и если \(M\subseteq N\) , то \(M\cdot N=M\) .

Если пересечение множеств \(M\) и \(N\) пусто: \(M\cdot N=\varnothing\) , то говорят, что эти множества не пересекаются .

Для обозначения операции суммы и пересечения множеств употребляют также знаки \(\textstyle{\sum}\) и \(\textstyle{\prod}\) . Таким образом,

\(E=\sum E_i\) есть сумма множеств \(E_i\) , a \(F=\prod E_i\) - их пересечение.

\(M(N+P)=MN+MP,\)


а также законом

\(M+NP=(M+N)(M+P).\)

Разность множеств

Разностью двух множеств \(M\) и \(N\) называется множество \(Z\) всех тех элементов из \(Z\) , которые не принадлежат \(N\) :

\(Z=M-N\) или \(Z=M\setminus N\) .

Если \(N\subseteq M\) , то разность \(Z=M\setminus N=M-N\) называют также дополнением к множеству \(N\) относительно \(M\) .

Нетрудно показать, что всегда

\(M(N-P)=MN-MP\) и \((M-N)+MN=M.\)

Таким образом, правила действий над множествами значительно отличаются от обычных правил арифметики.

Конечные и бесконечные множества

Множества, состоящие из конечного числа элементов, называются конечными множествами. Если же число элементов множества неограниченно, то такое множество называется бесконечным. Например, множество всех натуральных чисел бесконечно.

Рассмотрим два каких-либо множества \(M\) и \(N\) и поставим вопрос о том, одинаково или нет количество элементов в этих множествах.

Если множество \(M\) конечно, то количество его элементов характеризуется некоторым натуральным числом - числом его элементов. В этом случае для сравнения количества элементов множеств \(M\) и \(N\) достаточно сосчитать число элементов в \(M\) , число элементов в \(N\) и сравнить полученные числа. Естественно также считать, что если одно из множеств \(M\) и \(N\) конечно, а другое бесконечно, то бесконечное множество содержит больше элементов, чем конечное.

Однако, если оба множества \(M\) и \(N\) бесконечны, то путь простого счета элементов ничего не дает. Поэтому сразу возникают такие вопросы: все ли бесконечные множества имеют одинаковое количество элементов, или же существуют бесконечные множества с большим и меньшим количеством элементов? Если верно второе, то каким способом можно сравнивать между собой количество элементов в бесконечных множествах? Этими вопросами мы теперь и займемся.

Взаимно однозначное соответствие множеств

Пусть снова \(M\) и \(N\) - два конечных множества. Как узнать, какое из этих множеств содержит больше элементов, не считая числа элементов в каждом множестве? Для этого будем составлять пары, объединяя в пару один элемент из \(M\) и один элемент из \(N\) . Тогда, если какому-нибудь элементу из \(M\) не найдется парного к нему элемента из \(N\) , то в \(M\) больше элементов, чем в \(N\) . Поясним это рассуждение примером.

Пусть в зале находится некоторое число людей и некоторое число стульев. Чтобы узнать, чего больше, достаточно попросить людей занять места. Если кто-нибудь остался без места, значит, людей больше, а если, скажем, все сидят и заняты все места, то людей столько же, сколько стульев. Описанный способ сравнения количества элементов во множествах имеет то преимущество перед непосредственным счетом элементов, что он без особых изменений применяется не только к конечным, но и к бесконечным множествам.

Рассмотрим множество всех натуральных чисел

\(M=\{1,\,2,\,3,\,4,\,\ldots\}\)


и множество всех четных чисел

\(N=\{2,\,4,\,6,\,8,\,\ldots\}\)

Какое множество содержит больше элементов? На первый взгляд кажется, что первое. Однако мы можем образовать из элементов этих множеств пары, как указано ниже.


Таблица 1

\({\color{blue}\begin{array}{c|c|c|c|c|c} {\color{black}M} &{\color{black}1} &{\color{black}2} &{\color{black}3} &{\color{black}4} &{\color{black}\cdots}\\\hline {\color{black}N} &{\color{black}2} &{\color{black}4} &{\color{black}6} &{\color{black}8} &{\color{black}\cdots} \end{array}}\)


Ни один элемент \(M\) и ни один элемент \(N\) не остается без пары. Правда, мы могли бы также образовать пары и так:

Таблица 2

\({\color{blue}\begin{array}{c|c|c|c|c|c|c} {\color{black}M}&{\color{black}1}&{\color{black}2}&{\color{black}3}&{\color{black}4}&{\color{black}5}&{\color{black}\cdots}\\\hline {\color{black}N}&{\color{black}-}&{\color{black}2}&{\color{black}-}&{\color{black}4}&{\color{black}-}&{\color{black}\cdots} \end{array}}\)


Тогда многие элементы из \(M\) остаются без пар. С другой стороны, мы могли бы составить пары и так:

Таблица 3

\({\color{blue}\begin{array}{c|c|c|c|c|c|c|c|c} {\color{black}M}&{\color{black}-}&{\color{black}1}&{\color{black}-}&{\color{black}2}&{\color{black}-}&{\color{black}3}&{\color{black}-}&{\color{black}\cdots}\\\hline {\color{black}N}&{\color{black}2}&{\color{black}4}&{\color{black}6}&{\color{black}8}&{\color{black}10}&{\color{black}12}&{\color{black}14}&{\color{black}\cdots} \end{array}}\)


Теперь многие элементы из \(M\) остаются без пар.

Таким образом, если множества \(A\) и \(B\) бесконечны, то различным способам образования пар соответствуют разные результаты. Если существует такой способ образования пар, при котором у каждого элемента \(A\) и каждого элемента \(B\) имеется парный к нему элемент, то говорят, что между множествами \(A\) и \(B\) можно установить взаимно однозначное соответствие . Например, между рассмотренными выше множествами \(M\) и \(N\) можно установить взаимно однозначное соответствие, как
это видно из табл. 1.

Если между множествами \(A\) и \(B\) можно установить взаимно однозначное соответствие, то говорят, что они имеют одинаковое количество элементов или равномощны . Если же при любом способе образования пар некоторые элементы из \(A\) всегда остаются без пар, то говорят, что множество \(A\) содержит больше элементов, чем \(B\) , или что множество \(A\) имеет большую мощность, чем \(B\) .

Таким образом, мы получили ответ на один из поставленных выше вопросов: как сравнивать между собой количество элементов в бесконечных множествах. Однако это нисколько не приблизило нас к ответу на другой вопрос: существуют ли вообще бесконечные множества. имеющие различные мощности? Чтобы получить ответ на этот вопрос, исследуем некоторые простейшие типы бесконечных множеств.

Счетные множества. Если можно установить взаимно однозначное соответствие между элементами множества \(A\) и элементами множества всех натуральных чисел

\(Z=\{1,\,2,\,3,\,\ldots\},\)


то говорят, что множество \(A\) счетно . Иными словами, множество \(A\) счетно, если все его элементы можно занумеровать посредством натуральных чисел, т. е. записать в виде последовательности

\(a_1,~a_2,~\ldots,~a_n,~\ldots\)

Таблица 1 показывает, что множество всех четных чисел счетно (верхнее число рассматривается теперь как номер соответствующего нижнего числа).

Счетные множества это, так сказать, самые маленькие из бесконечных множеств: во всяком бесконечном множестве содержится счетное подмножество.

Если два непустых конечных множества не пересекаются, то их сумма содержит больше элементов, чем каждое из слагаемых. Для бесконечных множеств это правило может и не выполняться. В самом деле, пусть \(G\) есть множество всех четных чисел, \(H\) - множество всех нечетных чисел и \(Z\) - множество всех натуральных чисел. Как показывает таблица 4, множества \(G\) и \(H\) счетны. Однако множество \(Z=G+H\) вновь счетно.


Таблица 4

\({\color{blue}\begin{array}{c|c|c|c|c|c} {\color{black}G}&{\color{black}2}&{\color{black}4}&{\color{black}6}&{\color{black}8}&{\color{black}\cdots}\\\hline {\color{black}H}&{\color{black}1}&{\color{black}3}&{\color{black}5}&{\color{black}7}&{\color{black}\cdots}\\\hline {\color{black}Z}&{\color{black}1}&{\color{black}2}&{\color{black}3}&{\color{black}4}&{\color{black}\cdots} \end{array}}\)

Нарушение правила "целое больше части" для бесконечных множеств показывает, что свойства бесконечных множеств качественно отличны от свойств конечных множеств. Переход от конечного к бесконечному сопровождается в полном согласии с известным положением диалектики - качественным изменением свойств.

Докажем, что множество всех рациональных чисел счетно . Для этого расположим все рациональные числа в такую таблицу:


Таблица 5

\(\)

Здесь в первой строке помещены все натуральные числа в порядке их возрастания, во второй строке 0 и целые отрицательные числа в порядке их убывания, в третьей строке - положительные несократимые дроби со знаменателем 2 в порядке их возрастания, в четвертой строке - отрицательные несократимые дроби со знаменателем 2 в порядке их убывания и т. д. Ясно, что каждое рациональное число один и только один раз находится в этой таблице. Перенумеруем теперь
все числа этой таблицы в том порядке, как это указано стрелками. Тогда все рациональные числа разместятся в порядке одной последовательности:

Номер места, занимаемого
рациональным числом 1 2 3 4 5 6 7 8 9 . . .
Рациональное число 1. 2, О, 3, - 1, 4 -2 _

Этим установлено взаимно однозначное соответствие между всеми рациональными числами и всеми натуральными числами. Поэтому множество всех рациональных чисел счетно.

Множества мощности континуума

Если можно установить взаимно однозначное соответствие между элементами множества \(M\) и точками отрезка \(0\leqslant x\leqslant1\) , то говорят, что множество \(M\) имеет мощность континуума . В частности, согласно этому определению, само множество точек отрезка \(0\leqslant x\leqslant1\) имеет мощность континуума.

Из рис. 1 видно, что множество точек любого отрезка \(AB\) имеет мощность континуума. Здесь взаимно однозначное соответствие устанавливается геометрически, посредством проектирования.

Нетрудно показать, что множества точек любого интервала \(x\in\) и всей числовой прямой \(x\in[-\infty,+\infty]\) - имеют мощность континуума.

Значительно более интересен такой факт: множество точек квадрата \(0\leqslant x\leqslant1,\) \(0\leqslant y\leqslant1\) имеет мощность континуума. Таким образом, грубо говоря, в квадрате «столько же» точек, сколько и в отрезке.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Теория множеств.

Множества. Пустое множество. Универсальное множество. Подмножества. Собственное подмножество. Способы задания множеств. Мощность множества. Равномощные множества. Конечные и счётные множества. Операции над множествами (объединение, пересечение, дополнение, разность, симметрическая разность). Законы алгебры множеств. Характеристические функции. Декартово произведение множеств. Отношения и свойства отношений. Функции на множествах.

Определение множества.

Множество - это совокупность определённых различаемых объектов, причём таких, что для каждого можно установить, принадлежит этот объект данному множеству или нет.

Множества обычно обозначаются заглавными латинскими буквами, а элементы множества - строчными. Элементами множеств могут быть любые объекты, например, числа, символы, слова, объекты реального мира. В частности, элементами множества могут быть другие множества.

Например:

A = { a, b, c } - множество A состоящее из 3 элементов

N = { 1, 2, 3, … } - множество N целых чисел

Элементы множества являются уникальными, то есть, один и тот же элемент не может включаться в множество несколько раз (в отличие от векторов и мультимножеств). Считается, что при добавлении в множество элемента, который в нем уже присутствует, множество не меняется.

Порядок записи элементов множества не является существенным (в отличие от записи элементов векторов, где порядок важен).

Таким образом, множества считаются равными, если они состоят из одних и тех же элементов.

Если некоторый объект является элементом множества , то этот факт записывается следующим образом: и читается «x принадлежит А». Аналогично, если элемент не является элементом множества , используется запись («y не принадлежит А»).

Пустое множество – это множество, не содержащее элементов. Пустое множество может быть обозначено с использованием фигурных скобок: = { }. Однако, множество B = { } не является пустым: это множество, содержащее один элемент, который является пустым множеством.

Универсальное множество Е – множество всех объектов, рассматриваемых в данной задаче.

Конечные и бесконечные множества. Если количество элементов множества конечно (то есть существует натуральное число, равное количеству элементов множества), то такое множество называется конечным. В противном случае множество называется бесконечным.

Мощность множества или кардинальное число |A| (иногда card (A)). Мощность множества является обобщением понятия количества элементов на бесконечные множества. Для конечных множеств мощность равна количеству элементов множества.

Мощность пустого множества по определению равна нулю: .

Равномощные множества – это множества, между элементами которых можно установить взаимно однозначное соответствие.

Счётное множество – множество, равномощное множеству натуральных чисел.

Множество А называют подмножеством множества B (обозначается либо ) если все элементы, которые принадлежат множеству A, так же принадлежат и множеству B.

В этом случае B называют надмножеством A

Пустое множество является подмножеством любого множества.

Любое множество является подмножеством самого себя:

Множество — это набор каких-либо объектов, которые называются элементами этого множества.

Например: множество школьников, множество машин, множество чисел .

В математике множество рассматривается намного шире. Мы не будем сильно углубляться в эту тему, поскольку она относится к высшей математике и на первых порах может создавать трудности для обучения. Мы рассмотрим только ту часть темы, с которой уже имели дело.

Содержание урока

Обозначения

Множество чаще всего обозначают заглавными буквами латинского алфавита, а его элементы - строчными. При этом элементы заключаются в фигурные скобки.

Например, если наших друзей зовут Том, Джон и Лео , то мы можем задать множество друзей, элементами которого будут Том, Джон и Лео.

Обозначим множество наших друзей через заглавную латинскую букву F (friends ), затем поставим знак равенства и в фигурных скобках перечислим наших друзей:

F = { Том, Джон, Лео }

Пример 2 . Запишем множество делителей числа 6.

Обозначим через любую заглавную латинскую букву данное множество, например, через букву D

затем поставим знак равенства и в фигурных скобках перечислим элементы данного множества, то есть перечислим делители числа 6

D = { 1, 2, 3, 6 }

Если какой-то элемент принадлежит заданному множеству, то эта принадлежность указывается с помощью знака принадлежности ∈ . К примеру, делитель 2 принадлежит множеству делителей числа 6 (множеству D ). Записывается это так:

Читается как: «2 принадлежит множеству делителей числа 6»

Если какой-то элемент не принадлежит заданному множеству, то эта не принадлежность указывается с помощью зачёркнутого знака принадлежности ∉. К примеру, делитель 5 не принадлежит множеству D . Записывается это так:

Читается как: «5 не принадлежит множеству делителей числа 6″

Кроме того, множество можно записывать прямым перечислением элементов, без заглавных букв. Это может быть удобным, если множество состоит из небольшого количества элементов. Например, зададим множество из одного элемента. Пусть этим элементом будет наш друг Том :

{ Том }

Зададим множество, которое состоит из одного числа 2

{ 2 }

Зададим множество, которое состоит из двух чисел: 2 и 5

{ 2, 5 }

Множество натуральных чисел

Это первое множество с которым мы начали работать. Натуральными числами называют числа 1, 2, 3 и т.д.

Натуральные числа появились из-за потребности людей сосчитать те иные объекты. Например, посчитать количество кур, коров, лошадей. Натуральные числа возникают естественным образом при счёте.

В прошлых уроках, когда мы употребляли слово «число» , чаще всего подразумевалось именно натуральное число.

В математике множество натуральных чисел обозначается заглавной латинской буквой N .

Например, укажем, что число 1 принадлежит множеству натуральных чисел. Для этого записываем число 1, затем с помощью знака принадлежности ∈ указываем, что единица принадлежит множеству N

1 ∈ N

Читается как: «единица принадлежит множеству натуральных чисел»

Множество целых чисел

Множество целых чисел включает в себя все положительные и , а также число 0.

Множество целых чисел обозначается заглавной латинской буквой Z .

Укажем, к примеру, что число −5 принадлежит множеству целых чисел:

−5 ∈ Z

Укажем, что 10 принадлежит множеству целых чисел:

10 ∈ Z

Укажем, что 0 принадлежит множеству целых чисел:

В будущем все положительные и отрицательные числа мы будем называть одним словосочетанием — целые числа .

Множество рациональных чисел

Рациональные числа, это те самые обыкновенные дроби, которые мы изучаем по сей день.

Рациональное число — это число, которое может быть представлено в виде дроби , где a — числитель дроби, b — знаменатель.

В роли числителя и знаменателя могут быть любые числа, в том числе и целые (за исключением нуля, поскольку на нуль делить нельзя).

Например, представим, что вместо a стоит число 10, а вместо b — число 2

10 разделить на 2 равно 5. Видим, что число 5 может быть представлено в виде дроби , а значит число 5 входит во множество рациональных чисел.

Легко заметить, что число 5 также относится и ко множеству целых чисел. Стало быть множество целых чисел входит во множество рациональных чисел. А значит, во множество рациональных чисел входят не только обыкновенные дроби, но и целые числа вида −2, −1, 0, 1, 2.

Теперь представим, что вместо a стоит число 12, а вместо b — число 5.

12 разделить на 5 равно 2,4. Видим, что десятичная дробь 2,4 может быть представлена в виде дроби , а значит она входит во множество рациональных чисел. Отсюда делаем вывод, что во множество рациональных чисел входят не только обыкновенные дроби и целые числа, но и десятичные дроби.

Мы вычислили дробь и получили ответ 2,4. Но мы могли бы выделить в этой дроби целую часть:

При выделении целой части в дроби , получается смешанное число . Видим, что смешанное число тоже может быть представлено в виде дроби . Значит во множество рациональных чисел входят и смешанные числа.

В итоге мы приходим к выводу, что множество рациональных чисел содержат в себе:

  • целые числа
  • обыкновенные дроби
  • десятичные дроби
  • смешанные числа

Множество рациональных чисел обозначается заглавной латинской буквой Q .

Например укажем, что дробь принадлежит множеству рациональных чисел. Для этого записываем саму дробь , затем с помощью знака принадлежности ∈ указываем, что дробь принадлежит множеству рациональных чисел:

Q

Укажем, что десятичная дробь 4,5 принадлежит множеству рациональных чисел:

4,5 ∈ Q

Укажем, что смешанное число принадлежит множеству рациональных чисел:

Q

Вводный урок по множествам завершён. В будущем мы рассмотрим множества намного лучше, а пока рассмотренного в данном уроке будет достаточно.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Рассмотрим теперь кратко простые теоретико-множественные понятия и теоретико-множественные операции: пересечение, объединение, дополнение, декартово произведение и др. Для случая конечных множеств они лежат в основе арифметических действий над натуральными числами и поэтому очень важны для школьной математики. Мы ограничимся совсем краткими определениями и пояснениями.

Множество не содержащее ни одного элемента называют пустым множеством. Его обозначается знаком. Пустое множество можно определить любым противоречивым свойством, например= {х | xх}, в области множеств оно играет как бы роль нуля.

Множество N называется подмножеством множества М тогда и только тогда, когда каждый элемент множества N принадлежит множеству М. Отношение между множеством М и любым его подмножеством N называется включением и обозначается символом: МN.

Отметим следующие элементарные утверждения о понятиях подмножества и включения, прямо вытекающих из определения.

а) Каждое множество М является подмножеством самого себя: ММ. Любое подмножество N множества М, отличное от М, называется собственным подмножеством множества М; соответствующее включение также называется собственным и обозначается: МN. Принято считать, что пустое множествоявляется подмножеством любого множества М.

б) Отношение включения транзитивино, т. е. из NМ и РN следует, что РМ. Транзитивно также отношение собственного включения.

в) Очень важно не смешивать отношения принадлежностии включения: если {а}М, то аМ, и наоборот; но из {a}М не следует {а}М. Так, например, если М = {1, 2}, то это означает, что 1М и 2М, но для всех других объектов х справедливо хМ; для включения же правильны следующие утверждения:

М, {1}М, {2}М., {1, 2}М.

Другой пример. Пустое множествоне имеет элементов хM для любого объекта х. Между темсодержит одно подмножество, а именно само себя.

Введем несколько операций над множествами.

а) Пересечением множеств М и N называют множество тех объектов, которые принадлежат множествам М и N одновременно.

Обозначение: МN = {х|хМ и хN}.

б) Объединением множеств М и N называют множество тех элементов, которые содержатся по крайней мере в одном из множеств М или N. Обозначение: MN = {х | хМ или хN }.

в) Разностью множеств М и N называют множество тех элементов, которые принадлежат множеству М и не принадлежат множеству N. Обозначение: М \ N. = {х | хМ и хN}.

г)Симметрической разностью множеств М и N называют множество тех элементов, которые принадлежат только множеству М - или только множеству N.

Обозначение: MN ={ x | (xМ и хN) или (хN и хМ)}.

Введенные теоретико-множественные операции наглядно иллюстрируются рисунком 2, где множества М и N изобрансены пересекающимися кругами:

МN - точки области II;

МN - точки областей I, II, III;

М \ N - точки области I;

N \ М - точки области III;

MN - точки областей I и III.

д) В конкретных математических областях бывает полезно ввести в рассмотрение столь обширное множество U, что все рассматриваемые множества окажутся его подмножествами. Такое множество U принято называть универсальным множеством или универсумом. Отметим, что "универсальное множество" понятие относительное: оно выбирается для какого-нибудь определенного раздела науки и притом часто даже явно не определяется, а просто подразумевается.

Так, например, в элементарной планиметрии в качестве универсального множества принято рассматривать множество всех точек плоскости. Различные фигуры, изучаемые в планиметрии, можно считать множествами точек, т. е. подмножествами так выбранного универсального множества.

В элементарной арифметике универсальным множеством считается множество Z всех целых рациональных чисел и т. д.

е) Если выбрано некоторое универсальное множество U , то возникает новая теоретико-множественная операция - дополнение. Для всякого множества М (при этом подразумевается, что М - подмножество универсального множества U его дополнение, обозначаемое через М , - это множество всех элементов универсума, которые не принадлежат множеству М:

М = {х | хU и xM}

Таким образом, дополнение - это частный случай разности:

M = U \ M,
все отличие здесь состоит в том, что разность берется относительно фиксированного множества, содержащего все множества, которые в данной связи рассматриваются.

Рассмотрим теперь операции декартового произведения множеств. Пусть A и B - два множества. Тогда множество C = {(a, b) | aA, bB}
всех пар (a, b), где a и b независимо друг от друга принимают все значения соответственно из множеств A и B называется декартовым произведением множеств А и В и обозначается через А х В. Если А и В - конечные множества, содержащие соответственно m и n элементов, то сразу видно, что множество А х В содержит mn элементов.

Самостоятельный интерес представляет тот частный случай, когда множества А и В совпадают: А = В. Чтобы его рассмотреть, вы введем новый термин.

Упорядоченной парой элементов множества А будем называть объект (а 1 , а 2), состоящий из двух (не обязательно различных) элементов а 1 , а 2 А, с указанием, какой из них следует считать первым, а какой - вторым. Так, например, если А = {1, 2, 3, 4., 5}, то упорядоченные пары (2, 3) и (3, 2) следует считать по определению различными. Упорядоченными парами элементов из А считаются также объекты (1, 1), (2, 2), (3, 3), (4, 4), (5, 5). Упорядоченные пары мы будем заключать в круглые скобки и обозначать жирными строчными латинскими буквами: a = (а 1 а 2), в отличие от неупорядоченных пар, которые, как и множества элементов, записываются в фигурных скобках: {а 1 а 2 }.

Назовем множество

С = {(а 1 , а 2) | a 1 А, a 2 А}
всех упорядоченных пар (а 1 а 2) элементов из А декартовым квадратом множества А и будем обозначать его через A 2 .

Рассмотренные свойства множеств и операции над ними в неявном, виде присутствуют в начальном преподавании арифметики. Мы особенно подчеркиваем, что речь идет об их неявном присутствии: бессмысленно было бы в I или II классе давать явные определения арифметических действий. Само слово «действие» для арифметических операций указывает на то, что на начальном уровне развития детей сложение, вычитание, умножение и деление возникают как действия над конкретными множествами из мира, свойственного школьникам. Вековой опыт обучения на всех уровнях показывает, что человек обычно сначала делает нечто, а лишь затем задумывается над тем, какими же общими свойствами обладают его действия.

Теоретико-множественное обоснование арифметических действий над натуральными числами дается довольно элементарно, так как более строгое обоснование оказывается достаточно трудоемким и мы не имеем возможности провести его здесь со всей необходимой тщательностью. Как мы уже говорили, с точки зрения теории множеств натуральные кардинальные числа отвечают классам равнамощных конечных множеств, к ним, естественно, присоединяется и число нуль как кардинальное число, соответствующее пустому множеству. Тогда элементарные отношения и действия над натуральными числами вводятся следующим образом.

1.Отношение «равно», «больше», «меньше» . Пусть m и n - два натуральных числа и пусть М и N - два множества, кардинальные числа которых суть соответственно m и n. Тогда m меньше n (а n больше m), если множество М равномощно некоторому собственному подмножеству множества N. Как видно из этого же определения, m = n означает, что множества М и N равномощны. Для оправдания такого определения необходимо, конечно, показать, что оно не зависит от выбранных множеств М и N. Иначе говоря, надо доказать, что если М" и N" - два других множества с числом элементов m и n соответственно и если при этом М равномощно собственному подмножеству множества N", то и М" равномощно собственному подмножеству множества N", и наоборот. Это доказательство мы предоставим читателю. Отметим, что определение неравенства для бесконечных кардинальных чисел получается более сложным.

2.Сложение. Для определения суммы кардинальных чисел поступают так. Пусть m и n - два натуральных числа. Выбираем опять произвольно два непересекающихся множества М с m N с n элементами соответственно, и пусть S - их объединение: S = MN. Тогда по определению сумма s = m + n - это кардинальное число множества S. Покажем, что сумма s от выбора множеств M и N не зависит, а зависит только от их мощностей. Пусть М" и N"- другие множества, равномощные множествам М и N соответственно, и пусть при этом также M"N" =; тогда S" = М"N" равномощно множеству S = МN. Следует все время иметь в виду, что кардинальное число объединения есть сумма кардинальных чисел объединяемых множеств, только если последние не имеют общих элементов (имеют пустое пересечение). В случае пересекающихся множеств имеет место более общее, правило.

Элементы теории множеств. Множества и операции над ними

Понятие множества является одним из основных математических понятий. Это неопределяемое понятие, его можно только описать или пояснить на примерах. Так, можно говорить о множестве букв в латинском алфавите, множество всех книг в данной библиотеке, множестве студентов в данной группе, множестве всех точек данной линии. Чтобы задать множество, достаточно перечислить элементы или указать характеристические свойства элементов, т.е. такое свойство, которым обладают все элементы данного множества и только они.

Определение 1.1. Предметы (объекты), составляющие некоторое множество, называются его элементами .

Множество принято обозначать прописными латинскими буквами, а элементы множества – строчными буквами. То, что x является элементом множества A , записывается так: x A (x принадлежит A ). Запись вида x A (x A ) означает, что x не принадлежит A , т.е. не является элементом множества A .

Элементы множества принято записывать в фигурных скобках. Например, если A – множество, состоящее из первых трех букв латинского алфавита, то его записывают так: A= {a,b,c }.

Множество может содержать бесконечно много элементов (множество точек прямой, множество натуральных чисел), конечное число элементов (множество школьников в классе), либо вообще не содержать ни одного элемента (множество студентов пустой аудитории).

Определение 1.2. Множество, не содержащее ни одного элемента, называется пустым множеством , обозначается Ø.

Определение 1.3. Множество A называется подмноже-ством множества B , если каждый элемент множества A принадлежит и множеству B . Это обозначается A B (A – подмножество B ).

Пустое множество считают подмножеством любого множества. Если множество A не является подмножеством множества B , то пишут A B.

Определение 1.4. Два множества A и B называют равными , если являются подмножествами друг друга. Обозначают A = B. Это означает, что если x A , то x B и наоборот, т.е. если и , то .

Определение 1.5. Пересечение множеств A и B называют множество M , элементы которого являются одновременно элементами обоих множеств A и B. Обозначают M= A B. Т.е. x A B , то x A и x B.

Записывают A B= { x | x A и x B }. (Вместо союза и – ставятся знаки , &).

Определение 1.6. Если A B= Ø, то говорят, что множества A и B не пересекаются.

Аналогично можно определить пересечение 3-х, 4-х и любого конечного числа множеств.

Определение 1.7. Объединением множеств A и B называют множество M , элементы которого принадлежат хотя бы одному из данных множеств.Обозначают M=A B. Т.о. A B= { x | x A или x B }. (Вместо союза или – ставится знак ).

Аналогично определяется и множество A 1 A 2 A n . Оно состоит из элементов, каждый из которых принадлежит хотя бы одному из множеств A 1 , A 2 ,…, A n (а может быть, и нескольким сразу).

Пример 1.8. 1) если A= {1;2;3;4;5} и B= {1;3;5;7;9}, то A B= {1;3;5} и A B= {1;2;3;4;5;7;9}.

2) если A= {2;4} и B= {3;7}, то A B= Ø и A B= {2;3;4;7}.

3) если A= {летние месяцы} и B= {месяцы, в которых 30 дней}, то A B= {июнь} и A B= {апрель; июнь; июль; август; сентябрь; ноябрь}.

Определение 1.9. Натуральными называются числа 1,2,3,4,…, используемые для счета предметов.

Множество натуральных чисел обозначается N, N={1;2;3;4;…;n;…}. Оно является бесконечным, имеет наименьший элемент 1 и не имеет наибольшего элемента.

Пример 1.10. A – множество натуральных делителей числа 40. Перечислить элементы этого множества. Верно ли, что 5 A, 10 A, -8 A, 4 A, 0 A, 0 A.

A = {1,2,4,5,8,10,20,40}. (В,В,Н,Н,Н,В)