Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.

Парообразованием называется процесс перехода жидкости в газ (пар).
Процесс обратный парообразованию называется конденсацией.
Парообразование может происходить как испарение с поверхности жидкости или в виде кипения.

До сих пор речь шла о процессе парообразования, когда исходным агрегатным состоянием вещества была жидкость. Но, существует ещё один интересный вид парообразования, когда твердое тело, минуя жидкое состояние, превращается в газ.
Такой вид парообразования называется возгонкой.
Такой особенностью обладают, например, кристаллы йода, нафталина, обычного и "сухого" льда.

Обратный процесс превращения газа непосредственно в твердое вещество называется сублимацией.

ИСПАРЕНИЕ

Испарение - это парообразование с поверхности жидкости.
При этом жидкость покидают более быстрые молекулы, обладающие большей скоростью.
При любой температуре в жидкости находятся такие молекулы, которые обладают достаточной кинетической энергией, чтобы преодолеть силы сцепления между молекулами и совершить работу выхода из жидкости.

Скорость испарения жидкости зависит от:
1) от рода вещества;
2) от площади поверхности испарения;
3) от температуры жидкости;
4) от скорости удаления паров с поверхности жидкости, т.е. от наличия ветра.

Испарение происходит при любой температуре.

С повышением температуры скорость испарения жидкости возрастает, так как возрастает средняя кинетическая энергия ее молекул, а следовательно, возрастает и число таких молекул, у которых кинетическая энергия достаточна для испарения.

Скорость испарения возрастает и при ветре, который удаляет с поверхности жидкости ее пар и тем самым препятствует возвращению молекул в жидкость

При испарении температура жидкости понижается, т.к. внутренняя энергия жидкости уменьшается из-за потери быстрых молекул.
Но, если подводить к жидкости тепло, то ее температура может не изменяться.

ИСПАРЕНИЕ СУХОЕ - ВОЗГОНКА.

Если выстиранное сырое бельё вывесить на морозе, то оно замерзает и становится жеским, как фанера. Однако через некоторое время оно становится вновь мягким и, что удивительно, абсолютно сухим!
Лёд переходит из твердого состояния непосредственно в пар, минуя плавление.
Это и есть „сухое“ испарение или возгонка.

Возгонка льда возможна практически при любой отрицательной температуре в сухом воздухе, что практически бывает при сильном морозе.

Интересно, что иней на деревьях и снег в тучах образуются в результате процесса, обратного возгонке, - так называемой сублимации, прямого перехода водяного пара в твёрдую фазу. Центрами кристаллизации здесь служат микроскопические пылинки и кристаллики соли, взвешенные в воздухе.

ИНТЕРЕСНОЕ О СУХОМ ИСПАРЕНИИ

О чем поет чайная ложка?

Если прижать ложку к кусочку сухого льда, то можно услышать громкий завывающий звук, который длится недолго. Прикладывая к ложке различное усилие, можно менять высоту тона и громкость звука.
Явление можно объяснить тем, что тепло металла быстро превращает в газ тот участок льда, которого коснулась ложка. Обильно выделяясь, углекислый газ с силой вырывается из-под ложки, она колеблется и, подобно мембране телефона, колеблет воздух, – мы слышим звук.

Вы знаете, что существует, так называемый, «сухой лед», который используется при продаже мороженого. «Сухой лёд» - это твердый диоксид углерода (СО2.) «Сухой лед», имея температуру около минус 80градусов по Цельсию, из твердого состояния сразу превращается в газ, минуя жидкое состояние. Такой замечательный процесс испарения называется возгонкой.

Нельзя помещать сухой лед в закрытый контейнер, например, в полиэтиленовую бутылку из- под напитков. Это опасно, так как при испарении сухой лед расширяется примерно в 800 раз, что может привести к взрыву

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

СТАВИМ ОПЫТ

Если наполнить пластмассовую бутылку на 4/5 горячим кипятком, закрыть пробкой и встряхнуть, то пробка может вылететь. Оказывается при встряхивании увеличивается поверхность испарения, что приводит к увеличению давления пара.

А В ЗАСУШЛИВЫХ РАЙОНАХ

Для уменьшения испарения с поверхности жидкости используются адсорбционные пленки, которые могут тонким слоем покрывать все поверхность воды. Свойства таких пленок используется для уменьшения испарения воды с поверхности водоемов в засушливых районах. Для создания таких пленок применяется, например, твердое вещество - гексадеканол. В Австралии с его помощью ежегодно сохраняется около 10 миллионов литров воды с каждого гектара водной поверхности.

КАК ИСПАРЕНИЕ ПОМОГАЕТ

Оказалось, что при постепенном нагревании и в сухом воздухе человек способен выдержать повышение температуры до 160С. Английские физики Благден и Чентри, проводили часы в натопленной печи, испытывая возможности человеческого организма. Английский физик Тиндаль высказался по этому поводу так: «Можно сварить яйца и изжарить бифштекс в воздухе помещения, в котором люди остаются без вреда для себя».

Наш организм борется с нагреванием с помощью выделения пота.
Испарение пота поглощает значительное количество тепла из прилегающего к телу слоя воздуха, и тем понижается его температуру. Это возможно, если тело не соприкасается непосредственно с источником тепла и воздух сухой.

Человек теряет из организма воду испарением с поверхности кожи и испарением из дыхательных путей.
При занятиях спортом человек теряет с потом около 1-2 литров жидкости в час. А при длительной физической нагрузке, особенно в жару, выделение воды с потом может достигать 3-6 литров.

В начале ХХ в. на карнавалах показывали интересный трюк. В жидкий свинец трюкач погружал кисть руки. Как же человеческое тело выдерживало столь высокую температуру?
При соприкосновении мокрых пальцев с горячим жидким металлом, вода вследствие интенсивного испарения «одевала» их в «паровую перчатку», которая непродолжительное время могла служить защитой: излучения и проводимости было недостаточно для того, чтобы ощутимо поднять температуру кожи и вызвать ожог. Но влаги на потной руке было недостаточно и требовалось дополнительное смачивание.

Сварите в кастрюльке куриное яйцо. Достаньте его ложкой из кипятка и быстро, пока оно еще влажное, возьмите его в руки. Хотя яйцо и горячее, все же его можно удержать в руках. Испаряющаяся с поверхности яйца жидкость защитит ваши руки. Через несколько секунд яйцо высохнет, и удерживать его вы уже не сможете – слишком горячо.

Чтобы удостовериться, нагрелся ли утюг, вы прижимаете смоченный слюной палец к поверхности утюга.
Защита пальца от ожога осуществляется за счет влаги.
Тепло, поступающее от утюга к телу, идет на испарение воды.
Пока жидкость не улетучилась, вам комфортно.

Всем знакомо выражение: "Во рту пересохло". Рассказывают, что вождь одной из африканских деревень, чтобы определить, кто из двух подозреваемых говорит правду, приказал каждому лизнуть горячий нож. «Детектор лжи» сработал, и истина восторжествовала. А ведь лжец был определен в соответствии с законами физики!

Почему трещит лучина?
«Лучина трещит и мечет искры – к ненастью».
При повышенной влажности деревянные предметы отсыревают. При горении из них интенсивно испаряется влага. Увеличиваясь в объеме, пар с треском разрывает волокна древесины.

Как огурец от жары спасается...
Оказывается, температура огурца в любую жару на несколько градусов ниже температуры воздуха.
Чем это можно объяснить?

Почему летом дождевые капли крупные, а осенью мелкие?
Падающие летом мелкие дождевые капли обычно не достигают поверхности земли, так как они либо испаряются, либо поднимаются восходящими токами воздуха. Крупные же капли, образовавшихся во многих случаях от слияния меньших, достигают земли, не успев по пути испариться.

Осенью, когда температура воздуха заметно падает, мелкие холодные капельки дождя не успевают испариться, и вся их масса достигает поверхности земли.

ЗНАЕШЬ ОТВЕТ?

Когда стираешь одежду зимой, требуется несколько дней, чтобы она высохла. А если постирать ее летним днем, то она высыхает до вечера.
В чём дело?

Почему сырые дрова, даже разгоревшись, дают меньше тепла, чем сухие?

Почему вода гасит огонь костра?

Потейте на здоровье!

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 09.11.2014 21:08 Просмотров: 12413

В жидком состоянии вещество может существовать в определённом интервале температур. При температуре, меньшей нижнего значения этого интервала, жидкость превращается в твёрдое вещество. А если значение температуры превысит верхнюю границу интервала, жидкость переходит в газообразное состояние.

Всё это мы можем наблюдать на примере воды. В жидком состоянии мы видим её в реках, озёрах, морях, океанах, водопроводном кране. Твёрдое состояние воды - лёд. В него она превращается, когда при нормальном атмосферном давлении её температура снижается до 0 о С. А при повышении температуры до 100 о С вода закипает и превращается в пар, который является её газообразным состоянием.

Процесс превращения вещества в пар называют парообразованием. Обратный процесс перехода из пара в жидкость - конденсация .

Парообразование происходит в двух случаях: при испарении и при кипении.

Испарение

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости .

Как и при плавлении, при испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости. Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости. Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Так как частицы находятся в движении при любой температуре, то и испарение также происходит при любой температуре . Мы знаем, что лужи после дождя высыхают даже в холодную погоду.

Но скорость испарения зависит от многих факторов. Один из важнейших - температура вещества . Чем она выше, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Наполним одинаковым количеством воды 2 стакана. Один поставим на солнцепёк, а другой оставим в тени. Через некоторое время увидим, что воды в первом стакане стало меньше, чем во втором. Её нагрели солнечные лучи, и она испарилась быстрее. Лужи после дождя летом также высыхают гораздо быстрее, чем весной или осенью. В сильную жару происходит быстрое испарение воды с поверхностей водоёмов. Высыхают пруды, озёра, пересыхают русла неглубоких рек. Чем выше температура окружающей среды, тем выше скорость испарения.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения . Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

При одинаковых внешних условиях скорость испарения зависит от рода вещества . Заполним стеклянные колбы одинаковым объёмом воды и спирта. Через некоторое время увидим, что спирта осталось меньше, чем воды. Он испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра . Мы знаем, что вещи после стирки гораздо быстрее высыхают, когда их обдувает ветер. Струя горячего воздуха в фене способна быстро высушить наши волосы.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

Сублимация

Испарение происходит и в твёрдых телах. Мы видим, как постепенно высыхает на морозе замёрзшее, покрытое льдом бельё. Лёд превращается в пар. Мы ощущаем резкий запах, образующийся при испарении твёрдого вещества нафталина.

Некоторые вещества вообще не имеют жидкой фазы. К примеру, элементарный иод I 2 - простое вещество, представляющее собой кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, при нормальных условиях сразу же превращается в газообразный иод - фиолетовые пары с резким запахом. Тот жидкий йод, который мы покупаем в аптеках, - это не жидкое его состояние, а раствор йода в спирте.

Процесс перехода твёрдых тел в газообразное состояние, минуя жидкую стадию, называют сублимацией, или возгонкой .

Кипение

Кипение - это тоже процесс перехода жидкости в пар. Но парообразование при кипении происходит не только на поверхности жидкости, но и по всему её объёму. Причём процесс этот проходит гораздо интенсивнее, чем при испарении.

Поставим на огонь чайник с водой. Так как в воде всегда есть растворённый в ней воздух, то при нагревании на дне чайника и на его стенках появляются пузырьки. Эти пузырьки содержат воздух и насыщенный водяной пар. Сначала они появляются на стенках чайника. Количество пара в них увеличивается, увеличиваются в размерах и они сами. Затем под воздействием выталкивающей силы Архимеда они будут отрываться от стенок, подниматься вверх и лопаться на поверхности воды. Когда температура воды достигнет 100 о С, пузырьки будут образовываться уже по всему объёму воды.

Испарение происходит при любой температуре, а кипение - только при определённой температуре, которая называется температурой кипения .

Каждое вещество имеет свою температуру кипения. Она зависит от величины давления.

При нормальном атмосферном давлении вода закипает при температуре 100 о С, спирт - при 78 о С, железо - при 2750 о С. А температура кипения кислорода - минус 183 о С.

При уменьшении давления температура кипения снижается. В горах, где атмосферное давление ниже, вода закипает при температуре менее 100 о С. И чем выше над уровнем моря, тем меньшей будет температура кипения. А в кастрюле-скороварке, где создаётся повышенное давление, вода закипает при температуре выше 100 о С.

Насыщенный и ненасыщенный пар

Если вещество может одновременно существовать в жидкой (или твёрдой) фазе и газообразной, то его газообразное состояние называют паром . Пар образуют молекулы, вылетевшие при испарении из жидкости или твёрдого вещества.

Нальём жидкость в сосуд и плотно закроем его крышкой. Через некоторое время количество жидкости уменьшится из-за её испарения. Молекулы, покидающие жидкость, будут концентрироваться над её поверхностью в виде пара. Но когда плотность пара станет довольно высокой, некоторые из них начнут снова возвращаться в жидкость. И таких молекул будет всё больше и больше. Наконец, настанет такой момент, когда число молекул, вылетающих из жидкости, и число молекул, возвращающихся в неё, сравняется. В этом случае говорят, что жидкость находится в динамическом равновесии со своим паром . А такой пар называется насыщенным .

Если при парообразовании из жидкости вылетает больше молекул, чем возвращается, то такой пар будет ненасыщенным . Ненасыщенный пар образуется, когда испаряющаяся жидкость находится в открытом сосуде. Покидающие её молекулы рассеиваются в пространстве. Возвращаются в жидкость далеко не все из них.

Конденсация пара

Обратный переход вещества из газообразного состояния в жидкое называют конденсацией. При конденсации часть молекул пара возвращается в жидкость.

Пар начинает превращаться в жидкость (конденсироваться) при определённом сочетании температуры и давления. Такое сочетание называется критической точкой . Максимальная температура, ниже которой начинается конденсация, называется критической температурой. При температуре выше критической газ никогда не превратится в жидкость.

В критической точке граница раздела фазовых состояний жидкость-пар размывается. Исчезает поверхностное натяжение жидкости, выравниваются плотности жидкости и её насыщенного пара.

При динамическом равновесии, когда число молекул, покидающих жидкость и возвращающихся в неё равно, процессы испарения и конденсации уравновешены.

При испарении воды её молекулы образуют водяной пар , который смешивается с воздухом или другим газом. Температура, при которой такой пар в воздухе становится насыщенным, начинает конденсироваться при охлаждении и превращается в капельки воды, называется точкой росы .

Когда в воздухе находится большое количество водяного пара, говорят, что его влажность повышена.

В природе испарение и конденсацию мы наблюдаем очень часто. Утренний туман, облака, дождь - всё это результат этих явлений. С земной поверхности при нагревании испаряется влага. Молекулы образовавшегося пара поднимаются вверх. Встречая на своём пути прохладные листики или травинки, пар конденсируется на них в виде капелек росы. Чуть выше, в приземных слоях, он становится туманом. А высоко в атмосфере при низкой температуре остывший пар превращается в облака, состоящие из капелек воды или кристалликов льда. Впоследствии из этих облаков на землю прольётся дождь или выпадет град.

Но капельки воды при конденсации образуются лишь в том случае, когда в воздухе находятся мельчайшие твёрдые или жидкие частицы, которые называют ядрами конденсации . Ими могут быть продукты горения, распыления, частицы пыли, морской соли над океаном, частицы, образовавшиеся в результате химических реакций в атмосфере и др.

Десублимация

Иногда вещество может перейти из газообразного состояния сразу в твёрдое, минуя жидкую стадию. Такой процесс называется десублимацией .

Ледяные узоры, которые появляются на стёклах в мороз, и есть пример десублимации. При заморозках почва покрывается инеем - тонкими кристалликами льда, в которые превратились водяные пары из воздуха.

Испарение

Испарение над кружкой чая

Испаре́ние - процесс перехода вещества из жидкого состояния в газообразное, происходящий на поверхности вещества (пар). Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое). Испарение (парообразование), переход вещества из конденсированной (твердой или жидкой) фазы в газообразную (пар); фазовый переход первого рода.

Существует более развёрнутое понятие испарения в высшей физике.

Испаре́ние - это процесс, при котором с поверхности жидкости или твёрдого тела вылетают (отрываются) частицы (молекулы, атомы), при этом E k > E п.

Общая характеристика

Испарение твердого тела называется сублимацией (возгонкой), а парообразование в объёме жидкости - кипением. Обычно под испарением понимают парообразование на свободной поверхности жидкости в результате теплового движения её молекул при температуре ниже точки кипения, соответствующей давлению газовой среды, расположенной над указанной поверхностью. При этом молекулы, обладающие достаточно большой кинетической энергией, вырываются из поверхностного слоя жидкости в газовую среду; часть их отражается обратно и захватывается жидкостью, а остальные безвозвратно ею теряются.

Испарение - эндотермический процесс, при котором поглощается теплота фазового перехода - теплота испарения, затрачиваемая на преодоление сил молекулярного сцепления в жидкой фазе и на работу расширения при превращении жидкости в пар. Удельную теплоту испарения относят к 1 молю жидкости (молярная теплота испарения, Дж/моль) или к единице её массы (массовая теплота испарения, Дж/кг). Скорость испарения определяется поверхностной плотностью потока пара jп, проникающего за единицу времени в газовую фазу с единицы поверхности жидкости [в моль/(с.м 2) или кг/(с.м 2)]. Наибольшее значение jп достигается в вакууме. При наличии над жидкостью относительно плотной газовой среды испарение замедляется вследствие того, что скорость удаления молекул пара от поверхности жидкости в газовую среду становится малой по сравнению со скоростью испускания их жидкостью. При этом у поверхности раздела фаз образуется слой парогазовой смеси, практически насыщенный паром. Парциальное давление и концентрация пара в данном слое выше, чем в основной массе парогазовой смеси.

Процесс испарения зависит от интенсивности теплового движения молекул : чем быстрее движутся молекулы, тем быстрее происходит испарение. Кроме того, немаловажными факторами, влияющими на процесс испарения, являются скорость внешней (по отношению к веществу) диффузии , а также свойства самого вещества. Проще говоря, при ветре испарение происходит гораздо быстрее. Что же касается свойств вещества, то, к примеру, спирт испаряется гораздо быстрее воды. Важным фактором является также площадь поверхности жидкости, с которой происходит испарение: из узкого графина оно будет происходить медленнее, чем из широкой тарелки.

Молекулярный уровень

Рассмотрим данный процесс на молекулярном уровне: молекулы, обладающие достаточной энергией (скоростью) для преодоления притяжения соседних молекул, вырываются за границы вещества (жидкости). При этом жидкость теряет часть своей энергии (остывает). Например, очень горячая жидкость: мы дуем на её поверхность, чтобы остудить, при этом, мы ускоряем процесс испарения.

Термодинамическое равновесие

Нарушение термодинамического равновесия между жидкостью и паром, содержащимся в парогазовой смеси, объясняется скачком температуры на границе раздела фаз. Однако обычно этим скачком можно пренебречь и принимать, что парциальное давление и концентрация пара у поверхности раздела фаз соответствуют их значениям для насыщенного пара, имеющего температуру поверхности жидкости. Если жидкость и парогазовая смесь неподвижны и влияние свободной конвекции в них незначительно, удаление образовавшегося при испарении пара от поверхности жидкости в газовую среду происходит в основном в результате молекулярной диффузии и появления вызываемого последней при полупроницаемой (непроницаемой для газа) поверхности раздела фаз массового (так называемого стефановского) потока парогазовой смеси, направленного от поверхности жидкости в газовую среду (см. Диффузия). Распределение температур при различных режимах испарительного охлаждения жидкости. Потоки теплоты направлены: а - от жидкой фазы к поверхности испарения в газовую фазу; б - от жидкой фазы только к поверхности испарения; в - к поверхности испарения со стороны обеих фаз; г - к поверхности испарения только со стороны газовой фазы.

Баро-, термодиффузии

Эффекты баро- и термодиффузии при инженерных расчетах обычно не учитываются, но влияние термодиффузии может быть существенным при высокой неоднородности парогазовой смеси (при большом различии молярных масс её компонентов) и значительных градиентах температур. При движении одной или обеих фаз относительно поверхности их раздела возрастает роль конвективного переноса вещества и энергии парогазовой смеси и жидкости.

При отсутствии подвода энергии к системе жидкость-газ от внеш. источников теплота Испарение может подводиться к поверхностному слою жидкости со стороны одной или обеих фаз. В отличие от результирующего потока вещества, всегда направленного при испарении от жидкости в газовую среду, потоки теплоты могут иметь разные направления в зависимости от соотношений температур основной массы жидкости tж, границы раздела фаз tгр и газовой среды tг. При контакте определенного кол-ва жидкости с полубесконечным объёмом или омывающим её поверхность потоком газовой среды и при температуре жидкости, более высокой, чем температура газа (tж > tгр > tг), возникает поток теплоты со стороны жидкости к поверхности раздела фаз: (Qжг = Qж - Qи, где Qи -теплота испарения, Qжг - количество теплоты, передаваемой от жидкости газовой среде. При этом жидкость охлаждается (так называемое испарительное охлаждение). Если в результате такого охлаждения достигается равенство tгр = tг, теплоотдача от жидкости к газу прекращается (Qжг = 0) и вся теплота, подводимая со стороны жидкости к поверхности раздела, затрачивается на Испарение (Qж = Qи).

В случае газовой среды, не насыщенной паром, парциальное давление последнего у поверхности раздела фаз и при Qж = Qи остается более высоким, чем в основной массе газа, вследствие чего испарение и испарительное охлаждение жидкости не прекращаются и tгр становится ниже tж и tг. При этом теплота подводится к поверхности раздела от обеих фаз до тех пор, пока в результате понижения tж достигается равенство tгр = tж и поток теплоты со стороны жидкости прекращается, а со стороны газовой среды Qгж становится равным Qи. Дальнейшее испарение жидкости происходит при постоянной температуре tм = tж = tгр, которую называют пределом охлаждения жидкости при испарительном охлаждении или температурой мокрого термометра (так как её показывает мокрый термометр психрометра). Значение tм зависит от параметров парогазовой среды и условий тепло- и массообмена между жидкой и газовой фазами.

Если жидкость и газовая среда, имеющие различные температуры, находятся в ограниченном объёме, не получающем энергию извне и не отдающем её наружу, Испарение происходит до тех пор, пока между двумя фазами не наступает термодинамическое равновесие, при котором температуры обеих фаз уравниваются при неизменной энтальпии системы, и газовая фаза насыщается паром при температуре системы tад. Последняя, называется температурой адиабатического насыщения газа, определяется только начальными параметрами обеих фаз и не зависит от условий тепло- и массообмена.

Скорость испарения

Скорость изотермического испарения [кг/(м 2 с)] при однонаправленной диффузии пара в расположенный над поверхностью жидкости неподвижный слой бинарной парогазовой смеси толщиной d, [м] может быть найдена по формуле Стефана: , где D - коэффициент взаимной диффузии, [м 2 /с]; - газовая постоянная пара, [Дж/(кг К)] или [м 2 /(с 2 K)]; T - температура смеси, [К]; р - давление парогазовой смеси, [Па]; - парциальные давления пара у поверхности раздела и на наружной границе слоя смеси, [Па].

В общем случае (движущиеся жидкость и газ, неизотермической условия) в прилегающем к поверхности раздела фаз пограничном слое жидкости переносу импульса сопутствует перенос теплоты, а в пограничном слое газа (парогазовой смеси) происходят взаимосвязанные тепло- и массоперенос. При этом для расчета скорости Испарение используют экспериментальные коэффициенты тепло- и массоотдачи, а в относительно более простых случаях - приближенные методы численных решений системы дифференциальных уравнений для сопряженных пограничных слоев газовой и жидкой фаз.

Интенсивность массообмена при испарении зависит от разности химических потенциалов пара у поверхности раздела и в основной массе парогазовой смеси. Однако если баро- и термодиффузией можно пренебречь, разность химических потенциалов заменяют разностью парциальных давлений или концентраций паров и принимают: jп = bp (рп, гр - рп, осн) = bpр(уп, гр - уп, осн) или jп = bc(cп, гр - сп, осн), где bp, bc - коэффициент массоотдачи, p - давление смеси, рп - парциальное давление пара, yп = pп/p - молярная концентрация паров, cп = rп/r - массовая концентрация паров, rп, r - локальные плотности паров и смеси; индексы означают: «гр» - у границы раздела фаз, «осн» - в осн. массе смеси. Плотность потока теплоты, отдаваемой при Испарение жидкостью, составляет [в Дж/(м2 с)]: q = aж(tж - tгр) = rjп + aг (tгр - tг), где aж, aг - коэффициент теплоотдачи со стороны жидкости и газа, [Вт/(м 2 К)]; r - теплота Испарение, [Дж/кг].

При очень малых радиусах кривизны поверхности испарения (например, при испарении мелких капель жидкости) учитывается влияние поверхностного натяжения жидкости, приводящего к тому, что равновесное давление пара над поверхностью раздела выше давления насыщенных паров той же жидкости над плоской поверхностью. Если tгр ~ tж, то при расчете испарения могут приниматься во внимание только тепло- и массообмен в газовой фазе. При относительно малой интенсивности массообмена приближенно справедлива аналогия между процессами тепло- и массопереноса, из которой следует: Nu/Nu0 = Sh*/Sh0, где Nu = aг l/lг - число Нуссельта, l - характерный размер поверхности испарения, lг - коэффициент теплопроводности парогазовой смеси, Sh* = bpyг, грl/Dp = bccг, грl/D - число Шервуда для диффузионной составляющей потока пара, Dp = D/RпT -коэффициент диффузии, отнесенный к градиенту парциального давления пара. Значения bp и bс вычисляют по приведенным выше соотношениям, числа Nu0 и Sh0 соответствуют jп: 0 и могут определяться по данным для раздельно происходящих процессов тепло- и массообмена. Число Sh0 для суммарного (диффузионного и конвективного) потока пара находят делением Sh* на молярную (yг, гр) или массовую (сг, гр) концентрацию газа у поверхности раздела в зависимости от того, к какой движущей силе массообмена отнесен коэффициент b.

Уравнения

Уравнения подобия для Nu и Sh* при испарении включают кроме обычных критериев (чисел Рейнольдса Re, Архимеда Аr, Прандтля Рr или Шмидта Sc и геом. параметров) параметры, учитывающие влияние поперечного потока пара и степени неоднородности парогазовой смеси (отношения молярных масс или газовых постоянных её компонентов) на профили, скорости, температуры или концентраций в сечении пограничного слоя.

При малых jп, не нарушающих существенно гидродинамический режим движения парогазовой смеси (например, при испарении воды в атмосферный воздух) и подобие граничных условий полей температур и концентраций, влияние дополнительных аргументов в уравнениях подобия незначительно и им можно пренебречь, принимая, что Nu = Sh. При испарении многокомпонентных смесей указанные закономерности сильно усложняются. При этом теплоты испарения компонентов смеси и составы жидкой и парогазовой фаз, находящихся между собой в равновесии, различны и зависят от температуры. При испарении бинарной жидкой смеси образующаяся смесь паров в относительно богаче более летучим компонентом, исключая только азеотропные смеси, испаряющиеся в точках экстремума (максимума или минимума) кривых состояния как чистая жидкость.

Конструкции аппаратов

Общее количество испаряющейся жидкости увеличивается с возрастанием поверхности контакта жидкой и газовой фаз, поэтому конструкции аппаратов, в которых происходит испарение, предусматривают увеличение поверхности испарения путем создания большого зеркала жидкости, раздробления её на струи и капли или образования тонких пленок, стекающих по поверхности насадок. Возрастание интенсивности тепло- и массообмена при испарении достигается также повышением скорости газовой среды относительно поверхности жидкости. Однако увеличение этой скорости не должно приводить к чрезмерному уносу жидкости газовой средой и значительному повышению гидравлического сопротивления аппарата.

Применение

Испарение широко применяется в промышленной практике для очистки веществ, сушки материалов, разделения жидких смесей, кондиционирования воздуха. Испарительное охлаждение воды используется в оборотных системах водоснабжения предприятий.

См. также

Литература

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Берман Л. Д., Испарительное охлаждение циркуляционной воды, 2 изд., М.-Л., 1957;
  • Фукс Н. А., Испарение и рост капель в газообразной среде, М., 1958;
  • Берд Р., Стьюарт В., Лайтфут Е., Явления переноса, пер. с англ., М., 1974;
  • Берман Л. Д., «Теоретические основы хим. технологии», 1974, т.8, № 6, с. 811-22;
  • Шервуд Т., Пигфорд Р., Уилки Ч., Массопередача, пер. с англ., М., 1982. Л. Д. Берман.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Испарение" в других словарях:

    Переход в ва из жидкого или твёрдого агрегатного состояния в газообразное (пар). Обычно под И. понимают переход жидкости в пар, происходящий на свободной поверхности жидкости. И. твёрдых тел наз. возгонкой или сублимацией. Зависимость давления… … Физическая энциклопедия

    Парообразование, происходящее на свободной поверхности жидкости. Испарение с поверхности твердого тела называется сублимацией … Большой Энциклопедический словарь

Отдел образования, молодежной политики, физической культуры и спорта

администрации Моргаушского района

Муниципальное образовательное учреждение

«Кашмашская основная общеобразовательная школа»

Исследовательская работа

Тема : «Испарение»

МОУ «Кашмашская ООШ»

Зайцевой Виктории

Руководитель:

д. Кашмаши - 2010

Введение

Основная часть:

Заключение

Приложение

Литература

Введение

Актуальность темы:

В природе вода постоянно испаряется с поверхности морей, рек, озёр, почвы. Она в виде пара поднимается высоко вверх. Пар охлаждается там и образует множество водяных капелек или крошечных льдинок. Из этих капелек и льдинок образуются облака. Из облака вода возвращается на землю в виде дождя и снега.

Проблема темы:

Почему мокрое бельё сохнет, вода, налитая на пол, исчезает?

Объект темы:

Процесс испарения веществ

Предмет темы:

Жидкости и пары

Цель работы: исследование процесса испарения в бытовых условиях.

Задачи работы:

1. Изучить литературу по теме работы;

2. Опытным путем доказать, как происходит процесс испарения;

3. Выявить причины, влияющие на процессы испарения.

Методы:

Изучение литературы;

Наблюдение;

Глава I Испарение

Испарение – это процесс, при котором жидкость постепенно переходит в воздух в форме пара или газа.

Все жидкости испаряются, но с разной скоростью.

Когда жидкость подогрета, испарение происходит быстрее – в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость.

Чем больше поверхность испаряющейся жидкости, тем быстрее происходит испарение. Вода в круглой сковородке испариться быстрее, чем в высоком кувшине.

Смочив руку какой-нибудь быстро испаряющейся жидкостью (спирт, духи), можно почувствовать сильное охлаждение смоченного места. Охлаждение усилиться если на руку подуть.

Круговорот воды в природе

В сильную жару реки, пруды и озера мелеют, вода испаряется, то есть из жидкого состояния переходит в газообразное -- превращается в невидимый пар. В течении дня, вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях нагревается Солнцем и испаряется, причем тем скорее, чем сильнее нагрета. Можно заметить это, если две одинаковые тарелки наполнить разным количеством воды и одну из них выставить на солнцепек, а другую поместить в тень. Там где вода нагревается солнечными лучами, она будет испаряться заметно быстрее. Ускоряет испарение и ветер. Влажный лист бумаги на ветру высохнет быстрее, чем оставленный там, где воздух спокоен и неподвижен.

В жаркие сухие дни человек потеет, но пот мало его беспокоит: он мгновенно высыхает. А когда стоит влажная жара, то от пота намокает даже одежда. Но если влага постоянно испаряется из морей, рек, озер, если она уходит из растений и исчезает в атмосфере, то почему же тогда Земля не высыхает?

Это не случается потому, что вода совершает постоянный круговорот. Испарившись, она поднимается вместе с нагретым воздухом, принимая форму мельчайших капелек.

Вывод:

Процесс испарения – это очень интересное явление, его интересно наблюдать и отмечать, как оно часто встречается в нашей жизни.

Я думаю, что наука еще не раз использует процесс испарения для пользы человека и нашей планеты.

Глава II Практические опыты

Скорость испарения зависит от:

1) площади поверхности жидкости;

2) температуры;

3) движения молекул над поверхностью жидкости (ветер);

4) рода вещества;

1. Зависимость испарения от площади испаряемой поверхности, если температура жидкости одинакова.

Ход опыта:

Нальем одинаковое количество воды в стакан и блюдце. Оставим до утра.

На следующее утро мы видим, что вода в блюдце испарилась (объем жидкости стал меньше), а в стакане вода ещё есть.

Вывод: Чем больше поверхность испаряющийся жидкости, тем быстрее происходит испарение, так как количество испаряющихся молекул будет больше на большей площади.

2. Зависимость испарения от температуры

Ход опыта:

Я взяла 2 одинаковых сосуда, в один из которых налила холодную воду, а в другой – горячую. Уровень воды был одинаковый. Через некоторое время в сосуде, где была горячая вода, жидкости стало меньше.

Вывод : Чем выше температура, тем больше скорость испарения

3. Зависимость испарения от ветра.

Ход опыта:

Скорость испарения зависит от движения воздуха над свободной поверхностью жидкости. Когда мы создаем ветер, испарение происходит быстрее

На 2 листа бумаги нанесем одинаковое количество воды. Над одним листом будем создавать тетрадью или феном ветер.

Вывод: Если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха помогает молекулам жидкости оторваться от поверхности и перейти в парообразное состояние. Горячий воздух ускорит этот процесс.

Зависимость испарения от рода вещества.

Ход опыта:

Для проведения данного опыта я взяла две бумажные салфетки. На первую налила немножко воды, а на вторую брызнула духи. Затем я стала наблюдать за испарением жидкостей.

Быстрее всего испарились духи, не оставив следа на салфетке. Остался только приятный запах. Вторым испарилась вода.

Вывод: Я думаю, разные жидкости имеют разную скорость испарения.

5. Это интересно!

Ход опыта:

На тыльную сторону ладони нанесла тонкий слой духов. При испарении духов с руки почувствовала холод.

Вывод: Значит, для испарения жидкости необходим постоянный приток энергии от ладони.

6. Это интересно!

Ход опыта:

Одну половину доски я вытерла мокрой-мокрой тряпкой, а другую чуть-чуть мокрой тряпкой. Вторая половина доски у меня высохла, а первая всё ещё оставалась мокрой.

Вывод: Значит доску надо вытирать более сухой тряпкой

Выводы:

Работая над темой «Испарение», я нашла ответы на свои вопросы. Я узнала, почему мокрое бельё сохнет, вода, налитая на пол, исчезает.

Скорость испарения жидкости зависит от площади свободной поверхности жидкости. Чем больше площадь испарения, тем быстрее происходит испарение.

Скорость испарения зависит от температуры жидкости. Чем выше температура жидкости, тем быстрее происходит испарение.

Скорость испарения зависит от движения воздуха над свободной поверхностью жидкости.

Скорость испарения зависит от рода взятой жидкости.

Заключение

Работая над темой испарение, я нашла ответы на свои вопросы. Я узнала, как происходит испарение, что скорость испарения веществ различна. Люди активно используют процесс испарения в своей жизни, применяют его в производстве различных механизмов и машин, используют в быту. В природе этот процесс происходит вне зависимости от деятельности человека и задача людей – не нарушать этот процесс. Для этого необходимо любить природу и любить нашу Землю! Опыты, которые я провела, были очень интересными, и я думаю, что можно провести еще много других опытов по этой теме. Сейчас я всегда обращаю внимание на испарение, происходящее в природе или в жизни человека, и я рада, что уже так много знаю о нем!

Приложение 1

Процесс испарения в жизни человека.

    Испарение иногда бывает опасно. Например: если у вас разбился градусник, то из него может вылиться ртуть, которая быстро испаряется. Её пары очень опасны и ядовиты для человека. Бензин также опасен своими парами: розлив бензина и случайная искра может привести к мгновенному взрыву и пожару. На кухне хозяйка часто использует процесс испарения для приготовления и сохранения пищи. Например: образующийся внутри кастрюли-скороварки пар давит на воду, вследствие чего она закипает при более высокой температуре и пища готовиться быстрее.
    Процесс испарения часто используют при стерилизации посуды для консервирования продуктов.
    При простуде люди часто используют процесс испарения при проведении ингаляций лекарственными травами.
    Ощущать долго аромат духов люди могут только благодаря испарению, сначала с поверхности кожи испаряется спирт, а затем и менее летучие ароматические вещества, которые продолжают напоминать о человеке даже, когда он ушел.
    Процесс испарения с помощью горячей струи воздуха позволяет создавать красивые прически. Работа парикмахера без фена невозможна!

Процесс испарения в природе

    Реки растворяют в своих водах множество химических веществ, содержащихся в горных породах, и уносят их в море. Одно из таких веществ – обыкновенная соль, которую мы употребляем в пищу. Когда морская вода испаряется, растворенная в ней соль остается в море. Вот почему моря такие соленые.
    Когда водяные капельки в облаке встречаются с массой теплого воздуха, они испаряются – и облако исчезает! Поэтому облака постоянно меняют свою форму. Содержащаяся в них влага постоянно превращается то в воду, то в пар. Капли воды, содержащиеся в облаке, имеют вес, поэтому тяготение тянет их вниз, и они отпускаются все ниже и ниже. Когда основная их часть, падая, достигает более теплых воздушных слоев, этот теплый воздух заставляет их испаряться. Так получаются облака, из которых не льется дождь. Они испаряются, и капли не успевают достичь земной поверхности.