Выделилась физиология в самостоятельную науку в XV веке благодаря исследованиям Гарвея и ряда других ученых естествоиспытателей, и, начиная с конца XV - начала XVI веков, основным методом в области физиологии являлся метод эксперимента. Метод наблюдения - самый древний, зародился в Др. Греции, хорошо развит был в Египте, на Др. Востоке, в Тибете, в Китае. Суть этого метода заключается в длительном наблюдении изменений функций и состояний организма, фиксирование этих наблюдений и по возможности сопоставление визуальных наблюдений с изменениями организма после вскрытия. Гиппократ к наблюдаемым признакам относил и характер поведения. Благодаря своим тщательным наблюдениям им было сформулировано учение о темпераменте. Метод наблюдения широко используется в физиологии (особенно в психофизиологии) и в настоящее время метод наблюдения сочетается с методом хронического эксперимента.
Метод эксперимента. Физиологический эксперимент в отличие от простого наблюдения - это целенаправленное вмешательство в текущее отправление организма, рассчитанное на выяснение природы и свойств его функций, их взаимосвязей с другими функциями и с факторами внешней среды. Также вмешательство часто требует хирургической подготовки животного, которое может носить: 1) острую (вивисекционную, от слова vivo - живое, sekcia - секу, т.е. секу по живому), 2) хроническую (экспериментально-хирургическую) формы. В связи с этим эксперимент подразделяют на 2 вида: острый (вивисекция) и хронический. Вивисекция представляет собой форму эксперимента, проводимую на обездвиженном животном. Впервые вивисекция начала применятся в средние века, но широко стала внедряться в физиологическую науку в эпоху Возрождения (XV-XVII в). Наркоз в то время не был известен и животное жестко фиксировалось за 4 конечности, при этом оно испытывало мучения. Это послужило причиной появления философских групп и течений. Анимализм (течения, пропагандирование гуманного отношения к животным и выступление за прекращение издевательств над животными, анимализм пропагандируется в настоящее время), витализм (ратовало за то, не проводились эксперименты на ненаркотизированных животных и волонтерах), механицизм (отожествляли правильно протекающие в животном с процессами в неживой природе, ярким представителем механицизма был французский физик, механик и физиолог Рене Декарт), антропоцентризм. Начиная с XIX века в остром эксперимента стали применять наркоз. Это привело к нарушению процессов регуляции со стороны высших отростков ЦНС, в результате нарушается целостность реагирования организма и его связь с внешней средой. Такое применение наркоза и хирургическое вмешательство при вивисекции вносит в острый эксперимент неконтролируемые параметры, которые трудно учесть и предвидеть.
Острый эксперимент, как и любой экспериментальный метод, имеет свои достоинства:
1) вивисекция - один из аналитических методов, дает возможность моделировать разные ситуацииСеминар
2) вивисекция дает возможность получать результаты в относительно короткий срок. недостатки:
1) в остром эксперименте отключается сознание при применении наркоза и соответственно нарушается целостность реагирования организма;
2) нарушается связь организма с окружающей средой в случаи применения наркоза;
3) при отсутствии наркоза идет неадекватный нормальному физиологическому состоянию выброс стрессорных гормонов и эндогенных (вырабатываемых внутри организма) морфиноподобных веществ эндорфинов, оказывающих обезболивающий эффект.
Хронический эксперимент - длительное наблюдение после острого вмешательства и восстановление взаимоотношений с окружающей средой. Преимущества хронического эксперимента: организм максимально приближен к условиям интенсивного существования. Некоторые физиологи к недостаткам хронического эксперимента относят то, что результаты получаются в относительно длительный срок. В хроническом эксперименте используется ряд методических приемов и подходов.
1. Электрофизиологические методы.
2. Метод наложения фистул на полые органы и на органы, имеющие выводные протоки.
Родоначальником фистульного методы был Басов, однако при наложении фистулы его методом, содержимое желудка попадало в пробирку вместе с пищеварительными соками, что затруднило изучение состава желудочного сока, этапов пищеварения, скорости протекания процессов пищеварения и качества отделяемого желудочного сока на различный состав пищи. Фистулы могут накладываться на желудок, протоки слюнных желез, кишечник, пищевод и др. Отличие павловской фистулы от басовской состоит в том, что Павлов накладывал фистулу на «малый желудочек», сделанный искусственно хирургическим путем и сохраняющий пищеварительную и гуморальную регуляцию. Это позволило Павлову выявить не только качественный и количественный состав желудочного сока на принимаемую пищу, но и механизмы нервной и гуморальной регуляции пищеварения в желудке. За свои работы в области пищеварения Павлов был удостоен Нобелевской премии.
3. Гетерогенные нервно-сосудистые или нервно-мышечные анастенозы. Это изменение эффекторного органа в генетически детерминированной нервной регуляции функций. Проведение таких анастеноз позволяет выявить отсутствие или наличие пластичности нейронов или нервных центров в регуляции функций. При нервно-сосудистых анастенозах эффекторными органами являются кровеносные сосуды и соответственно расположенные в них хемо- и барорецепторы.
4. Пересадка различных органов. Подсадка и удаление органов или различных участков мозга (экстирпация). В результате удаления органа создают гипофункцию той или иной железы, в результате подсадки создают ситуацию гиперфункции или избытка гормонов той или иной железы. Экстирпация различных участков головного мозга и коры головного мозга выявляют функции этих отделов. Например, при удалении мозжечка было выявлено его участи в регуляции движения, в поддержании позы, статокинетических рефлексов. Удаление различных участков коры головного мозга позволило Бродману разделить кору на 52 поля.
5. Метод перерезки головного и спинного мозга. Позволяет выявить функциональную значимость каждого отдела ЦНС в регуляции соматических и висцеральных функций организма, а также в регуляции поведения.
6. Вживление электродов в различные участки мозга. Позволяет выявить активность и функциональную значимость той или иной нервной структуры в регуляции функций организма (двигательных функций, висцеральных функций и психических). Электроды, вживляемые в мозг, делаются из инертных материалов (т.е. они должны быть интоксичными): платина, серебро, палладий. Электроды позволяют не только выявлять функцию того или иного участка, но и наоборот, зарегистрировать в каком участке мозга появление вызывает потенциал (ВТ) в ответ на те или иные функциональные отправления. Микроэлектродная техника дает человеку возможность изучить физиологические основы психики и поведения.
7. Вживление канюль (микро). Перфузия - пропускание растворов различного химического состава по нашему компоненту или по наличию в нем метаболитов (глюкоза, ПВК, молочная кислота) или по содержанию биологически активных веществ (гормоны, нейрогормоны, эндорфины, энкефамины и др.). Канюля позволяет вводить растворы с разным содержимым в ту или иную область мозга и наблюдать изменение функциональной активности со стороны двигательного аппарата, внутренних органов или поведения, психологической деятельности.
8. Введение меченых атомов и последующее наблюдение на позитронно-эмиссионном томографе (ПЭТ). Чаще всего вводят ауро-глюкозу, меченную золотом (золото+глюкоза). По образному выражению Грине, универсальным донором энергии во всех живых системах является АТФ, а при синтезе и ресинтизе АТФ основным энергетическим субстратом является глюкоза (ресинтез АТФ может так же происходить из креатин-фосфата). Поэтому по количеству потребляемой глюкозы судят о функциональной активности того или иного участка мозга, о его синтетической активности. Глюкоза потребляется клетками, а золото не утилизируется и накапливается в этом участке. По разноактивному золоту, его количеству судят о синтетической и функциональной активности.
9. Стереотаксические методы. Это методы, при которых проводятся хирургические операции по вживлению электродов в определенной области мозга в соответствии со стереотаксическим атласом мозга с последующей регистрацией отведенных быстрых и медленных биопотенциалов, с регистрацией вызванных потенциалов, а также регистрацией ЭЭГ, миограммы.
10. Биохимические методы. Это большая группа методик, с помощью которых в циркулирующих жидкостях, тканях, а иногда и органах, определяют уровень катионов, анионов, неноницированных элементов (макро и микроэлементов), энергетических веществ, ферментов, биологически активных веществ (гормоны и др.). Эти методы применяются как in vivo (в инкубаторах) или в тканях, которые продолжают секретировать и синтезировать вырабатываемые вещества в инкубационную среду. Биохимические методы позволяют оценивать функциональную активность того или иного органа или его части, а иногда и целой системы органов. Например, по уровню 11-ОКС можно судить о функциональной активности пучковой зоны коры надпочечников, но по уровню 11-ОКС можно судить и о функциональной активности гипоталамо-гипофизарно-надпочечниковой системы. В целом, поскольку 11-ОКС является конечным продуктом периферического звена коры надпочечников. 11. Гистохимические методы. Иммунологические методы в физиологии.
12. Методы изучения физиологии ВНД. Планирование экспериментов Для планирования опытов необходимо знать принципы и тактику исследования, научного подхода, которые лучше всего формируются при непосредственном осуществлении опытов. Преимущество лабораторного изучения перед наблюдением заключается в том, что исследователь может контролировать условия опыта, т. е. устанавливать точный контроль за так называемыми независимыми переменными, чтобы выявить их влияние на зависимые переменные. Зависимыми переменными могут быть любые физиологические характеристики, тогда как независимые переменные - это условия, которые контролируются экспериментатором и иногда навязываются организму. Под условиями подразумевают прямое вмешательство (удаление отделов головного мозга, его стимуляция или применение различных препаратов), изменение окружающей среды (температуры и освещенности), изменение режима подкрепления, сложность задний по обучению, длительность пищевой депривации или такие факторы, как возраст, пол, генетическая линия и т. д. Чтобы свести до минимума неправильное толкование опытов, связанное со сложностью отличить эффекты экспериментальных вмешательств от воздействий других переменных, необходимо ввести контрольные процедуры. В идеальном варианте контрольную группу исследуют так же, как и экспериментальную, исключая воздействие изучаемого фактора, ради которого и намечается сам эксперимент. Одно и то же животное можно использовать и в контроле, и в эксперименте, если, например, необходимо сравнить поведение его до и после удаления отделов головного мозга. Другая обычная контрольная процедура, цель которой состоит в уменьшении одновременного влияния переменных факторов, - это сбалансированное применение разных влияний на одном и том же животном (например, инъекции различных препаратов или различных доз одного и того же препарата). Еще одним важным моментом контроля является произвольное распределение животных по различным группам. Это лучше всего осуществлять с помощью таблицы случайных чисел, которая приводится во многих книгах по статистики (простой отлов животных из клетки для формирования группы не является адекваным, так как самые слабые или пассивные животные будут отловлены в первую очередь). Из-за возможных ошибок или вариабельности получаемых результатов, вызванных неконтролируемыми переменными, измерения обычно повторяют и выявляют среднюю или медианную величину. При повторных измерениях проводят множественные наблюдения за теми же животными или же одно наблюдение за многими животными, или же и то и другое вместе. Чем больше вероятность ошибок или колебаний, связанных с некоторыми неизвестными или неконтролируемыми переменными, тем больше вероятность того, что повторные измерения будут отличаться и, таким образом, вариабельность измерений относительно средней величины будет выше. Статистический анализ используется для оценки степени достоверности наблюдаемых различий между экспериментальными и контрольными группами или условиями опыта. Научный анализ, основывающийся на натуралистических наблюдениях или на лабораторных опытах, опирается на измерения, с помощью которых наблюдениям придается количественный характер. От так называемого уровня измерения зависит, какие арифметические операции могут быть применены к числам, что, следовательно, и обусловливает использование соответствующих статистических методов. Исследователь должен учитывать уровень измерений и предвидеть природу статистической обработки результатов уже при планировании опытов, так как эти соображения помогут решить вопрос о точности измерительных приборов и требуемом количестве опытов. Аппаратура для изучения физиологических функций. Успехи современной физиологии в изучении функций целостного организма, его систем, органов, тканей и клеток во многом обусловлены широким внедрением в практику физиологического эксперимента электронной техники, анализирующих устройств и электронных вычислительных машин, а также биохимических и фармакологических методов исследования. При исследовании физиологических функций с использованием различной аппаратуры в эксперименте формируют своеобразные системы. Их можно разделить на две группы: 1) системы для регистрации различных проявлений жизнедеятельности и анализа полученных данных и 2) системы для воздействия на организм или его структурно-функциональные единицы. Система, позволяющая регистрировать биоэлектрические процессы в организме, состоит из объекта исследования, отводящих электродов, усилителя, регистратора и блока питания. Регистрирующие системы такого рода используют для электрокардиографии, электроэнцефалографии, электрогастрографии, электромиографии и др. При исследовании и регистрации с помощью электронной аппаратуры целого ряда неэлектрических процессов необходимо их предварительно преобразовать в электрические сигналы. Для этого используют различные датчики.
Одни датчики сами способны генерировать электрические сигналы и не нуждаются в питании от источника тока, другим это питание необходимо. Величина сигналов датчика обычно невелика, поэтому для регистрации их необходимо предварительно усиливать. Системы с применением датчиков используют для баллистокардиографии, плетизмографии, сфигмографии, регистрации двигательной активности, кровяного давления, дыхания, определения газов в крови и выдыхаемом воздухе и т. д. Если системы дополнить и согласовать с работой радиопередатчика, то становится возможным передавать и регистрировать физиологические функции на значительном расстоянии от объекта исследования. Этот метод получил название биотелеметрии. Развитие биотелеметрии определяется внедрением микроминиатюризации в радиотехнику. Она позволяет исследовать физиологические функции не только в лабораторных условиях, но и в условиях свободного поведения, во время трудовой и спортивной деятельности, независимо от расстояния между объектом исследования и исследователем. Системы, предназначенные для воздействия на организм или его структурно-функциональные единицы, оказывают различные влияния: пусковые, стимулирующие и тормозящие.
Методы и варианты воздействия могут быть самыми разнообразными. При исследовании дистантных анализаторов стимулирующий импульс может восприниматься на расстоянии, в этих случаях стимулирующие электроды не нужны. Так, например, можно воздействовать светом на зрительный анализатор, звуком - на слуховой и различными запахами - на обонятельный. В физиологических экспериментах в качестве раздражителя часто используют электрический ток, в связи с чем широкое распространение получили электронные импульсные стимуляторы и стимулирующие электроды. Электрическую стимуляцию применяют для раздражения рецепторов, клеток, мышц, нервных волокон, нервов, нервных центров и т. д. При необходимости может быть применена биотелеметрическая стимуляция. Исследования физиологических функций проводят не только в состоянии покоя, но и при различных физических нагрузках.
Последние могут создаваться либо. выполнением определенных упражнений (приседания, бег и т. д.), либо с помощью различных устройств (велоэргометр, бегущая дорожка и др.), дающих возможность точно дозировать нагрузку. Регистрирующие и стимулирующие системы часто используют одновременно, что значительно расширяет возможности физиологических экспериментов. Эти системы можно комбинировать в различных вариантах.

Физиология (физис - природа) - это наука о нормальных процессах жизнедеятельности организма, составляющих его физиологических систем, отдельных органов, тканей, клеток и субклеточных структур, механизмах регуляции этих процессов и влиянии на функции организма естественных факторов внешней среды.

Исходя из этого, в целом предметом физиологии является здоровый организм. Задачи физиологии включены в ее определение. Основным методом физиологии является эксперимент на животных. Выделено 2 основных разновидности экспериментов или опытов:

1. Острый опыт или вивисекция (живосечение). В процесс него производится хирургическое вмешательство, исследуются функции открытого или изолированного органа. После этого не добиваются выживания животного. Продолжительность острого эксперимента от нескольких десятков минут до нескольких часов (пример).

2. Хронический опыт. В процессе хронических опытов производят оперативное вмешательство для получения доступности к органу. Затем добиваются заживления операционных ран и лишь после этого приступают к исследованиям. Продолжительность хронических экспериментов может составлять многие годы (пример).

Иногда выделяют подострый эксперимент (пример).

Вместе с тем, для медицины требуются сведения о механизмах функционирования человеческого организма. Поэтому И.П. Павлов писал: «Экспериментальные данные, можно применять к человеку только с осторожностью, постоянно проверяя фактичность сходства с деятельностью этих органов у че­ловека и животных". Следовательно, без постановки специальных наблюдений и опытов на человеке изучение его физиологии бессмысленно. Поэтому выделяют специальную физиологическую науку - физиологию человека. Физиология человека имеет предмет, задачи, методы и историю. Предметомфизиологии человека является здоровый человеческий организм.

Её задачи:

1.Исследование механизмов функционирования клеток, тканей, органов, систем, организма человека в целом

2. Изучение механизмов регуляции функций органов и систем организма

3. Выяв­ление реакций человеческого организма и его систем на изменение внешней и внутренней среды

Так как физиология в целом экспериментальная наука, основным методом физиологии человека также является эксперимент. Однако эксперименты на человеке коренным образом отличаются от опытов на животных. Во-первых, подавляющее большинство исследований на человеке производится с помощью неинвазивных методов, т.е. без вмешательства в органы и ткани (пример ЭКГ, ЭЭГ, ЭМГ, анализы крови и т.д.). Во-вторых, эксперименты на человеке проводят только тогда, когда они не наносят вреда здоровью и с согласия испытуемого. Иногда острые опыты проводятся на человеке в клинике, когда этого требуют задачи диагностики (пример). Однако следует отметить, что без данных классической физиологии возникновение и развитие физиологии человека было бы невозможно (памятники лягушке и собаке). Еще И.П. Павлов, оценивая роль физиоло­гии для медицины, писал: "Понимаемые в грубом смысле слова физиоло­гия и медицина неотделимы, знание физиологии необходимо врачу любой специальности". А также, что "Медицина лишь обогащаясь постоянно изо дня в день, новыми физиологическими фактами, станет, наконец тем, чем она должна быть в идеале, т.е. умением чинить испортившийся механизм человека и быть прикладным знанием физио­логии" (примеры из клиники). Другой известнейший русский физио­лог проф. В.Я. Данилевский отмечал: "Чем точнее и полнее будут определены признаки нормы для телесной и душевной жизни человека, тем правильнее будет диагноз врача для ее патологических отклонений”.

Физиология, являясь основополагающей биологической наукой, тесно связана с другими фундаментальными и биологическими науками. В частности, без знания законов физики невозможно объяснение биоэлектрических явлений, механизмов свето- и звуковосприятия. Без применения данных химии невозможно описание процессов обмена веществ, пище­варения, дыхания и т.д. Поэтому на границах этих наук с физиологией выделились дочерние науки биофизика и биохимия.

Так как структура и функция неразделимы, причем именно функция определяет формирование структуры, физиология тесно связана с морфологическими науками: цитологией, гистологией, анатомией.

В результате исследования действия различных химических веществ на организм из физиологии выделилась в самостоятельные науки фармакология и токсикология. Накопление данных о нарушениях механизмов функционирования организма при различных заболеваниях послужило основой возникновения патологической физиологии.

Выделяют общую и частную физиологию. Общая физиология изучает основные закономерности жизнедеятельности организма, механизмы таких базисных процессов как обмен веществ и энергии, размножение, процессы возбуждения и т.д. Частная физиология исследует функции конкретных клеток, тканей, органов и физиологических систем. Поэтому в ней выделяются такие разделы, как физиология мышечной ткани, сердца, почек, пищеварения, дыхания и т.д. Кроме того, в физиологии выделяют разделы, имеющие специфический предмет исследования или особые подходы в исследовании функций. К ним относятся эволюционная физиология (объяснение), сравнительная физиология, возрастная физиология.

В физиологии имеется целый ряд прикладных разделов. Это, например, физиология сельскохозяйственных животных.

В физиологии человека выделяют следующие прикладные разделы:

1.Возрастня физиология. Изучает возрастные особенности функций организма.

2.Физиология труда

3.Клиническая физиология. Это наука, использующая физиологические методики и подходы для диагностики и анализа патологических отклонений

4.Авиационная и космическая физиология

5.Физиология спорта

Физиология человека теснейшим образом связана с такими клиническими дисциплинами, как терапия, хирургия, акушерство, эндокринология, психиатрия, офтальмология и т.д. Например, эти науки используют для диагностики многочисленные методики разработанные физиологами. Отклонения нормальных параметров организма являются основой выявления патологии.

Некоторые разделы физиологии человека являются базой для психологии (физиология ЦНС, ВНД, сенсорных систем, психофизиология).

Перед физиологией стоит задача дать ответ на вопрос, что происходит в организме, почему и как осуществляется тот или иной физиологический процесс. Достаточно часто для ответа на эти вопросы физиологи-исследователи используют метод наблюдения или самонаблюдения, характерной условием которого является отсутствие какого-либо вмешательства в физиологический процесс. Эти методы позволяют только качественно охарактеризовать физиологическое явление, например, установить сужение или расширение зрачка, и часто служат источником субъективных ошибок.

Но физиологи не ограничиваются только наблюдениями. Чтобы получить ответы на поставленные вопросы (как и почему именно так происходят физиологические процессы), в физиологии применяют эксперимент.

Эксперимент — один из основных методов познания физиологических явлений. То есть, физиология — экспериментальная наука. Экспериментатор вмешивается в ход физиологических процессов в специально подобранных условиях, делает выводы о причинно-следственные связи. Он не только качественно, но и количественно оценивает физиологические процессы, выражает их числом и мерой, документируя их. Именно с эксперимента началась , и его значение не уменьшается со временем. Измерения и документирования требуют применения специальных инструментов, приборов и аппаратов. На сегодня во время физиологического эксперимента широко используют приборы, работа которых основана на новейших достижениях физики, химии, электроники, автоматики, кибернетики и вычислительной техники.

Экспериментальный метод применяют в двух вариантах: острые опыты и хронические исследования.

Во время острого опыта (вивисекции) животному вводят обезболивающие препараты, усыпляют его, рассекают тело и исследуют работу определенного органа. Разновидностью острых опытов является методика изолированных органов, тканей и клеток, их жизнедеятельность во время опытов поддерживают, используя специальные растворы, питательные среды, аэрацию и поддержания соответствующей температуры. Считают, что острые опыты является основным экспериментальным подходом аналитической физиологии.

Хронические (длительные) эксперименты проводят на живых животных, и они служат основой синтетической физиологии. Такие эксперименты проводят на интактных и специально прооперированных животных. Сюда относятся операции по наложению фистул, выведение наружу протоков, удаления органов или их частей (эндокринных желез, участков головного мозга), вживление электродов для раздражения и отвода биоэлектрических потенциалов.

Длительные опыты выполняют и на интактных животных, когда изучают энергозатраты, влияние температуры и состава воздуха, поведенческие реакции. Для этого животных помещают на определенный период в специально оборудованные камеры.

Перечень используемых в физиологии конкретных методик достаточно просторный. Сюда относятся: экстирпация (удаление органа), трансплантация (пересадка органа), денервация (лишение нервного контроля), наложение лигатур (перевязок), методика сосудистых анастомозов, фистульного методика, методика катетеризации, перфузия изолированных органов, электрофизиологические методы (раздражение электрическим током, внеклеточный и внутриклеточный отвод биоэлектрических потенциалов, электрические методы измерения температуры, давления, записи сокращения мышц), биохимические методы, радиотелеметрических методы (передача на расстояние физиологической с участием радиоволн), кибернетические методы (математическое, программное и физическое моделирование физиологических функций). Следует также отметить, что в физиологии сегодня широко применяют физические и физико-химические методы исследования (колориметрию, спектрофотометрию, рН-метрию, хроматографии, электрофорез, рентгенографию, электронную микроскопию, метод радиоактивных меток и другие).

Исследования проводят на лабораторных собаках, кроликах, морских свинках, крысах, белых мышах, лягушках и сельскохозяйственных животных (птицах, овцах, козах, свиньях, крупному рогатому скоту, лошадях), содержащихся в условиях, отвечающих критериям гуманного обращения с ними. Экспериментальные данные, полученные в ходе исследования лабораторных и сельскохозяйственных животных, могут быть использованы для объяснения соответствующих функций человека. Однако полной аналогии проводить не следует.

Клиника ставит перед физиологическим экспериментом новые задачи и вместе с тем является богатым источником новых физиологических фактов. Поэтому оформляется как особый раздел физиологии клиническая физиология , стремящаяся перенести в клинику теоретические и экспериментально-методические достижения физиологии и использовать клинические наблюдения для объяснения и анализа физиологических процессов, протекающих в организме человека.

Значение физиологии для медицины и медицины для физиологии настолько велико, что совершенно справедливо И. П. Павлов утверждал необходимость «законного и плодотворного союза медицины и физиологии, тех двух родов человеческой деятельности, которые на наших глазах воздвигают здание науки о человеческом организме и сулят в будущем обеспечить человеку его лучшее счастье - здоровье и жизнь».

Физиология связана также с психологией и педагогикой. Физиология, В"особенности созданное И. П. Павловым учение о высшей нервной деятельности, представляет собой естественнонаучную основу современной психологии и педагогики. Конкретное практическое значение физиоло-гии для педагогики связано с тем, что понимание возрастных особенностей физиологических процессов, протекающих в организме детей, необходимо педагогу для правильной организации труда и быта ребенка, для проведения рациональных воспитательных мероприятий.

Методы физиологического исследования . Физиология - экспериментальная наука. Наблюдая и изучая жизненные явления, физиолог стремится, во-первых, дать им качественную и количественную характеристику, т. е. точно описать их и измерить, иначе говоря, выразить их числом и мерой, и, во-вторых, документировать результаты наблюдений. Документация обычно состоит в том, что наблюдатель фиксирует полученные им результаты в виде протоколов наблюдений или кинофильмов и фотографий, или в виде автоматической записи изменений изучаемого процесса во времени (на фотопленке, движущейся бумаге, магнитной ленте и т. п.).

И измерение, и документация требуют специальных инструментов, приборов и аппаратов, соответствующих задаче исследования, и подчас весьма сложных. Это обусловлено тем, что многие процессы столь слабы и происходят так быстро, что для их наблюдения и исследования, и тем более измерения, необходимы специальные приспособления. Поэтому уже в прошлом столетии в обиход физиологических лабораторий вошли многие регистрирующие и измерительные приборы. Особого успеха достигла инструментальная техника, применяемая при физиологических исследованиях в настоящее время, когда широко используются. приборы, основанные на достижениях физики, химии, электроники и автоматики. Точная и высокочувствительная аппаратура, которую применяет современный физиолог, чрезвычайно расширяет познавательные возможности человека, повышает разрешающую способность его органов чувств, делает доступным для наблюдения бесчисленное множество различных физиологических процессов. Однако даже самых изощренных и точных способов наблюдения недостаточно для понимания природы жизненных явлений.

Физиолог не может удовлетвориться только наблюдением, так как оно отвечает лишь на вопрос, что происходит в организме. Физиолог же стремится выяснить также, как и почему происходят физиологические процессы. Для этого необходимы опыты, эксперименты, в которых проводятся наблюдения в измененных условиях, создаваемых и варьируемых самим экспериментатором.

При экспериментальном исследовании любого процесса в организме физиологи стремятся установить те условия, создавая которые можно вызвать данный процесс, усилить или ослабить его. Таким путем физиологи добиваются познания причин того или иного процесса, познания его природы и способов управления им.

Формы физиологического эксперимента многообразны и определяются задачей исследования. Так, при выяснении влияния внешней среды на организм его помещают в среду с измененным газовым составом воздуха или температурой, влажностью, освещенностью, меняют питание организма, подвергают его действию ионизирующей радиации, облучают ультрафиолетовыми лучами, действуют на него ультразвуком или какими-либо другими факторами. При этом для точности анализа стараются изменять только один исследуемый фактор, применяют только одно воздействие, проводят исследование, как говорят, «при прочих равных», т. е. при сохранении неизменными всех условий эксперимента, кроме одного - изучаемого.

При выяснении функций и значения в организме того или иного органа физиологи удаляют орган или его часть из организма (методика удаления, или экстирпации) ,или пересаживают орган на новое место в организме (методика пересадки, или трансплантации) и наблюдают, какими последствиями для организма это сопровождается. Такие мето-дики оказались особенно полезными для изучения желез внутренней секреции. Чтобы установить зависимость органа от влияния нервной системы, перерезают иннервирующие его нервные волокна (методика денервации). Для нарушения связи органов с сосудистой системой производят перевязку различных кровеносных сосудов (методика наложения лигатур) или соединяют между собой разные сосуды, сшивая центральный конец одного с периферическим концом другого (методика сосудистых анастомозов). Для изучения деятельности некоторых органов, находящихся в глубине тела и потому скрытых от непосредственного наблюдения, применяют фистульную методику. При одном ее варианте в полость органа, например желудка, кишечника, мочевого пузыря, вводят пластмассовую или металлическую трубку, второй конец которой укрепляют на поверхности кожи; при другом варианте этой методики протоки желез выводят на поверхность кожи. При многих исследованиях в сердце, кровеносные сосуды, протоки желез вводят тонкие трубки - катетеры, которые соединяют с различными приборами для регистрации функций органов или для введения тех или иных веществ (методика катетеризации).

Для искусственного возбуждения деятельности органов физиологи применяют методику раздражения путем электрического, механического, химического или других воздействий.

Большинство указанных выше методик исследования функций органов требует вскрытия живого организма или хирургической операции., Их применяют в острых и хронических опытах. При острых опытах, или вивисекциях, обычно непродолжительных, наркотизированное или иным способом обездвиженное животное вскрывают для изучения работы органов, исследования действия на них раздражения нервов, введения лекарственных веществ и т. п. При хронических опытах физиологи подвергают животное различным хирургическим операциям и начинают исследования после того, как животное оправится после перенесенного хирургического вмешательства. Нередко имеется возможность наблюдать оперированное животное в течение многих недель, месяцев и лет.

Функцию органов изучают не только в целостном организме, но и в условиях изолирования их из организма. Для этой цели через сосуды вырезанного, иначе говоря изолированного, органа пропускают определенные растворы, состав которых регулируется экспериментатором (методика перфузии), и создают необходимые для живых тканей условия внешней среды - определенную температуру, влажность и пр.

Все перечисленные методики служат целям глубокого проникновения в природу процессов, протекающих в организме. Их анализ доведен до уровня клетки, и даже до ее частей, в микрофизиологических экспериментах, когда в качестве объектов исследуются, например, одиночная мышечная, нервная или другие клетки.

Задачей аналитического исследования в физиологии является изучение каждого физиологического процесса, протекающего в каком-либо органе, ткани или клетке, изолированно от всех остальных процессов, происходящих в организме. В этом случае может быть получено всестороннее представление лишь о данном процессе, о функционировании лишь отдельного органа, ткани, клетки. Однако для правильного и полного познания жизнедеятельности организма этого недостаточно. Необходимо то направление исследований, которое И. П. Павлов назвал «синтетической физиологией», противопоставляя его «аналитической физиологии», изучающей отдельные органы, ткани и клетки. Задача синтетической физиологии, по И. П. Павлову, состоит в изучении организма во всех его связях и взаимоотношениях с внешней средой. При таком исследовании физиолог стремится максимально приблизить условия, в которых находится изучаемый организм, к естественным. Важной особенностью синтетического исследования является изучение всех отправлений организма животных и человека с точки зрения признания их подчиненности нервной системе. Такое направление исследования получило название принципа нервизма . Этот принцип является неотъемлемой частью синтетического исследования организма, потому что нервная система с ее высшим отделом - корой больших полушарий головного мозга - является той системой организма, которая объединяет все его части и определяет соотношение организма с окружающей средой.

Преимущественным объектом физиологических экспериментов являются различные животные. Возможности экспериментирования на организме человека весьма ограничены, так как в этом случае нельзя применять воздействия, которые могут оказать на него вредное влияние. Кроме того, возможности и наблюдения, и регистрации многих процессов в организме человека до недавнего времени были сравнительно невелики. Арсенал способов исследования, которые применял в прошлом физиолог в опытах на животном, не мог быть использован при изучении человеческого организма. Поэтому сведения о функциях многих органов ограничивались данными, полученными в опытах на животных. В настоящее время положение изменилось.

Большую помощь в изучении функций здорового и больного организма человека оказало в последние десятилетия использование физиологами и медиками современных достижений физики, радиотехники, электроники и медицины. Разработаны новые и усовершенствованы старые методы исследования функций, приобретена возможность изучать многие явления в организме человека без нанесения ему каких-либо повреждений. Так, прикладывая к поверхности тела электроды и применяя электро-измерительную аппаратуру, изучают электрические процессы, происходящие в органах, и на основе этих данных получают представление о состоянии и деятельности нервной системы, скелетной мускулатуры, сердца и других органов. Электрические методы позволяют изучать также механические, звуковые, температурные и другие процессы, происходящие в организме.. Крупнейшим методическим достижением является применение в физиологических исследованиях радиотелеметрии, т. е. передачи на расстояние физиологической информации с помощью радиосвязи с исследуемым объектом. Для этого к телу человека или животного прикладывают устройство, реагирующее на определенные физкческие или химические явления и позволяющее регистрировать их электрическими методами,- так называемый датчик. Это устройство соединяют с радиопередатчиком, помещаемым на исследуемом человеке или животном или вблизи него. Радиопередатчик изготовляют, используя сверхминиатюрные детали столь малых размеров, что его можно вживить в организм или ввести в полости тела (например, в пищеварительный тракт}. Под влиянием определенного физиологического процесса меняются электрические параметры датчика, что вызывает изменение частоты или амплитуды высокочастотных электромагнитных колебаний, излучаемых радиопередатчиком. Сигналы его воспринимаются радиоприемным устройством и регистрируются на расстоянии от исследуемого. Таким способом изучают физиологические процессы, например во время трудовых движений или спортивных упражнений. Радиотелеметрия применяется также для изучения состояния человека во время космических полетов. Для исследования функций целостного организма человека и животного чрезвычайно важна одновременная регистрация многих физиологических, физических и химических процессов, происходящих в разных клетках, органах и системах. Современная техника обеспечила такую возможность. При этом возникла сложная задача быстрой обработки результатов наблюдений многих различных процессов и выявления их закономерных соотношений.

Физиология наука экспериментальная. Она располагает двумя основными методами - наблюдением и экспериментом (опытом). Наблюдение позволяет проследить за работой того или иного органа, например, за сокращением сердца (определить частоту сокращений, какой отдел сокращается первым и т.д.). Однако путем наблюдений нельзя выявить причину сокращений сердца, механизм регулирования его деятельности. Для этого необходим эксперимент. Наблюдение позволяет познать внешнюю сторону явления, но не раскрывает ее сущности. По Павлову «наблюдение собирает то. что предлагает ему природа, опыт же берет у природы то, что он хочет». Таким образом, основным методом физиологического исследования является эксперимент.

Физиологический эксперимент в зависимости от цели и задач, поставленных перед исследователем, может быть острым и хроническим. Острые опыты осуществляются в условиях вивисекции (живосечения) и позволяют изучить за короткий срок какую-то функцию. Острые опыты имеют ряд недостатков: травма, кровопотеря и другие, которые могут извратить нормальную функцию организма. Хронический эксперимент позволяет в течение длительного времени изучать функции организма в условиях нормального взаимодействия его с окружающей средой. Функции органов могут быть изучены не только в целостном организме, но и вне его, при искусственной их изоляции.

В последние годы в качестве объекта исследования используют мышечные, нервные и другие клетки в которые вживляют микроэлектроды. С помощью микроэлектродов наносят раздражение и отводят биотоки. По изменению биоэлектрической активности клетки судят о ее функции.

Эксперимент является одним из самых действенных приемов физиологии рыб. Он заключается в создании для организма рыбы или органа, ткани, клетки различных условий и в определении влияния этих условий на результирующий показатель. При этом наблюдения и измерения играют также важную роль. С их помощью можно определить:

1) частоту периодических процессов таких как: дыхательный акт, частота сердцебиения, частота плавательных движений;

2) количественные показатели физиологических процессов: количество поедаемой пищи, интенсивность кровотока, мочеобразования, газопотребления, выделения и т.д. Однако при этом надо учитывать водный образ жизни рыб.

Изучение спектральной, звуковой, чувствительности, а также характеристики образования рефлексов проводят в аквариумных условиях. В случае длительного пребывания рыбы вне воды (например, при проведении хирургических операций) рыбе необходимо обязательно орошать током воды жаберную полость. Кровь у рыб берут из хвостовой вены, сердца, жаберной артерии.Инъекции рыбам обычно проводят внутримышечно, внутрибрюшинно или через рот.

Определенные сложности возникают при изучении питания рыбы, пищеварения и экскреции. Для определения точного количества корма съеденного рыбой используют вскрытие рыб, промывание пищеварительного тракта, принудительное кормление, введение пищи через рот с помощью зондов и трубок. При изучении обмена веществ используют радиоактивные и стабильные изотопы. Изучение дыхания осуществляют с помощью определения растворенного в воде кислорода. Мышечную деятельность изучают в поведенческих экспериментах и на специальных установках (гидродинамические трубы). При изучении нервной деятельности рыб используют поведенческие методы и приемы электрофизиологии - запись электрических потенциалов отдельных нервных волокон, нервов и нервных тканей, с помощью специальных приборов - электроэнцефалографов.

Как видно из приведенных данных для детального изучения определенных физиологических функций организма рыбы нужно совмещать эксперимент и наблюдения.

Вопросы для самопроверки:

1. Предмет и задачи физиологии рыб и ее связь с другими науками.

2. Методы физиологических исследований.

Тема: 2. Движение. Физиология мышц.

План:

1. Понятие о движении рыб

2. Мускулатура и ее физиологическая роль.

3. Звуки, издаваемые рыбами.

4. Электрические явления в организме рыб.