Формулы корней. Свойства квадратных корней.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями - это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да...

Начнём с самой простой. Вот она:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Площадь квадратного участка земли равна 81 дм². Найти его сторону. Предположим, что длина стороны квадрата равна х дециметрам. Тогда площадь участка равна х ² квадратным дециметрам. Так как по условию эта площадь равна 81 дм², то х ² = 81. Длина стороны квадрата — положительное число. Положительным числом, квадрат которого равен 81, является число 9. При решении задачи требовалось найти число х, квадрат которого равен 81, т. е. решить уравнение х ² = 81. Это уравнение имеет два корня: x 1 = 9 и x 2 = — 9, так как 9² = 81 и (- 9)² = 81. Оба числа 9 и — 9 называют квадратными корнями из числа 81.

Заметим, что один из квадратных корней х = 9 является положительным числом. Его называют арифметическим квадратным корнем из числа 81 и обозначают √81, таким образом √81 = 9.

Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а .

Например, числа 6 и — 6 являются квадратными корнями из числа 36. При этом число 6 является арифметическим квадратным корнем из 36, так как 6 — неотрицательное число и 6² = 36. Число — 6 не является арифметическим корнем.

Арифметический квадратный корень из числа а обозначается так: √а.

Знак называется знаком арифметического квадратного корня; а — называется подкоренным выражением. Выражение √а читается так: арифметический квадратный корень из числа а. Например, √36 = 6, √0 = 0, √0,49 = 0,7. В тех случаях, когда ясно, что речь идет об арифметическом корне, кратко говорят: «корень квадратный из а «.

Действие нахождения квадратного корня из числа называют извлечением квадратного корня. Это действие является обратным к возведению в квадрат.

Возводить в квадрат можно любые числа, но извлекать квадратные корни можно не из любого числа. Например, нельзя извлечь квадратный корень из числа — 4. Если бы такой корень существовал, то, обозначив его буквой х , мы получили бы неверное равенство х² = — 4, так как слева стоит неотрицательное число, а справа отрицательное.

Выражение √а имеет смысл только при а ≥ 0. Определение квадратного корня можно кратко записать так: √а ≥ 0, (√а )² = а . Равенство (√а )² = а справедливо при а ≥ 0. Таким образом, чтобы убедиться в том, что квадратный корень из неотрицательного числа а равен b , т. е. в том, что √а =b , нужно проверить, что выполняются следующие два условия: b ≥ 0, b ² = а.

Квадратный корень из дроби

Вычислим . Заметим, что √25 = 5, √36 = 6, и проверим выполняется ли равенство .

Так как и , то равенство верно. Итак, .

Теорема: Если а ≥ 0 и b > 0, то т. е. корень из дроби равен корню из числителя, деленному на корень из знаменателя. Требуется доказать, что: и .

Так как √а ≥0 и √b > 0, то .

По свойству возведения дроби в степень и определению квадратного корня теорема доказана. Рассмотрим несколько примеров.

Вычислить , по доказанной теореме .

Второй пример: Доказать, что , если а ≤ 0, b < 0. .

Еще примерчик: Вычислить .

.

Преобразование квадратных корней

Вынесение множителя из-под знака корня. Пусть дано выражение . Если а ≥ 0 и b ≥ 0, то по теореме о корне из произведения можно записать:

Такое преобразование называется вынесение множителя из под знака корня. Рассмотрим пример;

Вычислить при х = 2. Непосредственная подстановка х = 2 в подкоренное выражение приводит к сложным вычислениям. Эти вычисления можно упростить, если вначале вынести из-под знака корня множители: . Подставив теперь х = 2, получим:.

Итак, при вынесении множителя из-под знака корня представляют подкоренное выражение в виде произведения, в котором один или несколько множителей являются квадратами неотрицательных чисел. Затем применяют теорему о корне из произведения и извлекают корень из каждого множителя. Рассмотрим пример: Упростить выражение А = √8 + √18 — 4√2 вынося в первых двух слагаемых множители из-под знака корня, получим:. Подчеркнем, что равенство справедливо только при а ≥ 0 и b ≥ 0. если же а < 0, то .

Урок и презентация на тему:
"Свойства квадратного корня. Формулы. Примеры решений, задачи с ответами"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Интерактивное учебное пособие "Геометрия за 10 минут" для 8 класса
Образовательный комплекс "1С: Школа. Геометрия, 8 класс"

Свойства квадратного корня

Мы продолжаем изучать корни квадратные . Сегодня рассмотрим основные свойства корней. Все основные свойства интуитивно понятны и согласуются со всеми операциями, которые мы проводили раньше.

Свойство 1. Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных корней из этих чисел: $\sqrt{a*b}=\sqrt{a}*\sqrt{b}$.

Любые свойства принято доказывать, давайте это и сделаем.
Пусть $\sqrt{a*b}=x$, $\sqrt{a}=y$, $\sqrt{b}=z$. Тогда нам доказать, что $x=y*z$.
Давайте каждое выражение возведем в квадрат.
Если $\sqrt{a*b}=x$, то $a*b=x^2$.
Если $\sqrt{a}=y$, $\sqrt{b}=z$, то возведя оба выражения в квадрат, получим: $a=y^2$, $b=z^2$.
$a*b=x^2=y^2*z^2$, то есть $x^2=(y*z)^2$. Если квадраты двух неотрицательных чисел равны, то значит и сами числа равны, что и требовалось доказать.

Из нашего свойства следует, что, например, $\sqrt{5}*\sqrt{3}=\sqrt{15}$.

Замечание 1. Свойство справедливо и для случая, когда под корнем более двух неотрицательных множителей.
Свойство 2. Если $а≥0$ и $b>0$, то справедливо следующее равенство: $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

То есть корень из частного равен частному корней.
Доказательство.
Воспользуемся таблицей и кратко докажем наше свойство.

Примеры использования свойств квадратных корней

Пример 1.
Вычислить: $\sqrt{81*25*121}$.

Решение.
Конечно, мы можем взять калькулятор, перемножить все числа под корнем и выполнить операцию извлечения корня квадратного. А если под рукой нет калькулятора, как быть тогда?
$\sqrt{81*25*121}=\sqrt{81}*\sqrt{25}*\sqrt{121}=9*5*11=495$.
Ответ: 495.

Пример 2. Вычислить: $\sqrt{11\frac{14}{25}}$.

Решение.
Подкоренное число представим в виде неправильной дроби: $11\frac{14}{25}=\frac{11*25+14}{25}=\frac{275+14}{25}=\frac{289}{25}$.
Воспользуемся свойством 2.
$\sqrt{\frac{289}{25}}=\frac{\sqrt{289}}{\sqrt{25}}=\frac{17}{5}=3\frac{2}{5}=3,4$.
Ответ: 3,4.

Пример 3.
Вычислить: $\sqrt{40^2-24^2}$.

Решение.
Мы можем вычислить наше выражение напрямую, но практически всегда его можно упростить. Давайте попробуем это сделать.
$40^2-24^2=(40-24)(40+24)=16*64$.
Итак, $\sqrt{40^2-24^2}=\sqrt{16*64}=\sqrt{16}*\sqrt{64}=4*8=32$.
Ответ: 32.

Ребята, обратите внимание, что для операций сложения и вычитания подкоренных выражений ни каких формул не существует и представленные ниже выражения не верны.
$\sqrt{a+b}≠\sqrt{a}+\sqrt{b}$.
$\sqrt{a-b}≠\sqrt{a}-\sqrt{b}$.

Пример 4.
Вычислить: а) $\sqrt{32}*\sqrt{8}$; б) $\frac{\sqrt{32}}{\sqrt{8}}$.
Решение.
Свойства, представленные выше, работают как и слева на право, так и в обратном порядке, то есть:
$\sqrt{a}*\sqrt{b}=\sqrt{a*b}$.
$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$.
Используя это, решим наш пример.
а) $\sqrt{32}*\sqrt{8}=\sqrt{32*8}=\sqrt{256}=16.$

Б) $\frac{\sqrt{32}}{\sqrt{8}}=\sqrt{\frac{32}{8}}=\sqrt{4}=2$.

Ответ: а) 16; б) 2.

Свойство 3. Если $а≥0$ и n – натуральное число, то выполняется равенство: $\sqrt{a^{2n}}=a^n$.

Например. $\sqrt{a^{16}}=a^8$, $\sqrt{a^{24}}=a^{12}$ и так далее.

Пример 5.
Вычислить: $\sqrt{129600}$.

Решение.
Представленное нам число довольно таки большое, давайте разложим его на простые множители.
Мы получили: $129600=5^2*2^6*3^4$ или $\sqrt{129600}=\sqrt{5^2*2^6*3^4}=5*2^3*3^2=5*8*9=360$.
Ответ: 360.

Задачи для самостоятельного решения

1. Вычислить: $\sqrt{144*36*64}$.
2. Вычислить: $\sqrt{8\frac{1}{36}}$.
3. Вычислить: $\sqrt{52^2-48^2}$.
4. Вычислить:
а) $\sqrt{128*\sqrt{8}}$;
б) $\frac{\sqrt{128}}{\sqrt{8}}$.

Свойства квадратных корней

До сих пор мы осуществляли над числами пять арифметических операций: сложение, вычитание, умножение , деление и возведение в степень, причем при вычислениях активно использовали различные свойства этих операций, например а + b = b + а, аn-bn = (аb)n и т. д.

В этой главе введена новая операция - извлечение квадратного корня из неотрицательного числа. Чтобы успешно ее использовать, нужно познакомиться со свойствами этой операции, что мы и сделаем в настоящем параграфе.

Доказательство. Введем следующие обозначения:https://pandia.ru/text/78/290/images/image005_28.jpg" alt="Равенство" width="120" height="25 id="> .

Следующую теорему мы именно так и оформим.

(Краткая формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней или корень из частного равен частному от корней.)

На этот раз мы приведем только краткую запись доказательства, а вы попробуйте сделать соответствующие комментарии, аналогичные тем, что составили суть доказательства теоремы 1.

Замечание 3. Конечно, этот пример можно решить по-другому, особенно если у вас под рукой микрокалькулятор: перемножить числа 36, 64, 9, а затем извлечь квадратный корень из полученного произведения. Однако, согласитесь, предложенное выше решение выглядит более культурно.

Замечание 4. При первом способе мы проводили вычисления «в лоб». Второй способ изящнее:
мы применили формулу а2 - b2 = (а - b) (а + b) и воспользовались свойством квадратных корней.

Замечание 5. Некоторые «горячие головы» предлагают иногда такое «решение» примера 3:

Это, конечно, неверно: вы видите - результат получился не такой, как у нас в примере 3. Дело в том, что нет свойства https://pandia.ru/text/78/290/images/image014_6.jpg" alt="Задание" width="148" height="26 id="> Имеются только свойства, касающиеся умножения и деления квадратных корней. Будьте внимательны и осторожны, не принимайте желаемое за действительное.

Завершая параграф, отметим еще одно достаточно простое и в то же время важное свойство:
если a > 0 и n - натуральное число , то

Преобразование выражений, содержащих операцию извлечения квадратного корня

До сих пор мы с вами выполняли преобразования толькорациональных выражений , используя для этого правила действий над многочленами и алгебраическими дробями, формулы сокращенного умножения и т. д. В этой главе мы ввели новую операцию - операцию извлечения квадратного корня; мы установили, что

где, напомним, a, b - неотрицательные числа.

Используя эти формулы , можно выполнять различные преобразования выражений, содержащих операцию извлечения квадратного корня. Рассмотрим несколько примеров, причем во всех примерах будем предполагать, что переменные принимают только неотрицательные значения.

Пример 3. Внести множитель под знак квадратного корня:

Пример 6 . Упростить выражение Решение. Выполним последовательные преобразования: