А знаете ли вы, что...

Шведский учёный А.Цельсий выполнял проверку температурной шкалы? «Я повторял опыты два года, при различной погоде, и всегда находил точно такую же точку на термометре. Я помещал термометр не только в тающий лед, но и в снег, когда он начинал таять. Я помещал также котёл с тающим снегом вместе с термометром в топящуюся печь и всегда находил, что термометр показывал одну и ту же точку, если только снег лежал плотно вокруг шарика термометра». Так А.Цельсий описывал результаты своих опытов в XVIII веке.

Существует очень легкоплавкое металлическое вещество – сплав Вуда? Если из него отлить чайную ложечку, то в стакане с горячим чаем она расплавится и стечет на дно стакана!

На вершине горы Эверест, самой высокой точке Земли, атмосферное давление в три раза меньше нормального? При таком давлении вода кипит при температуре всего 70 °С? В «кипятке» такой температуры даже чай как следует не заваришь.

Снимая с кухонной плиты горячую кастрюльку, нужно пользоваться только сухой тряпкой или варежкой? Если они будут влажными, вы рискуете получить ожог, так как вода проводит теплоту в 25 раз быстрее, чем воздух между волосками ткани.

Если бы уголь или дрова имели такую же хорошую теплопроводность, как и металлы, то поджечь их было бы просто невозможно? Тепло, подводимое к ним (например, от спички), очень быстро передавалось бы в толщу материала и не нагревало бы поджигаемую часть до температуры воспламенения.

По пути к Земле солнечные лучи проходят через космический вакуум огромное расстояние – 150 миллионов километров? И несмотря на это, на каждый квадратный метр земной поверхности падает поток энергии мощностью ≈ 1 кВт. Если бы эта энергия «падала» на чайник, то он закипел бы всего через 10 минут!

Если бы человек мог видеть тепловое излучение, то, попав в тёмную комнату, он увидел бы немало интересного: ярко сияющие трубы и батареи отопления, окружённые светлыми вьющимися струйками тёплого воздуха? Такие же струйки были бы и над музыкальным центром, телевизором.

В XIX веке замороженные продукты считались безнадёжно испорченными? И только трудности снабжения продовольствием, которые стали препятствием для развития больших городов, заставили преодолеть предрассудки. В конце XIX – начале XX века во многих странах были изданы законы, предписывающие строительство специальных сооружений – холодильников.

Тепловые насосы, позволяющие регулировать температуру и влажность воздуха, – кондиционеры – начали применяться уже в начале прошлого века? С 20-х годов XX века их стали устанавливать в многолюдных зданиях и помещениях: театрах, гостиницах, ресторанах.

Температурные шкалы. Существует несколько градуированных температурных шкал и за точки отсчета в них обычно взяты температуры замерзания и кипения воды. Сейчас самой распространенной в мире является шкала Цельсия. В 1742 шведский астроном Андерс Цельсий предложил 100-градусную шкалу термометра в которой за 0 градусов принимается температура кипения воды при нормальном атмосферном давлении а за 100 градусов - температура таяния льда. Деление шкалы составляет 1/100 этой разницы. Когда стали использовать термометры оказалось удобнее поменять местами 0 и 100 градусов. Возможно в этом участвовал Карл Линней (он преподавал медицину и естествознание в том же Упсальском университете где Цельсий - астрономию) который еще в 1838 году предложил за 0 температуры принять температуру плавления льда но похоже не додумался до второй реперной точки. К настоящему времени шкала Цельсия несколько изменилась: за 0°C по-прежнему принята температура таяния льда при нормальном давлении которая от давления не очень зависит. Зато температура кипения воды при атмосферном давлении теперь равна 99 975°C что не отражается на точности измерения практически всех термометров кроме специальных прецизионных. Известны также температурные шкалы Фаренгейта Кельвина Реомюра и др. Температурная шкала Фаренгейта (во втором варианте принятом с 1714 г.) имеет три фиксированные точки: 0° соответствовал температуре смеси воды льда и нашатыря 96° – температуре тела здорового человека (под мышкой или во рту). В качестве контрольной температуры для сверки различных термометров было принято значение 32° для точки таяния льда. Шкала Фаренгейта широко распространена в англоязычных странах но ею почти не пользуются в научной литературе. Для перевода температуры по Цельсию (°С) в температуру по Фаренгейту (°F) существует формула °F = (9/5)°C + 32 а для обратного перевода – формула °C = (5/9)(°F-32). Обе шкалы – как Фаренгейта так и Цельсия – весьма неудобны при проведении экспериментов в условиях когда температура опускается ниже точки замерзания воды и выражается отрицательным числом. Для таких случаев были введены абсолютные шкалы температур в основе которых лежит экстраполяция к так называемому абсолютному нулю – точке в которой должно прекратиться молекулярное движение. Одна из них называется шкалой Ранкина а другая – абсолютной термодинамической шкалой; температуры по ним измеряются в градусах Ранкина (°Rа) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля а точка замерзания воды соответствует 491 7° R и 273 16 K. Число градусов и кельвинов между точками замерзания и кипения воды по шкале Цельсия и абсолютной термодинамической шкале одинаково и равно 100; для шкал Фаренгейта и Ранкина оно тоже одинаково но равно 180. Градусы Цельсия переводятся в кельвины по формуле K = °C + 273 16 а градусы Фаренгейта – в градусы Ранкина по формуле °R = °F + 459 7. в Европе долгое время была распространена шкала Реомюра введённая в 1730 г Рене Антуаном де Реомюром. Она построена не произвольным образом как шкала Фаренгейта а в соответствии с тепловым расширением спирта (в отношении 1000:1080). 1 градус Реомюра равен 1/80 части температурного интервала между точками таяния льда (0°R) и кипения воды (80°R) т. е. 1°R = 1.25°С 1°C = 0.8°R. но в настоящее время вышла из употребления.

АБСОЛЮТНАЯ ШКАЛА ТЕМПЕРАТУР.


1. Температура - это мера средней кинетической энергии молекул, характеризующая
степень нагретости тел.

2.Прибор для измерения температуры - термометр .

3. Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах - это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Термометры.
На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35 С до +750 С) и спиртовые (от -80 С до +70 С).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0 С и 100 С).
Этих недостатков лишены
газовые термометры .
Первый газовый термометр был создан франц. физиком Ж. Шарлем.

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.
4. Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.


5.Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

где k – постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу – абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.

6.Абсолютная шкала температур - введена англ. физиком У. Кельвином
- нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы – это абсолютный нуль (0К = -273 С), самая низкая температура в природе. АБСОЛЮТНЫЙ НУЛЬ - предельно низкая температура, при которой прекращается тепловое движение молекул.



Связь абсолютной шкалы со шкалой Цельсия

В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

История изобретения термометра

Изобретателем термометра принято считать : в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и , засвидетельствовали, что уже в он сделал нечто вроде термобароскопа ( ). Галилей изучал в это время работы , у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили спирт и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня. Изобретение термометра также приписывают лорду , , Санкториусу, Скарпи, Корнелию Дреббелю ( ), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, и они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского . Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точностью. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В г. ( ) в усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный ), а второй постоянной точкой - температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии . Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий « » рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от . Он предположил, что отметку 0 ( воды) можно откалибровать, зная на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° - кипения воды). В таком виде оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в « » послужило значение : −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это или ), при изменении температуры окружающей среды.

В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав .

Об удалении разлившейся ртути из разбитого термометра см. статью

Механические термометры

Термометры этого типа действуют по тому же принципу, что и электронные, но в качестве датчика обычно используется спираль или .

Электрические термометры

Принцип работы электрических термометров основан на изменении контактную разность потенциалов, зависящую от температуры). Наиболее точными и стабильными во времени являются на основе платиновой проволоки или платинового напыления на керамику.

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

    термометры технические жидкостные ТТЖ-М;

    термометры биметаллические ТБ, ТБТ, ТБИ;

    термометры сельскохозяйственные ТС-7-М1;

    термометры максимальные СП-83 М;

    термометры для спецкамер низкоградусные СП-100;

    термометры специальные вибростойкие СП-В;

    термометры ртутные электроконтактные ТПК;

    термометры лабораторные ТЛС;

    термометры для нефтепродуктов ТН;

    термометры для испытаний нефтепродуктов ТИН1, ТИН2, ТИН3, ТИН4.

Долгий путь термометров

Распространенные сегодня средства измерения температуры играют важную роль в науке, технике, в повседневной жизни людей, имеют многовековую историю и связаны с именами многих блестящих ученых разных стран, включая российских и работавших в России.

Подробное описание истории создания даже обычного жидкостного термометра может занять целую книгу, включающую рассказы о специалистах различных направлений – физиках и химиках, философах и астрономах, математиках и механиках, зоологах и ботаниках, климатологах и стеклодувах.

Помещаемые ниже заметки не претендуют на полноту изложения этой весьма занимательной истории, но могут быть полезны для знакомства с областью знания и областью техники, имя которым Термометрия.

Температура

Температура – один из важнейших показателей, который применяется в различных отраслях естествознания и техники. В физике и химии ее используют как одну из основных характеристик равновесного состояния изолированной системы, в метеорологии – как главную характеристику климата и погоды, в биологии и медицине – как важнейшую величину, определяющую жизненные функции.

Еще древнегреческий философ Аристотель (384–322 г. до н.э.) относил понятия тепла и холода к числу основополагающих. Наряду с такими качествами, как сухость и влажность, эти понятия характеризовали четыре элемента «первичной материи» – землю, воду, воздух и огонь. Хотя в те времена и несколько столетий после них уже говорили о степени тепла или холода («теплее», «горячее», «холоднее»), количественных мер не существовало.

Примерно 2500 лет назад древнегреческий медик Гиппократ (ок. 460 – ок. 370 г. до н.э.) понял, что повышенная температура человеческого тела является признаком болезни. Возникла проблема определения нормальной температуры.

Одну из первых попыток ввести понятие стандартной температуры предпринял древнеримский врач Гален (129 – ок. 200), который предложил «нейтральной» считать температуру смеси равных объемов кипящей воды и льда, а температуры отдельных компонентов (кипятка и тающего льда) считать соответственно за четыре градуса тепла и за четыре градуса холода. Вероятно, именно Галену мы обязаны введением термина «temper» (выравнивать), от которого произошло слово «температура». Однако измерять температуру стали гораздо позже.

Термоскоп и первые воздушные термометры

История измерения температуры насчитывает всего чуть больше четырех веков. Основываясь на способности воздуха расширяться при нагревании, которое было описано древними византийскими греками еще во II в. до н.э., несколько изобретателей создали термоскоп – простейший прибор со стеклянной трубочкой, заполненной водой. Следует сказать, что греки (первыми из европейцев) познакомились со стеклом еще в V в., в XIII в. появились первые стеклянные венецианские зеркала, к XVII в. стекольное дело в Европе стало довольно развито, и в 1612 г. появилось первое руководство «De arte vitraria» («Об искусстве стеклоделия») флорентийца Антонио Нери (умер в 1614 г.).

Особенно развито было стеклоделие на территории Италии. Поэтому неудивительно, что первые стеклянные приборы появились именно там. Первое описание термоскопа вошло в книгу неаполитанского естествоиспытателя, занимавшегося керамикой, стеклом, искусственными драгоценными камнями и перегонкой, Джованни Баттиста де ла Порта (1535–1615) «Magia Naturalis» («Естественная магия»). Издание вышло в 1558 г.

В 1590-х гг. итальянский физик, механик, математик и астроном Галилео Галилей (1564–1642), по свидетельству его учеников Нелли и Вивиани, построил в Венеции свой стеклянный термобароскоп с использованием смеси воды со спиртом; с помощью этого прибора можно было производить измерения. В некоторых источниках говорится, что в качестве окрашенной жидкости Галилей использовал вино. Рабочим телом служил воздух, а изменения температуры определялись по объему воздуха в приборе. Прибор был неточным, его показания зависели как от температуры, так и от давления, но позволял «сбрасывать» столбик жидкости путем изменения давления воздуха. Описание этого устройства сделал в 1638 г. ученик Галилея Бенадетто Кастелли.

Тесное общение Санторио и Галилея не позволяет определить вклад каждого в их многие технические нововведения. Санторио известен своей монографией «De statica medicina» («О медицине равновесия»), содержащей результаты его экспериментальных исследований и выдержавшей пять изданий. В 1612 г. Санторио в своей работе «Commentaria in artem medicinalem Galeni» («Заметки по медицинскому искусству Галена») впервые описал воздушный термометр. Он же применил термометр для измерения температуры человеческого тела («пациенты зажимают колбу руками, дышат на нее под укрытием, берут ее в рот»), использовал маятник для измерений частоты пульса. Его методика состояла в фиксации скорости падения показаний термометра за время десяти качаний маятника, она зависела от внешних условий и была неточной.

Приборы, подобные термоскопу Галилея, были изготовлены голландским физиком, алхимиком, механиком, гравером и картографом Корнелисом Якобсоном Дреббелом (1572–1633) и английским философом-мистиком и медиком Робертом Флуддом (1574–1637), которые предположительно были знакомы с работами флорентийских ученых. Именно прибор Дреббела был впервые (в 1636 г.) назван «термометром». Он имел вид U-образной трубки с двумя резервуарами. Занимаясь жидкостью для своего термометра, Дреббел открыл способ получения ярких карминовых красок. Флудд, в свою очередь, описал воздушный термометр.

Первые жидкостные термометры

Следующим небольшим, но важным шагом на пути к превращению термоскопа в современный жидкостный термометр стало использование в качестве рабочего тела жидкости и запаянной с одного конца стеклянной трубки. Коэффициенты термического расширения жидкостей меньше, чем газов, но зато объем жидкости не меняется с изменением внешнего давления. Этот шаг был сделан примерно в 1654 г. в мастерских великого герцога тосканского Фердинанда II Медичи (1610–1670).

Тем временем в различных странах Европы начались систематические метеорологические измерения. Каждый ученый в тот период использовал свою температурную шкалу, и дошедшие до нас результаты измерений невозможно ни сравнить между собой, ни связать с современными градусами. Понятие градуса температуры и реперных точек температурной шкалы появилось, видимо, в нескольких странах еще в XVII в. Мастера на глазок наносили 50 делений так, чтобы при температуре таяния снега спиртовой столбик не опускался ниже 10-го, а на солнце не поднимался выше 40-го деления.

Одна из первых попыток калибровки и стандартизации термометров была предпринята в октябре 1663 г. в Лондоне. Члены Королевского общества согласились использовать один из спиртовых термометров, изготовленных физиком, механиком, архитектором и изобретателем Робертом Гуком (1635–1703), в качестве стандартного и сравнивать с ним показания других термометров. Гук вводил в спирт красный пигмент, шкалу делил на 500 частей. Он изобрел также термометр-минима (показывающий самую низкую температуру).

Голландский физик-теоретик, математик, астроном и изобретатель Христиан Гюйгенс (1629–1695) в 1665 г. вместе с Р.Гуком предложил использовать температуры таяния льда и кипения воды для создания шкалы температур. Первые внятные метеорологические рекорды были записаны с использованием шкалы Гука–Гюйгенса.

Первое описание настоящего жидкостного термометра появилось в 1667 г. в издании Академии дель Чименто * «Очерки о естественно-научной деятельности Академии опытов». В Академии проведены и описаны первые эксперименты в области калориметрии. Было показано, что под разрежением вода кипит при более низкой температуре, чем при атмосферном давлении, что при замерзании она расширяется. «Флорентийские термометры» широко использовались в Англии (введены Р.Бойлем) и во Франции (распространились благодаря астроному И.Бульо). Автор известной русской монографии «Понятия и основы термодинамики» (1970) И.Р.Кричевский считает, что именно работы Академии положили начало использованию жидкостных термометров.

Один из членов Академии математик и физик Карло Ренальдини (1615–1698) в сочинении «Philosophia naturalis» («Естественная философия»), изданном в 1694 г., предложил за реперные точки принять температуры таяния льда и кипения воды.

Родившийся в немецком городе Магдебурге инженер-механик, электротехник, астроном, изобретатель воздушного насоса Отто фон Герике (1602–1686), который прославился опытом с магдебургскими полушариями, также занимался термометрами. В 1672 г. он соорудил водно-спиртовой прибор высотой в несколько метров со шкалой, имевшей восемь делений: от «очень холодно» до «очень жарко». Размеры сооружения, надо признать, не продвинули термометрию вперед.

Гигантомания Герике через три столетия нашла последователей в США. Самый большой в мире термометр высотой 40,8 м (134 фута) сооружен в 1991 г. в память о рекордно высокой температуре, достигнутой в Долине смерти в Калифорнии в 1913 г.: + 56,7 °С (134 °F). Трехсторонний термометр находится в небольшом городке Бейкер неподалеку от Невады.

Первые точные термометры, вошедшие в широкий обиход, изготовил немецкий физик Даниель Габриель Фаренгейт (1686–1736). Изобретатель родился на территории нынешней Польши, в Гданьске (тогда Данциг), рано осиротел, начал изучать торговое дело в Амстердаме, но не закончил обучения и, увлекшись физикой, стал посещать лаборатории и мастерские в Германии, Голландии и Англии. С 1717 г. жил в Голландии, где имел стеклодувную мастерскую и занимался изготовлением точных метеорологических приборов – барометров, альтиметров, гигрометров и термометров. В 1709 г. он изготовил спиртовой, а в 1714 г. – ртутный термометр.

Ртуть оказалась весьма удобным рабочим телом, поскольку имела более линейный ход зависимости объема от температуры, чем спирт, нагревалась значительно быстрее спирта и могла использоваться при гораздо более высоких температурах. Фаренгейт разработал новый метод очистки ртути и использовал резервуар для ртути в форме цилиндра, а не шарика. Кроме того, для повышения точности термометров Фаренгейт, владевший стеклодувным мастерством, стал использовать стекло с наименьшим коэффициентом термического расширения. Лишь в области низких температур ртуть (температура замерзания –38,86 °С) уступала спирту (температура замерзания –114,15 °С).

С 1718 г. Фаренгейт в Амстердаме читал лекции по химии, в 1724 г. стал членом Королевского общества, хотя не получил ученой степени и опубликовал всего один сборник исследовательских статей.

Для своих термометров Фаренгейт сначала использовал модифицированную шкалу, принятую датским физиком Олафом Ремером (1644–1710) и предложенную английским математиком, механиком, астрономом и физиком Исааком Ньютоном (1643–1727) в 1701 г.

Первоначальные попытки самого Ньютона разработать температурную шкалу оказались наивными и почти сразу были отброшены. За реперные точки предлагалось брать температуру воздуха зимой и температуру тлеющих углей. Затем Ньютон использовал точку таяния снега и температуру тела здорового человека, в качестве рабочего тела – льняное масло, а шкалу (по образцу 12 месяцев в году и 12 часов в сутках до полудня) разбил на 12 градусов (по другим данным, на 32 градуса). При этом градуировка проводилась путем смешивания определенных количеств кипящей и только что оттаявшей воды. Но и этот способ оказался неприемлемым.

В использовании масла Ньютон не был первым: еще в 1688 г. французский физик Далансе в качестве реперной точки для калибровки спиртовых термометров применял точку плавления коровьего масла. Если бы этот прием сохранился, Россия и Франция имели бы разные температурные шкалы: и распространенное в России топленое масло, и знаменитое вологодское масло отличаются по составу от европейских сортов.

Наблюдательный Ремер заметил, что его маятниковые часы летом идут медленнее, чем зимой, а деления шкал его астрономических инструментов летом больше, чем зимой. Для повышения точности измерений времени и астрономических параметров нужно было проводить эти измерения при одинаковых температурах и, следовательно, иметь точный термометр. Ремер, как и Ньютон, использовал две реперные точки: нормальную температуру тела человека и температуру таяния льда (рабочим телом служило крепленое красное вино или 40%-й раствор спирта, подкрашенный шафраном, в 18-дюймовой трубке). Фаренгейт добавил к ним третью точку, которая отвечала наиболее низкой температуре, достигаемой тогда в смеси вода–лед–нашатырь.

Добившись с помощью своего ртутного термометра значительно более высокой точности измерений, Фаренгейт разделил каждый градус Ремера на четыре и в качестве реперных для своей температурной шкалы принял три точки: температуру солевой смеси воды со льдом (0 °F), температуру тела здорового человека (96 °F) и температуру таяния льда (32 °F), причем последнюю считал контрольной.

Вот как об этом он написал в статье, опубликованной в журнале «Philosophical Transaction » (1724,
т. 33, с. 78): «…положив термометр в смесь аммонийной соли или морской соли, воды и льда, найдем точку на шкале, обозначающую нуль. Вторая точка получается, если используется та же смесь без соли. Обозначим эту точку за 30. Третья точка, обозначаемая как 96, получается, если термометр взят в рот, получая тепло здорового человека».

Существует легенда, что за низшую точку шкалы Фаренгейт принял температуру, до которой охлаждался воздух зимой 1708/09 г. в его родном городе Данциге. Можно также встретить утверждения, что он верил, будто человек погибает от холода при 0 °F и от теплового удара при
100 °F. Наконец, говорили, что он член франкмасонской ложи с ее 32 степенями посвящения, поэтому и принял точку таяния льда равной этому числу.

После ряда проб и ошибок Фаренгейт пришел к весьма удобной температурной шкале. Точка кипения воды оказалась по принятой шкале равной 212 °F, а весь температурный интервал жидкофазного состояния воды – соответствующим 180 °F. Обоснованием этой шкалы служило отсутствие отрицательных значений градуса.

Проведя впоследствии серии точных измерений, Фаренгейт установил, что температура кипения меняется в зависимости от атмосферного давления. Это позволило ему создать гипсотермометр – прибор для измерения атмосферного давления по температуре кипения воды. Ему же принадлежит первенство в открытии явления переохлаждения жидкостей.

Работы Фаренгейта положили начало термометрии, а затем термохимии и термодинамике. Шкала Фаренгейта была принята в качестве официальной во многих странах (в Англии – с 1777 г.), лишь нормальная температура человеческого тела была исправлена на 98,6 о F. Сейчас такая шкала используется только в США и на Ямайке, остальные страны в 1960-х и 1970-х гг. перешли на использование шкалы Цельсия.

В широкую медицинскую практику термометр был введен голландским профессором медицины, ботаники и химии, основателем научной клиники Германом Бургаве (1668–1738), его учеником Герардом ван Свитеном (1700–1772), австрийским врачом Антоном де Хаеном (1704–1776) и независимо от них англичанином Джорджем Мартином.

Основатель Венской школы медицины Хаен установил, что температура здорового человека в течение дня дважды поднимается и опускается. Будучи сторонником теории эволюции, он объяснил это тем, что предки человека – рептилии, жившие у моря, – меняли свою температуру в соответствии с приливом и отливом. Однако его работы были надолго забыты.

Мартин в одной из своих книг писал о том, что его современники спорили, меняется ли температура плавления льда с высотой, и для установления истины перевозили термометр из Англии в Италию.

Не менее удивительно, что измерениями температуры тела человека позже интересовались ученые, прославившиеся в разных областях знания: А.Лавуазье и П.Лаплас, Дж.Дальтон и Г.Дэви, Д.Джоуль и П.Дюлонг, У.Томсон и А.Беккерель, Ж.Фуко и Г.Гельмгольц.

«Много ртути утекло» с тех пор. Почти трехсотлетняя эпоха широкого использования ртутных термометров, похоже, скоро закончится из-за токсичности жидкого металла: в европейских странах, где вопросам безопасности людей уделяется все больше внимания, приняты законы об ограничении и запрещении производства таких термометров.

* Основанная во Флоренции в 1657 г. учениками Галилея под покровительством Фердинанда II Медичи и его брата Леопольдо, Академия дель Чименто просуществовала недолго, но стала прообразом Королевского общества, Парижской академии наук и других европейских академий. Она задумывалась для пропаганды научных знаний и расширения коллективной деятельности по их развитию.

Печатается с продолжением

3. Найти вес тела P = ρgV

4. Определить давление, оказываемое телом на горизонтальную поверхность P = , где F=P

Экспериментальная работа № 12

Тема: «Исследование зависимости показаний термометра от внешних условий».

Цель: исследуйте зависимость показаний термометра в зависимости от внешних условий: падают ли на термометр солнечные лучи или он находится в тени, на какой подложке лежит термометр, какого цвета экран закрывает термометр от солнечных лучей.

Задачи:

Воспитательные: воспитание аккуратности, умения работать в коллективе ;

Оборудование: настольная лампа, термометр, листы белой и черной бумаги.

Какова температура воздуха в комнате и на улице интересует людей каждый день. Термометр для измерения температуры воздуха есть практически в каждом доме, но далеко не всякий человек умеет правильно им пользоваться. Во-первых, многие не понимают самой задачи измерения температуры воздуха. Это непонимание особенно обнаруживается в жаркие летние дни. Когда метеорологи сообщают, что температура воздуха в тени достигала 32°С, то многие люди "уточняют" примерно так: "А на солнце столбик термометра уходил за отметку 50°С!" Имеют ли смысл такие уточнения? Для ответа на этот вопрос выполните следующее экспериментальное исследование и сделайте свои выводы.

Ход работы:

Опыт 1. Измерьте температуру воздуха "на солнце" и "в тени". В качестве "Солнца" используйте настольную лампу.

Первый раз расположите термометр на расстоянии 15-20 см от лампы на столе, второй раз, не изменяя расположения лампы относительно термометра, создайте "тень" листом бумаги, расположив его вблизи лампы. Запишите показания термометров.

Опыт 2. Выполните измерения температуры "на солнце" при условиях использования сначала темной, затем светлой подложки под термометром. Для этого первый раз положите термометр на лист белой бумаги, второй раз на лист черной бумаги. Запишите показания термометров.

Опыт 3. Выполните измерения «в тени», закрыв свет от лампы листом белой бумаги, положенным прямо на термометр. Запишите показания термометра. Повторите опыт, заменив белую бумагу черной бумагой.

Обдумайте результаты выполненных опытов и сделайте выводы, где и как нужно укрепить за окном термометр для измерения температуры воздуха на улице?

Серия опытов при правильном выполнении дает следующие результаты.

Опыт 1 показывает, что показания термометра “на солнце” заметно выше его показаний “в тени”. Этот факт должен получить следующее объяснение. При отсутствии солнечного освещения температуры воздуха и стола одинаковы. В результате теплообмена со столом и воздухом термометр приходит в тепловое равновесие с ними и показывает температуру воздуха.

Когда "солнце" не закрыто листом бумаги, под действием поглощаемого излучения “солнца” температура стола повышается, а прозрачный воздух этим излучением почти не нагревается. Термометр с одной стороны осуществляет теплообмен с поверхностью стола, а с другой стороны - с воздухом. В результате его температура оказывается выше температуры воздуха, но ниже температуры поверхности стола. Каков же тогда смысл показаний термометра “на солнце”?

Упорный любитель измерений температуры воздуха “на солнце” может на это возразить, что его не интересует температура воздуха “в тени”, когда сам он находится “на солнце”. Пусть это будет не температура воздуха, просто показания термометра “на солнце”, но именно они его и интересуют. В этом случае ему пригодятся результаты опыта 2.

Опыт 2 показывает, что на белой хорошо отражающей свет бумаге, показания термометра значительно меньше, чем на черной, хорошо поглощающей световое излучение и сильнее нагревающейся. Следовательно, на вопрос о показаниях термометра “на солнце” нет однозначного ответа. Результат будет сильно зависеть от цвета подложки под термометром, цвета и структуры поверхности баллона термометра, наличия или отсутствия ветра.

Температура воздуха на улице при измерениях вдали от нагретых солнечным излучением предметов и при исключении прямого воздействия излучения на термометр одинакова “на солнце“ и “в тени”, это просто температура воздуха. Но измерять ее следует действительно только “в тени”.

Но создание "тени" для термометра в солнечный день тоже не простая задача. В этом убеждают результаты опыта 3. Они показывают, что при близком расположении экрана от термометра нагревание экрана солнечным излучением будет приводить к существенным ошибкам при измерении температуры воздуха в солнечный день. Завышение температуры будет особенно большим при темной окраске экрана, так как такой экран поглощает почти всю энергию падающего на него солнечного излучения, и значительно меньшей при белой окраске экрана, так как такой экран отражает почти всю энергию падающего на него солнечного излучения.

После выполнения такого экспериментального исследования нужно обсудить практически важный вопрос: как же на практике нужно измерять температуру воздуха на улице? Ответ на этот вопрос может быть примерно таким. Если в квартире есть окно, выходящее на север, то именно за этим окном и нужно укрепить уличный термометр. Если же такого окна в квартире нет, термометр должен быть помещен возможно дальше от нагреваемых солнцем стен, напротив слабо нагреваемых оконных стекол. Баллон термометра должен быть защищен от нагревания солнечным излучением. Результаты опыта 3 показывают, что при попытке защиты термометра от солнечного излучения экран сам нагревается и нагревает термометр. Так как белый экран нагревается меньше, защитный экран должен быть светлым, располагать его следует в достаточном удалении от термометра.

Аналогичное можно быть исследовать зависимость показаний комнатного термометра от места его расположения. Результатом выполнения домашнего задания должно быть установление того факта, что показания комнатного термометра зависят от места его расположения в комнате. Если нас интересует температура воздуха в комнате, то нужно исключить влияние на него нагретых тел и солнечного излучения. На термометр не должен падать прямой солнечный свет, нельзя располагать термометр вблизи нагревательных и осветительных приборов. Не следует вешать термометр на внешнюю стену комнаты, которая летом имеет повышенную, а зимой пониженную температуру относительно температуры воздуха в комнате.

Экспериментальная работа № 13

Тема: «Определение процентного содержания снега в воде».

Цель: Определить процентное содержание снега в воде.

Задачи:

Образовательные: формирование умения сочетать знания и практических навыков;

Развивающие: развитие логическое мышление, познавательного интереса.

Оборудование: калориметр, термометр, мензурка, сосуд с комнатной водой, смесь снега с водой, калориметрическое тело.

Первый вариант

Ход работы:

1.В калориметр со смесью наливают столько воды, чтобы весь снег растаял. Температура получившейся воды была равна t=0.

2.Запишем уравнение теплового баланса для этого случая:

m1 =сm3(t2-t1), где с - удельная теплоемкость воды, - удельная теплота плавления льда, m1 – масса снега, m2-масса воды в снеге, m3-масса влитой воды, t-температура влитой воды.

Отсюда =

Искомое процентное отношение =;

3.Величину m1 + m2 можно определить, перелив всю воду из калориметра в измерительный цилиндр и измерив полную массу воды m. Так как m= m1 + m2 + m3, то

m1 + m2 = m - m3. Следовательно,

=

Второй вариант

Оборудование: калориметр, термометр, весы и разновес, стакан с теплой водой, комок мокрого снега, калориметрическое тело.

Ход работы:

1.Взвесим пустой калориметр, а затем калориметр с комком мокрого снега. По разности определим массу комка мокрого снега (m).

В комке содержится *х граммов воды и *(100 - х) граммов снега, где х-процентное содержание воды в комке.

Температура мокрого снега 0.

2.Теперь добавляем в калориметр с комком мокрого снега столько теплой воды (mв), чтобы весь снег растаял, предварительно замерив температуру теплой воды (to).

3.Взвешиваем калориметр с водой и растаявшим снегом и по разности весов определим массу долитой теплой воды(mв).

4.Замеряем термометром конечную температуру (toсм.).

5.Запишем уравнение теплового баланса:

cmв t = *(100 - х) + с(m+ mв) toсм.,

Где с - удельная теплоемкость воды-4200Дж/кг, - удельная теплота плавления снега

3,3 *105 Дж/кг.

6.Из полученного уравнения выражаем

X=100 -

Экспериментальная работа № 14

Тема: «Определение теплоты плавления льда».

Цель: определить теплоту плавления льда.

Задачи:

Образовательные: формирование умения сочетать знания и практических навыков;

Воспитательные: воспитание аккуратности, умения работать в коллективе;

Развивающие: развитие логическое мышление, познавательного интереса.

Оборудование: тер­мометр, вода, лед, мерный ци­линдр.

Ход работы:

1.В пустой сосуд положите кусок льда и налейте в него из измерительного цилиндра столько воды, чтобы весь лед растаял.

2.В этом случае уравнение теп­лового баланса запишется прос­то:

Ст1 (t1 - t2) = т2

где т2 - масса льда, тх - мас­са налитой воды, tx - началь­ная температура воды, t2 - конечная температура воды, рав­ная О °С, К - удельная тепло­та плавления льда. Из приве­денного уравнения находим:

3.Массу льда можно определить, слив полученную воду в изме­рительный цилиндр и измерив общую массу воды и льда:

М = + т2 = ρаодь, Vобщ.

Так как т2 = М - m1, то

Экспериментальная работа № 15

Цель : используя предложенное оборудование и таблицу зависимости давления насыщенного пара от температуры, определить абсолютную и относительную влажность воздуха в комнате.

Задачи:

Образовательные: формирование умения сочетать знания и практических навыков;

Воспитательные: воспитание аккуратности, умения работать в коллективе;

Развивающие: развитие логическое мышление, познавательного интереса.

Оборудование : стакан, термометр, лед, вода.

Ход работы:

1.Абсолютную влажность воздуха проще всего определить по точке росы. Для измерения точки росы нужно сначала измерить температуру t1воздуха. Затем взять обычный стеклянный стакан, налить в него немного воды при комнатной температуре и поместить в воду термометр.

2.В другом сосуде нужно приготовить смесь воды со льдом и из этого сосуда добавлять понемногу холодную воду в стакан с водой и термометром до тех пор, пока на стенках стакана не появится роса. Смотреть нужно на стенку стакана напротив уровня воды в стакане. При достижении точки росы стенка стакана ниже уровня воды становится матовой из-за множества мелких капелек росы, сконденсировавшихся на стекле. В этот момент нужно снять показания t2 термометра.

3.По значению температуры t2 - точке росы - можно определить по таблице плотность ρ насыщенного пара при температуре t2. Это будет абсолютная влажность атмосферного воздуха. Затем можно найти по таблице значение плотности r0 насыщенного пара при температуре t1. По найденным значениям плотности r насыщенного пара при температуре t2 и плотности ρ0 насыщенного пара при комнатной температуре t1 определяется относительная влажность воздуха j.

Погрешности средств измерений

Средства измерения

Предел измерения

Цена деления

Инструментальная погрешность

Линейка ученическая

Линейка чертёжная

Линейка инструментальная

Линейка демонстрационная

Лента измерительная

Мензурка

Весы учебные

Комплект гирь Г-4-211.10

Гири лабораторные

Штангенциркуль школьный

Микрометр

Динамометр учебный

Секундомер электронный KARSER

±0,01 с (0,2 с с учётом субъективной погрешности).

Барометр-анероид

780 мм. рт. ст.

1 мм. рт. ст.

±3 мм. рт. ст.

Термометр лабораторный

Манометр открытый демонстрационный

Плотность жидкостей, металлов и сплавов, твёрдых веществ и материалов.

ρ, кг/м3