Приведем ряд Физических доказательств и логических соображений, относящихся к вращению Земли вокруг оси.

Опыт с маятником Фуко (впервые произведен в 1851 г. в Париже). Маятник - груз, свободно висящий па длинной нити, - при качании неизменно сохраняет плоскость своего качания. Прикрепленный к потолку высокого здания, он переносится в пространстве вместе со зданием благодаря вращению Земли, но и при этом продолжает качаться в плоскости, параллельной первоначальной.

Французский ученый, ФИЗИК Фуко, прикрепил к грузу маятника острие, а на полу у краев круга были насыпаны песчаные валики. При качании маятника острие оставляло на песке новые и новые следы. Этот опыт, несомненно, доказывает вращение Земли, так как при каждом качании оставался новый след (здание вращается вместе с Землею, а направление качания маятника остается прежним). При опыте Фуко в Париже длина маятника была 67 метров; груз весил 28 килограммов. Чем длиннее нить маятника, тем медленнее происходит качание.

1 Чем дальше от экватора производится опыт, тем кажущееся отклонение маятника значительнее. На каждом из полюсов расхождение между начальным направлением качания маятника и направлением спустя час составлят 15°, На экваторе никакого отклонения маятника нет.

2 В настоящее время опыт Фуко, шире и нагляднее чем где- либо, демонстрируется с 1931 г. в Ленинграде в Гос. антирелигиозном музее (бывший Исаакиевский собор). Длина маятника 98 м; груз 60 кг.

Сжатие Земли у полюсов. Земля сжалась в далеком прошлом, когда была еще в расплавленном состоянии; от действия центробежного Эффекта экваториальная часть несколько удалилась от осп вращения, а полюсы, следовательно, сблизились.

1 Приводим для любителей математики Формулу маятника.

где Т-продолжительность качания, I - длина маятника, g-ускорение силы тяжести,

я- 3,14 ^ отношение длины окружности к диаметру). 2 Величина часового отклонения маятника на любой широте определяется по Формуле 15°. stwcp, где ср - широта места.

Уменьшение силы тяжести с приближением к экватору. Действие центробежной силы сказывается и в настоящее время в уменьшении напряжения тяжести с приближением к экватору. Значит, Земля вращается. Проверяется это особенно точно с помощью специального маятника.

Отклонение падающих с большой высоты тел к востоку- указывает на вращение Земли и направление этого вращения, также как и особое размывание берегов рек (правый берег размывается больше в северном полушарии; левый больше - в южном).

И, наконец, подкрепим вышесказанное следующими логическими соображениями.

Если бы Земля не вращалась, то каждое из небесных тел должно бы в течение суток пройти громадный путь (каждое со своей особой скоростью), так как они находятся от Земли на различных расстояниях и ежесуточно видны на прежнем месте.

Совершенно Фантастической скоростью должны бы обладать даже ближайшие небесные тела, чтобы успеть в течение суток совершить полный круговой путь вокруг неподвижной Земли.

Солнце, Луна, планеты, вращаются вокруг своих осей (Земля - планета).

Что, что Земля действительно вращается вокруг своей оси, можно доказать разными способами.

Когда учёные точно измерили Землю, оказалось, что она имеет не совсем правильную форму шара, а слегка сплюснута с двух противоположных сторон - у своих полюсов. Это открытие, однако, совсем не было неожиданным, так как ещё значительно раньше великий английский математик Ньютон доказал с помощью расчётов, что благодаря своему вращению Земля обязательно должна быть сплюснутой. Объясняется это действием на Землю так называемой центробежной силы.

Вы знаете, что если привязать камень к концу верёвки и, взяв верёвку за другой конец, начать её быстро вращать вместе с камнем, верёвка сильно натянется, а иногда может и разорваться. Это объясняется действием на камень центробежной силы, возникшей при его вращении. Кусочки грязи, прилипшие к колесу телеги, при вращении колеса далеко отбрасываются под действием той же центробежной силы.

Наш земной шар из-за своего вращения тоже подвергается действию центробежной силы. Правда, скорость вращения Земли не настолько велика, чтобы центробежная сила могла разорвать Землю на части. Но всё-таки, как показывают расчёты, внешний вид Земли под действием этой силы должен несколько измениться: Земля должна потерять правильную форму шара, а именно, несколько растянуться поперёк оси своего вращения и одновременно сжаться вдоль этой оси.


Рис. 4. Ось вращения земного шара проходит через северный и южный полюсы Земли


На рис. 4 изображена Земля, ось вращения которой проведена сверху вниз. Эта ось, как мы знаем, проходит через земные полюсы - северный и южный. Оба полюса неподвижны, все же остальные места земной поверхности вращаются с тем большей скоростью, чем дальше они отстоят от полюсов. Всего быстрее движутся места, расположенные на так называемом экваторе - круге, находящемся как раз посредине между двух полюсов и делящем Землю на два полушария: северное и южное. Места на экваторе за одну минуту перемещаются приблизительно на 30 километров. Вот именно вдоль по экватору земной шар и растянут под действием центробежной силы и сжат в то же время у полюсов.

Когда размеры Земли были точно измерены, то оказалось, что поперечник экватора на 43 километра длиннее расстояния между северным и южным полюсами Земли. Это, конечно, очень мало, и при правильном изображении Земли на рисунке, на глаз её сплюснутость незаметна. Но это вполне подтвердило правильность расчётов Ньютона о сплюснутости Земли, которые он сделал, исходя из вращения Земли вокруг оси.

Кстати, знаете ли вы, что случится, если предположить, что произойдёт невероятное событие - Земля перестанет вращаться вокруг своей оси? Центробежная сила тогда на Земле исчезнет, и вода океанов, которая при вращении Земли поддерживается этой силой на выпуклости земного экватора, стечёт к полюсам. Случись так, на Земле осталось бы только два океана: северный полярный и южный полярный, и вся промежуточная область превратилась бы в один огромный материк, опоясывающий Землю кругом.

Есть ещё несколько доказательств вращения Земли. Из них наиболее наглядное было дано около ста лет тому назад французским физиком Фуко.

В одном из высоких парижских зданий, внутренняя высота которого почти достигает 70 метров, Фуко на длинной проволоке подвесил груз весом около 30 килограммов. Получился прибор, который носит название маятника. Но этот маятник несколько отличался от всем известного маятника стенных часов. Дело в том, что маятник стенных часов может качаться только в одном направлении, а маятник, устроенный Фуко, мог качаться в разных направлениях, так как груз здесь был подвешен на проволоке.

Наукой установлено, что каждый маятник, такой ли большой, как его соорудил Фуко, или маленький, состоящий из короткой нити и небольшого груза, стремится качаться всё время в одном направлении, в том самом, в котором его первоначально толкнули. Маятник сохраняет это направление и в том случае, если подставку, на которой он подвешен, начать вращать в ту или другую сторону.

Фуко понял, что, пользуясь этим свойством маятника, можно обнаружить вращение Земли. Ведь потолок того здания, в котором Фуко подвесил свой маятник, да и всё здание в целом участвуют во вращении Земли, сам же маятник, после того как его раскачают, будет сопротивляться этому вращению и стремиться качаться в прежнем направлении. Значит, как только здание, в котором качается маятник, повернётся из-за вращения Земли на значительный угол, маятник должен изменить направление своего качания относительно здания.

Когда Фуко в 1851 году впервые поставил свой опыт, его расчёты блестяще подтвердились: спустя несколько минут после того как маятник заставили качаться, все присутствующие заметили, что направление качания маятника стало изменяться. Сомнений не было - это был результат вращения Земли.

Почему Фуко, ставя свой опыт, воспользовался маятником таких больших размеров? Во-первых, потому, что чем больше маятник, тем легче можно заметить изменение направления его качания. Во-вторых, большой маятник может качаться сравнительно долго, в то время как маленький маятник быстро перестанет качаться, главным образом потому, что на нём сильно сказывается тормозящее действие сопротивления воздуха.

Опыт Фуко повторялся много раз в различных местах Земли, и во всех случаях те, кто его ставили, своими глазами убеждались в существовании вращения Земли.

В 1931 году, то есть через 80 лет после Фуко, его опыт был поставлен в Ленинграде в бывшем Исаакиевском соборе в ещё больших размерах. Длина проволоки маятника была 98 метров, вес груза - 60 килограммов. На одно своё полное колебание этот огромный маятник тратил 20 секунд. И уже после трёх-четырёх таких колебаний большинство присутствующих (а их было около 7000 человек) смогло заметить, что маятник несколько изменил направление своего качания в сторону, противоположную вращению Земли.

Тот факт, что Земля вращается вокруг своей оси, сегодня известен каждому школьнику. Однако не всегда люди были убеждены в этом: обнаружить вращение Земли, находясь на ее поверхности, достаточно трудно. Конечно, можно догадываться, что суточное движение небесных тел по небесной сфере – это и есть проявление вращения Земли. Но видится нам это явление именно как движение Солнца и звезд по небу.

В середине XIX века Жан Бернард Леон Фуко смог провести опыт, который демонстрирует вращение Земли достаточно наглядно. Опыт этот был проведен неоднократно, а публично сам экспериментатор представил его в 1851 году в здании Пантеона в Париже.

Здание Парижского Пантеона в центре венчает громадный купол, к которому была прикреплена стальная проволока длиной 67 м. К этой проволоке подвесили массивный металлический шар. По разным источникам, масса шара составляла от 25 до 28 кг. Проволока крепилась к куполу таким образом, чтобы получившийся маятник мог качаться в любой плоскости.

Маятник совершал колебания над круглым постаментом диаметром 6 м, по краю которого был насыпан валик из песка. При каждом качании маятника острый стержень, укрепленный на шаре снизу, оставлял на валике отметку, сметая с ограждения песок.

Для того, чтобы исключить влияние подвеса на маятник Фуко, применяют специальные подвесы (рис. 4). А для того, чтобы избежать бокового толчка (то есть, чтобы маятник качался строго в плоскости), шар отводят в сторону, привязывают к стене, а затем пережигают веревку.

Период колебаний маятника, как известно, может быть рассчитан по формуле:

Подставляя в эту формулу длину маятника l = 67 м и значение ускорения свободного падения g = 9,8 м/с 2 , получаем, что период колебаний маятника в опыте Фуко составлял T ≈ 16,4 с.

По прошествии каждого периода новая отметка, производимая острием стержня на песке, оказывалась примерно в 3 мм от предыдущей. За первый час наблюдений плоскость качаний маятника повернулась на угол около 11° по часовой стрелке. Полный же оборот плоскость маятника совершила примерно за 32 часа.

Опыт Фуко производил огромное впечатление на наблюдавших его людей, которые будто бы непосредственно ощущали движение земного шара. Среди зрителей, наблюдавших опыт, был и Л. Бонапарт, через год провозглашенный императором Франции Наполеоном III. За проведение опыта с маятником Фуко был удостоен Ордена Почетного легиона – высшей награды Франции.

В России маятник Фуко длиной 98 м был установлен в Исакиевском соборе в Ленинграде. Обычно показывался такой удивительный эксперимент – устанавливался на полу спичечный коробок чуть поодаль от плоскости вращения маятника. Пока гид рассказывал о маятнике, плоскость его вращения поворачивалась и стержень, укрепленный на шаре, сбивал коробок.

В основу опыта был положен уже известный в то время экспериментальный факт: плоскость качания маятника на нити сохраняется независимо от вращения основания, к которому подвешен маятник. Маятник стремится сохранить параметры движения в инерциальной системе отсчета, плоскость которой неподвижна относительно звезд. Если поместить маятник Фуко на полюсе, то при вращении Земли плоскость маятника будет оставаться неизменной, и наблюдатели, вращающиеся вместе с планетой, должны видеть, как плоскость качаний маятника поворачивается без воздействия на него каких-либо сил. Таким образом, период вращения маятника на полюсе равен периоду обращения Земли вокруг своей оси – 24 часам. На других широтах период будет несколько больше, т. к. на маятник действуют силы инерции, возникающие во вращающихся системах – силы Кориолиса. На экваторе плоскость маятника вращаться не будет – период равен бесконечности.

Ярким доказательством вращения Земли вокруг своей оси явился опыт с маятником французского физика Фуко (длинный, гибкий подвес с тяжёлым грузом на конце), произведенный в 1851 году в Парижском Пантеоне.

Этот опыт основан на том, что, как известно из физики, маятник, выведенный из положения равновесия, будет совершать колебания всё время в одном и том же направлении до полной остановки. Иначе говоря, маятник обладает способностью сохранять плоскость своих колебаний неизменной.

Прибор простой конструкции

Это свойство маятника наглядно доказывается при помощи прибора простой конструкции , который доступно сделать каждому. Для этого нужно взять гибкий прутик, согнуть его в дугу и прикрепить концами к какому-либо кружку диаметром, например, около 50 сантиметров. К верхней части дуги прикрепить нить с камешком и сообщить этому своеобразному маятнику колебание в некоторой плоскости. Легко поворачивая кружок, мы заметим, что маятник продолжает сохранять неизменным направление плоскости своего колебания.

Наблюдение опыта Фуко

При наблюдении опыта Фуко зрители легко могут убедиться в том, что Земля действительно вращается вокруг оси ; с течением времени плоскость Земли, расположенная под маятником, поворачивается на некоторый угол от плоскости качания маятника, которая сохраняет и пространстве постоянное направление.

Угол поворота Земли

Угол поворота Земли относительно направления плоскости колебания маятника различен в зависимости от широты места, где этот опыт производится.

На полюсе угол этого отклонения будет за каждый час составлять 15 градусов, на экваторе нуль, а в широтах нашей страны от 9 до 14 градусов.

Чем длиннее маятник, тем более заметным становится отклонение плоскости Земли от плоскости его колебания. Длина маятника Фуко 60 метров . Маятник, подвешенный под куполом Исаакиевского собора в Ленинграде , имеет в длину 98 метров. Он непрерывно качается и каждым своим новым взмахом подтверждает вращение Земли.

Следствия вращения Земли

Доказано также, что вследствие вращения Земли :

  • Летящий снаряд отклоняется вправо в северном полушарии и влево в южном.
  • Если реки текут не строго в направлении земных параллелей, то у рек нашего, северного, полушария подмываются вследствие суточного вращения Земли правые берега, а у рек южного полушария – левые.
  • Предметы, падающие с большой высоты , всегда «отклоняются» и притом непременно к востоку.

Это также доказывает, что Земля вращается вокруг своей оси в направлении с запада на восток . Тела, падающие с высоты, отклоняются несколько к востоку потому, что линейная скорость на вершине башни, например, всегда больше, чем у поверхности Земли, а падая, эти тела сохраняют скорость, полученную ими в начальной точке падения.

Особенность вращения Земли

Теперь мы твёрдо убеждены, что наша Земля вращается подобно детской игрушке – волчку. Только, конечно, нам известно, что Земля, в сущности, очень большое мировое (небесное) тело и не имеет материальной оси, подобно той, которая есть у волчка.

Следует обратить внимание ещё на одну особенность вращения Земли . Как бы сильно мы волчок ни запускали, он рано или поздно перестанет вращаться и упадёт. Это происходит оттого, что движение волчка всё время тормозится , действующей на нижний конец его оси о поверхность, на которой он вращается, и .

Земля, как нам уже известно, не соприкасается ни с каким другим мировым телом. Она как будто бы свободно вращается в мировом пространстве, свободна от тормозящего действия трения и сопротивления воздуха. Она как бы «висит» в мировом пространстве.

Поэтому Земля вращается всегда почти с одинаковой скоростью и всё в одном и том же направлении, с запада на восток. Иначе говоря, если смотреть на Северный полюс земного шара откуда-нибудь из мирового пространства, Земля вращается в направлении, противоположном движению часовой стрелки .

Полный оборот вокруг своей воображаемой оси Земля совершает в 24 часа (точнее, в 23 часа 56 минут и 4 секунды). Этот промежуток времени мы и называем сутками (звёздными), которые приняты всеми народами за основную единицу измерения времени.

В. Ф. ,
, Воротынская СОШ, п. Воротынец, Воротынский р-н, Нижегородская обл.

Как узнать, что Земля вращается?

Физики могут объяснить даже то,
что невозможно представить.
Л. Ландау

Была такая задача на школьной олимпиаде по астрономии и физике космоса: «Как узнали бы люди, что Земля имеет форму шара, что она вращается вокруг оси, проходящей через её центр и что Земля обращается вокруг Солнца по определённой траектории (причём в декабре расположена ближе к Солнцу, чем в июне), если бы она была покрыта густым слоем облаков так, что даже Солнца не было бы видно?»

Что Земля имеет форму шара, люди знали ещё в древности. Аристарх (310–230 до н. э.) нашёл, во сколько раз Солнце дальше от Земли, чем Луна, и по лунным затмениям сравнил размеры Земли и Луны. Расстояние до Луны нашли, решив прямоугольный треугольник, где сторонами были радиус Земли – первый катет, второй катет – расстояние до Луны в момент когда Луна на горизонте, и гипотенуза – радиус плюс расстояние в тот же момент, когда Луна над головой. Аристарх же и первый высказался о вращении Земли в виде философского рассуждения.

По Эратосфену (276–196 до н. э.), шарообразность Земли следовала из изменения полуденной высоты Солнца и высоты звёзд в верхней кульминации при передвижении с юга на север, т. е. по меридиану. Мало того, уже в то время можно было измерить радиус Земли в шагах верблюда! Два купца договариваются об измерении высоты Солнца в полдень в один и тот же день в городах Сиена и Мемфис, но желательно, когда Солнце в Сиене находится в зените (или определённая звезда в верхней кульминации). Эти города находятся почти на одном меридиане (так удачное течение реки Нил повлияло на развитие науки), а расстояние между ними, предположим, 750 000 шагов верблюда (будем считать, что шаг верблюда приблизительно равен 1 м). Разность высот φ = 31° 11′ – 24° 5′ = 7° 6′, тогда из формулы l = R φ, где l – длина дуги окружности радиуса R , опирающейся на угол φ, находим R = l /φ. Произведя вычисления (угол φ выражаем в радианах), получаем R = 750 000/(7,1/57,3) = 500 000 · 57,3/6,8 = 6 052 000 м.

При точности измерений того времени радиус Земли у Эратосфена получился 7000 км. (В то время расстояния измеряли стадиями. Радиус Земли у древних греков получился приблизительно 40 000 стадий. Возникает задача: сколько метров в одной стадии? Была и такая задача на олимпиаде по астрономии и физике космоса.)

Косвенно кругосветное путешествие Ф. Магеллана (1480–1521) доказало и шарообразность Земли, и её вращение Земли с запада на восток. Г. Галилей (1564–1642) в своё время писал о семи доказательствах вращения Земли вокруг своей оси, но все они были неверными (два из них он называл доказательствами, а остальные пять – подтверждениями).

Ещё И. Ньютон (1642–1723) указал, что падающее тело должно отклонятся к востоку (при точном решении – к юго-востоку в Северном полушарии). Р. Гук (1635–1703) пытался доказать это экспериментально, но точность эксперимента оказалась слишком низкой. В XIX в. в Германии несколько учёных провели успешный эксперимент с вполне удовлетворительными погрешностями: Ф. Бенценберг в 1802 г. (высота 85 м, отклонение 11,5 мм) и Ф. Рейх (высота 158 м, отклонение 28,5 мм). Задача в общем виде была поставлена ещё до выхода «Начал натуральной философии» (1687) Ньютона французом Мерсенном (1588–1648). На гравюре П. Вариньона из книги «Соображения о причине тяжести» (1690), изображён опыт Мерсенна и Пти (военного инженера, которого привлёк Мерсенн). Мерсенн в одежде монаха ставит вопрос (надпись на французском языке): «Вернётся ли назад?» Только в XIX в. такой эксперимент дал удовлетворительное согласие с теорией.


Задача.
Куда упадёт снаряд, выпущенный из пушки вертикально вверх со скоростью 8000 м/с?

Точное решение (для небольших скоростей, т. е. для высот, где ускорение свободного падения изменяется мало) можно найти в «Курсе теоретической физики» Ландау и Лифшица , но эти решения ученикам недоступны. Даже известный популяризатор науки Я. Перельман (1882–1942) сделал несколько ошибок при решении этой задачи. А вот для скоростей, близких к первой космической скорости (и для высот подъёма, сравнимых с радиусом Земли), эта задача имеет вполне доступное для учащихся решение.

Приведём упрощённое решение. Так как скорость вращения точек Земли на экваторе 465 м/с, а скорость снаряда 8000 м/с и угол между направлением скорости снаряда и вертикалью очень мал (sinα ≈ 465/8000 = 0,058 и α ≈ 3° 20′), то можно утверждать, что точка пуска (А ) и точка падения (В ) лежат на эллипсе вблизи концов его малой оси. (Большая полуось проходит через центр Земли, и перигей орбиты О практически совпадает с центром Земли.) Находим эксцентриситет эллипса е = cosα = 0,9983 и его малую ось = 6378 · 0,058 = 370 км, т. е. снаряд сместится к востоку на 2b = 740 км, а пушка сместится к востоку на 1925 км = 465 м/с · 69 · 60 с (в точку D ). Скорость 465 м/с надо умножить на время полёта 69 мин, которое находится из второго закона Кеплера: Т 1 = Т (1/2+1/π), где Т = 84 мин 20 с – время полного оборота при скорости, равной первой космической, т. к. площадь сектора эллипса, заметаемого радиусом-вектором снаряда за время Т 1 , складывается из площади треугольника ОАВ , равной 2 · а · b /2, и площади полуэллипса АСВ , равной π · a · b /2. Из отношения этой площади к площади эллипса π · ab находим выражение для Т 1 . Таким образом, точка падения снаряда будет смещена к западу на 1925 км – 740 км ≈ 1200 км .

Ещё одно решение с приблизительно таким же ответом (1226 км) приводит Е. Мищенко . Смещение снаряда к западу у него:

где υ – скорость снаряда в вертикальном направлении, u – линейная скорость точек экватора при суточном вращении Земли, R – радиус Земли на экваторе, g – ускорение свободного падения. Подставив υ = 8000 м/с, u = 465 м/с, R = 6 378 000 м, g ≈ 9,81 м/с 2 , получим смещение 1 226 000 м.

Наглядно доказывает вращение Земли маятник Фуко, а косвенно – закон Бэра (крутые правые берега рек в Северном полушарии). Оригинальный способ доказательства вращения Земли вокруг своей оси приводит

Дж. Литлвуд (1885–1977). Нужно взять тор из стекла, наполнить его водой в положении, когда плоскость тора перпендикулярна отвесу и резко повернуть тор в вертикальной плоскости. Вода внутри тора начнёт двигаться (в Северном полушарии Земли – против часовой стрелки, если дальнюю от нас сторону тора поднять вверх). Литлвуд пишет: «Это могло быть изобретено Архимедом (287–212 до н. э.), но должно было ждать своего открытия до 1930 г.». Автором идеи является лауреат Нобелевской премии А. Комптон (1892–1962).

В настоящее время доказано, что и угловая скорость вращения Земли была когда-то больше, и сутки миллионы лет назад составляли около 8 ч. Ещё П.-С. Лаплас (1749–1827) в своём «Трактате о небесной механике» писал об этом. По древним источникам известно, что 15 апреля 136 г. до н. э. в Древнем Вавилоне наблюдалось солнечное затмение. Если сделать расчёт, исходя из равномерности вращения Земли, то окажется, что действительно в этот день должно было быть затмение, но не в Вавилоне, а в местности, находящейся на 49° западнее. То есть угловое смещение полосы затмения вызвано изменением угловой скорости Земли. По этим данным возникает задача об угловом ускорении вращения Земли.

Исторически первым наглядным и убедительным экспериментом, подтвердившим вращение Земли вокруг своей оси, был опыт Л. Фуко (1819–1868). Он весьма наглядно подтвёрждает, что, строго говоря, система наблюдателя, связанного с вращающейся Землёй, неинерциальна, главным образом вследствие наличия этого вращения. Представим себе маятник, качающийся на Северном полюсе Земли. Во вращающейся системе наблюдается ускорение Кориолиса. Сила Кориолиса, как показывает расчёт, направлена перпендикулярно к оси вращения и скорости наблюдателя, находящегося во вращающейся системе, и равна –2m [ω υ ], т. е. пропорциональна векторному произведению угловой скорости и относительной скорости движения тела в неинерциальной системе отсчёта, жёстко связанной с Землёй. Она обращается в нуль, когда точка покоится по отношению к наблюдателю, находящемуся во вращающейся системе (υ = 0), или когда движение точки направлено для этого наблюдате ля параллельно оси вращения ω || υ .

При толчке, сообщённом маятнику в положении равновесия в точке, находящейся точно над северным полюсом, где вектор угловой скорости направлен точно на нас, ускорение Кориолиса (по правилу нахождения направления векторного произведения) направлено вправо в горизонтальной плоскости, одновременно перпендикулярно скорости маятника и угловой скорости вращения Земли и несколько отклонит путь маятника вправо, если смотреть сверху (с точки зрения наблюдателя, вращающегося с Землёй). В точке наибольшего удаления маятника от положения равновесия модуль силы Кориолиса F к равен нулю. Плоскость качания маятника сохраняется по отношению к инерциальной системе небесного свода, но поворачивается для вращающегося на блюдателя, поэтому маятник в этой точке описывает петлю. Никаким неудачным толчком нельзя объяснить такую траекторию маятника, но она получает полное объяснение, если принять во внимание силы инерции, обусловленные вращением Земли. Если же отпустить маятник в положении максимального отклонения, то траектория движения будет несколько отличаться от изображённой, – она примет вид нескольких петель, но уже не проходящих через точку полюса.

При скоростях летящего камня можно не учитывать влияния этой силы, она и не могла быть обнаружена в опытах Галилея. Существует много явлений, которые объясняются действием силы Кориолиса, которая возникает из-за вращения Земли. Артиллеристы должны учитывать её, т. к. при больших дальностях полёта снаряда даже малое ускорение даёт значительное смещение точки попадания. На железных дорогах при движении по колее только в одном направлении в Северном полушарии сильнее изнашивается правый рельс. При движении жидкости и газа по трубам также существует разность давлений на стороны трубы. Гораздо более значительными являются действия силы Кориолиса на морские течения: отклонение Гольфстрима (вправо), а также течений, связанных с приливами и отливами в Cеверном полушарии. Очень сильно влияние силы Кориолиса проявляется в атмосфере. Ветер дует строго в направлении падения давления только на экватор и значительно отклоняется в Cеверном полушарии вправо от него, а в Южном полушарии – влево.

Важным примером действия силы Кориолиса является размывание одного берега реки, текущей в меридиональном направлении. в Северном полушарии вектор силы Кориолиса направлен на восток, если река течёт на север, и на запад, если река течёт с севера на юг. В обоих случаях этот вектор направлен с левого берега реки на правый, т. е. размывается правый берег, а левый остаётся крутым. В Южном же полушарии размываются левые берега рек. Наконец, на экваторе ускорение Кориолиса равняется нулю, потому что ω и v параллельны. Эти явления были открыты в 1857 г. членом Петербургской Академии наук К.М. Бэром (1792–1876) и получили название закона Бэра.

Этот закон можно объяснить и с точки зрения наблюдателя, находящегося в инерциальной системе отсчёта. Если река течёт с севера на юг в Северном полушарии, то каждая единица массы воды удаляется от оси вращения Земли и, следовательно, вода приходит в северных широтах с недостатком количества движения в направлении с запада на восток. Вращающаяся Земля при этом должна ускорять воду в её движении с запада на восток. Очевидно, что в силу инерции воды это приведёт к давлению потока на западный, т. е. на правый берег.

Существует простой опыт, который наглядно демонстрирует суточное вращение Земли. Нужно подвесить на тонком шнуре сосуд с водой с тонким отверстием внизу, чтобы вода вытекала довольно долго, например, бутылку из-под минеральной воды с возможностью регулирования расхода. Сосуд начнёт поворачиваться то в одну, то в другую сторону, но вначале – всегда – в сторону вращения Земли (против часовой стрелки, если смотреть сверху). Этот опыт служит косвенным доказательством вращения Земли вокруг своей оси.

Таким образом, опытами на самой Земле мы можем установить её вращение относительно инерциальной системы координат. Труднее дело обстоит с доказательством обращения Земли вокруг Солнца. У нас имеются только несколько фактов: изменение длины дня в течение года, более холодные зимы в Южном полушарии, смена времён года. Может быть, с помощью изощрённых рассуждений как-то и можно прийти к правильному выводу... И даже при прозрачной атмосфере прямое экспериментальное доказательство обращения Земли вокруг Солнца было получено почти через двести лет после Г. Галилея. Английский учёный Д. Брадлей (1693–1762) открыл явление годичной абберации звёзд в 1727 г. Это было первое прямое доказательство движения Земли вокруг Солнца, т. е. доказательство истинности учения Коперника и Галилея. Годичные параллактические смещения были измерены в 1838 г., когда русский астроном В.Я. Струве (1793–1864) определил расстояние до Веги – самой яркой звезды северного полушария небесной сферы.

Древние шумеры в третьем тысячелетии до н. э. определяли начало нового года по дню весеннего равноденствия в момент вступления Солнца в созвездие Тельца. И уже в Древней Греции Гиппарх (190–125 гг. до н. э.) мог сделать вывод не только об обращении Земли вокруг Солнца и её собственном вращении, но и о прецессии (предварение равноденствий) – мутации оси вращения Земли. Уже тогда был известен так называемый год Платона (428–327 до н. э.), равный приблизительно 26 000 лет. Через этот период точка весеннего равноденстви возвращается в прежнее положение. Если разделить 26 000 на 12 получится так называемая эра, которая по продолжительности равна приблизительно 2150 годам, – среднее время прохождения точки весеннего равноденствия через одно созвездие. В настоящее время точка весеннего равноденствия находится в созвездии Рыб, ежегодно перемещаясь на 50,26″, и приблизительно к 2150 г. переместится уже в созвездие Водолея.

Литература

  1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Т. I. Механика. М.: Наука, 1965. с. 163.
  2. Бронштэн В.А. Трудная задача //Квант, 1989. № 8. С. 17.
  3. Мищенко Е. Ещё раз о трудной задаче //Квант. 1990. № 11. С. 32.
  4. Литлвуд Дж. Математическая смесь. М.: Наука,1965. С. 10.

Виктор Фёдорович Майоров – учитель физики, астрономии и информатики высшей квалификационной категории. Выпускник физического факультета Горьковского госуниверситета 1970 г. по кафедре теоретической физики. Окончил также Горьковский иняз (1983 г.). Педагогический стаж 39 лет. Хобби: шахматы, иностранные языки. Депутат Земского собрания Воротынского р-на, руководитель РМО учителей физики и астрономии, председатель Воротынской районной профсоюзной организации работников образования. С женой, тоже педагогом, вырастили троих сыновей: средний тоже учитель физики, младший учится в НСХА на инженерном факультете. Уже есть два внука и внучка. Ученики как победители районных олимпиад ежегодно приглашаются на областную олимпиаду в Н. Новгород (то по физике, то по астрономии, то по информатике). Например, в 2008 г. в областных олимпиадах участвовали 9-классник (по астрономии) и 11-классник (по информатике), на олимпиаде «Таланты земли Нижегородской» двое были удостоены грамот и дипломов 3-й степени, им также были вручены уже в марте символические студенческие билеты Нижегородского университета на факультеты ВМК и мехмат, а Воротынская школа вошла в десятку «школ области, где растят таланты». В том же году команда Воротынской СОШ из четырёх учеников принимала участие в XI открытой олимпиаде Центральной России – XXXX олимпиаде ННЦ по астрономии и физике космоса и III Русском международном астрономическом турнире школьников.