В этот самый момент, человек, когда ты читаешь эти строки, ты получаешь пользу от работы бактерий. От кислорода, который мы вдыхаем, до питательных веществ, которые извлекает желудок из еды, нам нужно благодарить бактерий за процветание на этой планете. В нашем организме микроорганизмов, включая бактерий, больше, чем наших собственных клеток примерно в десять раз. По сути, мы больше микробы, чем люди.

Только недавно мы начали понемногу понимать микроскопические организмы и их влияние на нашу планету и здоровье, но история показывает, что много веков назад наши предки уже использовали мощь бактерий, ферментируя продукты питания и напитки (кто-нибудь слышал о хлебе и пиве?).

В 17 веке мы начали изучать бактерий уже непосредственно в наших телах в тесной связи с нами - во рту. Любопытство Антони ван Левенгука позволило обнаружить бактерии, когда он изучал бляшку между его собственными зубами. Ван Левенгук поэтически описал бактерий, обозначив бактериальную колонию на своих зубах как «немного белого вещества, похожего на застывшее тесто». Разместив образец под микроскопом, ван Левенгук увидел, что микроорганизмы движутся. Так они живые!

Вы должны знать, что бактерии сыграли важнейшую роль для Земли, став ключевым моментом в создании пригодного для дыхания воздуха и биологического богатства планеты, которую мы зовем домом.

В этой статье мы предоставим вам общую картину об этих крошечных, но очень влиятельных микроорганизмах. Мы рассмотрим хорошие, плохие и совершенно причудливые способы, которыми бактерии формируют историю человека и окружающей среды. Для начала рассмотрим, чем бактерии отличаются от других видов жизни.

Основы бактерий

Что ж, если бактерии незаметны невооруженному глазу, откуда мы можем знать так много о них?

Ученые разработали мощные микроскопы, чтобы взглянуть на бактерий - их размеры варьируются от одного до нескольких микрон (миллионной части метра) - и выяснить, как они соотносятся с другими формами жизни, растениями, животными, вирусами и грибками.

Как вы, возможно, знаете, клетки - это строительные кирпичики жизни, из них состоят и ткани нашего тела, и дерево, которое растет за окном. Люди, животные и растения обладают клетками с генетической информацией, заключенной в мембране под названием ядро. Эти типы клеток, которые называются эукариотическими, обладают специальными органеллами, каждая из которых выполняет уникальную работу, помогая клетке работать.

Бактерии, однако, не имеют ядер, и их генетический материал (ДНК) свободно плавает внутри клетки. У этих микроскопических клеток нет органелл и они обладают другими методами воспроизводства и передачи генетического материала. Бактерии считаются прокариотическими клетками.

Выживают ли бактерии в среде с кислородом или без

Их форма: палочки (bacillus), круги (cocci) или спирали (spirillum)

Являются ли бактерии грамотрицательными или грамположительными, то есть обладают ли внешней защитной мембраной, препятствующей окрашиванию внутренностей клетки

Как бактерии перемещаются и изучают окружающую среду (у многих бактерий есть жгутики, крошечные плетевидные структуры, которые позволяют им передвигаться в среде)

Микробиология - наука о всех типах микробов, включая бактерии, археи, грибы, вирусы и простейшие - позволяет отличать бактерии от их микробных братьев.

Похожие на бактерии прокариоты, ныне классифицирующиеся как археи, когда-то были вместе с бактериями, но когда ученые узнали о них больше, они предоставили бактериям и археям собственные категории.

Микробное питание (и миазма)

Как и людям, животным и растениям, бактериям нужна пища для выживания.

Некоторые бактерии - автотрофы - используют основные ресурсы вроде солнечного света, воды и химических веществ из окружающей среды для создания пищи (подумайте о цианобактериях, которые превращали солнечный свет в кислород в течение 2,5 миллионов лет). Другие бактерии ученые называют гетеротрофами, потому что они черпают энергию из существующих органических веществ в качестве пищи (к примеру, мертвые листья на лесной почве).

Правда в том, что то, что может быть вкусным для бактерий, будет нам противно. Они развивались, чтобы поглощать все типы продуктов, от разливов нефти и побочных продуктов ядерного распада до человеческих отходов и продуктов разложения.

Но склонность бактерий к конкретному источнику питания может принести пользу обществу. К примеру, специалисты по искусствам из Италии обратились к бактериям, которые могут поедать избыточные слои соли и клея, снижающие долговечность бесценных художественных произведений. Умение бактерий перерабатывать органические вещества также очень полезно для Земли, как в почве, так и в воде.

Исходя из ежедневного опыта, вы хорошо знакомы с запахом, который вызывают бактерии, поглощающие содержимое вашей мусорной корзины, перерабатывая остатки пищи и испуская собственные газообразные побочные продукты. Однако этим все не ограничивается. Вы также можете обвинить бактерии в том, что они вызывают эти неловкие моменты, когда вы сами испускаете газы.

Одна большая семья

Бактерии растут и образуют колонии, когда выпадает шанс. Если еда и экологические условия являются благоприятными, они размножаются и образуют липкие скопления, так называемые биопленки, чтобы выжить на разных поверхностях - от горных пород до зубов вашего рта.

У биопленок есть свои плюсы и минусы. С одной стороны, они взаимовыгодны природным объектам (мутуализм). С другой же - они могут быть серьезной угрозой. К примеру, врачи, которые лечат пациентов с медицинскими имплантатами и устройствами, серьезно озабочены биопленками, поскольку они представляют собой этакую недвижимость для бактерий. После колонизации биопленки могут вырабатывать побочные продукты, которые токсичны - а иногда и смертельны - для человека.

Как и люди в городах, клетки в биопленке сообщаются друг с другом, обмениваются информацией о продуктах питания и потенциальной опасности. Но вместо того, чтобы звонить соседям по телефону, бактерии отправляют записки с помощью химических веществ.

Также бактерии не боятся жить самостоятельно. Некоторые виды разработали интересные способы, чтобы выживать в суровых условиях. Когда еды больше нет, а условия становятся невыносимыми, бактерии консервируют себя, создавая жесткую оболочку - эндоспору, которая помещает клетку в состояние покоя и сохраняет генетический материал бактерии.

Ученые находят бактерии в таких временных капсулах, которые хранились и 100, и даже 250 миллионов лет. Это говорит о том, что бактерии могут самостоятельно храниться в течение длительного времени.

Теперь, когда мы знаем, какие возможности предоставляют колонии бактериям, давайте разберемся, как они попадают туда - путем деления и размножения.

Размножение бактерий

Как бактерии создают колонии? Как и другим формам жизни на Земле, бактериям нужно самокопироваться, чтобы выживать. Другие организмы делают это путем полового размножения, но не бактерии. Но сначала давайте обсудим, почему разнообразие - это хорошо.

Жизнь проходит естественный отбор, ну или селективные силы определенной среды позволяют одному типу процветать и размножаться больше, чем другому. Возможно, вы помните, что гены - это механизм, который инструктирует клетку, что ей делать, и определяет, какого цвета будут ваши волосы и глаза. Вы получаете гены от своих родителей. Половое размножение приводит к мутациям, или случайным изменениям в ДНК, что создает разнообразие. Чем больше генетического разнообразия, тем больше шансов, что организм сможет приспособиться к ограничениям окружающей среды.

Для бактерий воспроизводство не зависит от встречи с правильным микробом; они просто копируют собственную ДНК и делятся на две идентичных клетки. Этот процесс, называемый двоичным делением, происходит, когда одна бактерия делится на две, копируя ДНК и передавая ее обеим частям разделенной клетки.

Поскольку в конечном итоге рожденная клетка будет идентична той, из которой была рождена, такой метод размножения не самый лучший для создания разнообразного генофонда. Как же бактерии приобретают новые гены?

Оказывается, бактерии используют хитрый трюк: горизонтальный перенос генов, или обмен генетическим материалом без воспроизводства. Есть несколько способов, которые используют бактерии для этого. Один способ включает сбор генетического материала из окружающей среды вне клетки - из других микробов и бактерий (через молекулы под названием плазмиды). Другой способ - вирусы, которые используют бактерии в качестве дома. Заражая новую бактерию, вирусы оставляют генетический материал предыдущей бактерии в новой.

Обмен генетическим материалом дает бактериям гибкость к адаптации, и они адаптируются, если чувствуют стрессовые изменения в окружающей среде, такие как нехватка продовольствия или химические изменения.

Понимание того, как адаптируются бактерии, чрезвычайно важно для борьбы с ними и создания антибиотиков в медицине. Бактерии могут обмениваться генетическим материалом так часто, что порой лечение, которое работало раньше, уже не работает.

Ни высоких гор, ни большой глубины

Если задаться вопросом «где бактерии?», проще спросить «где бактерий нет?».

Бактерии обнаруживаются практически везде на Земле. Невозможно представить количество бактерий на планете одновременно, но по некоторым оценкам их число составляет (бактерий и архей вместе) 5 октиллионов - это число с 27 нулями.

Классификация видов бактерий чрезвычайно сложна по понятным причинам. Сейчас есть примерно 30 000 официально идентифицированных видов, но база знаний постоянно растет, и есть мнения, что перед нами только верхушка айсберга от всех видов бактерий.

Правда в том, что бактерии были вокруг на протяжении очень долгого времени. Они породили одни из самых древних окаменелостей, которым 3,5 миллиарда лет. Результаты научных исследований позволяют предположить, что цианобактерии начали создавать кислород примерно 2,3-2,5 миллиарда лет назад в мировом океане, насытив атмосферу Земли кислородом, которым мы дышим по сей день.

Бактерии могут выживать в воздухе, воде, почве, льде, на жаре, на растениях, в кишечнике, на коже - везде.

Некоторые бактерии являются экстремофилами, то есть могут противостоять экстремальным условиям, когда либо очень жарко или холодно, либо отсутствуют питательные вещества и химикаты, которые мы обычно ассоциируем с жизнью. Исследователи обнаружили такие бактерии в Марианской впадине, самой глубокой точке на Земле на дне Тихого океана, возле гидротермальных источников в воде и во льду. Встречаются также бактерии, которые любят высокую температуру - такие, например, окрашивают опалесцирующий бассейн в Йеллоустонском национальном парке.

Плохие (для нас)

Хотя бактерии делают важный вклад в здоровье человека и планеты, у них есть и темная сторона. Некоторые бактерии могут быть патогенными, то есть вызывать заболевания и болезни.

На протяжении истории человечества некоторые бактерии (понятно почему) получили плохую репутацию, вызвав панику и истерию. Взять, к примеру, чуму. Бактерия, вызывающая чуму - чумная палочка Yersinia pestis - не только убила более 100 миллионов человек, но и, возможно, внесла свой вклад в распад Римской империи. До появления антибиотиков, лекарств, которые способствуют борьбе с бактериальными инфекциями, их было очень сложно остановить.

Даже сегодня эти патогенные бактерии серьезно нас пугают. Благодаря выработке устойчивости к антибиотикам, бактерии, вызывающие сибирскую язву, пневмонию, менингит, холеру, сальмонеллез, ангину и прочие болезни, которые еще и остаются рядом с нами, всегда представляют опасность для нас.

Особенно верно это для золотистого стафилококка, бактерии, ответственной за стафилококковые инфекции. Эта «сверхбактерия» приводит к появлению многочисленных проблем в клиниках, поскольку пациенты весьма часто подхватывают эту инфекцию при внедрении медицинских имплантатов и катетеров.

Мы уже говорили о естественном отборе и о том, что некоторые бактерии вырабатывают разнообразные гены, которые помогают им справиться с условиями окружающей среды. Если у вас есть инфекция, и некоторые из бактерий в вашем теле отличаются от других, антибиотики могут поразить большую часть популяции бактерий. Но те бактерии, которые выживут, выработают устойчивость к лекарству и останутся, дожидаясь следующего шанса. Поэтому врачи рекомендуют завершать курс антибиотиков до конца, да и вообще обращаться к ним как можно реже, только в крайнем случае.

Биологическое оружие - еще один пугающий аспект этой беседы. Бактерий можно использовать как оружие в некоторых случаях, в частности, сибирскую язву так и использовали в одно время. Кроме того, не только люди страдают от бактерий. Отдельный вид - Halomonas titanicae - проявил аппетит к затонувшему океанскому лайнеру «Титаник», разъедая металл исторического корабля.

Конечно, бактерии могут приносить не только вред.

Героические бактерии

Давайте изучим хорошую сторону бактерий. В конце концов, эти микробы подарили нам такие вкусные продукты, как сыр, пиво, закваску и другие ферментированные элементы. Они также улучшают здоровье людей и используются в медицине.

Отдельных бактерий можно поблагодарить за формирование человеческой эволюции. Наука собирает все больше данных о микрофлоре - микроорганизмах, которые живут в наших телах, особенно в пищеварительной системе и кишечнике. Исследования показывают, что бактерии, новые генетические материалы и разнообразие, которое они приносят в наши тела, позволяют людям адаптироваться к новым источникам пищи, которые раньше не использовались.

Посмотрим на это с другой стороны: выстилая поверхность вашего желудка и кишечника, бактерии «работают» на вас. Когда вы едите, бактерии и другие микробы помогают вам разбивать и добывать питательные вещества из пищи, особенно углеводы. Чем разнообразнее бактерии, которых мы потребляем, тем больше разнообразия получают наши тела.

Хотя наши знания о наших же микробах весьма скудны, есть основания полагать, что отсутствие некоторых микробов и бактерий в организме может быть связано со здоровьем, метаболизмом и восприимчивости к аллергенам человека. Предварительные исследования на мышах показали, что метаболические заболевания вроде ожирения связаны с разнообразием и здоровой микрофлорой, а не нашей преобладающей точкой зрения «калории приходят, калории уходят».

Сейчас активно исследуются возможности внедрения определенных микробов и бактерий в организм человека, которые могут дать определенные преимущества, однако на момент написания статьи общие рекомендации по их использованию пока не были установлены.

Кроме того, бактерии сыграли важную роль в развитии научной мысли и человеческой медицины. Бактерии сыграли ведущую роль в развитии постулатов Коха 1884 года, которые привели к общему пониманию того, что болезни вызываются определенным видом микробов.

Исследователи, изучавшие бактерии, случайно открыли пенициллин - антибиотик, который спас множество жизней. Также совсем недавно в связи с этим был открыт легкий способ редактировать геном организмов, который может осуществить революцию в медицине.

По сути, мы только начинаем понимать, как извлекать пользу из нашего сожительства с этими маленькими друзьями. К тому же непонятно, кто истинный хозяин Земли: люди или микробы.

Слово «бактерии» у большинства людей ассоциируется с чем-то неприятным и с угрозой для здоровья. В лучшем случае вспоминаются кисломолочные продукты. В худшем – дисбактериоз, чума, дизентерия и прочие неприятности. А бактерии есть везде, они бывают плохие и хорошие. Что же могут скрывать микроорганизмы?

Что такое бактерии

Человек и бактерии

Появление бактерий в организме

Полезные бактерии бывают: молочнокислые, бифидобактерии, кишечная палочка, стрептомиценты, микоризы, цианобактерии.

Все они играют важную роль в жизни человека. Одни из них предотвращают появление инфекций, другие используют в производстве лекарственных препаратов, третьи поддерживают баланс в экосистеме нашей планеты.

Виды вредных бактерий

Вредные бактерии могут вызвать у человека ряд серьезных заболеваний. Например, дифтерию, сибирскую язву, ангину, чуму и многие другие. Они легко передаются от заразившегося человека через воздух, еду, прикосновение. Именно вредные бактерии, названия которых будут приведены ниже, портят продукты питания. От них появляется неприятный запах, происходит гниение и разложение, они вызывают заболевания.

Бактерии могут быть грамположительными, грамотрицательными, палочковидными.

Названия вредных бактерий

Таблица. Вредные бактерии для человека. Названия
Названия Место обитания Вред
Микобактерии пища, вода туберкулез, проказа, язва
Столбнячная палочка почва, кожа, пищеварительный тракт столбняк, мышечные спазмы, дыхательная недостаточность

Палочка чумы

(рассматривается специалистами как биологическое оружие)

только в организме человека, грызунов и млекопитающих бубонная чума, пневмония, кожные инфекции
Хеликобактер пилори слизистая оболочка желудка человека гастрит, пептическая язва, вырабатывает цитоксины, аммиак
Сибироязвенная палочка почва сибирская язва
Палочка ботулизма пища, зараженная посуда отравление

Вредные бактерии способны долгое время находиться в организме и всасывать полезные вещества из него. При этом они способны вызвать инфекционное заболевание.

Самые опасные бактерии

Одна из самых устойчивых бактерий – это метициллин. Его знают больше под названием «золотистый стафилококк» (Staphylococcus aureus). Этот микроорганизм способен вызвать не одно, а несколько инфекционных заболеваний. Некоторые виды этих бактерий стойки к воздействию мощных антибиотиков и антисептиков. Штаммы этой бактерии могут жить в верхних отделах дыхательных путей, в открытых ранах и мочевыводящих каналах каждого третьего жителя Земли. Для человека с сильным иммунитетом это не представляет опасности.

Вредные бактерии для человека – это также патогены под названием Salmonella typhi. Они являются возбудителями острой инфекции кишечника и брюшного тифа. Такие виды бактерий, вредных для человека, опасны тем, что вырабатывают токсические вещества, которые крайне опасны для жизни. При протекании болезни происходит интоксикация организма, очень сильная лихорадка, высыпания на теле, увеличивается печень и селезенка. Бактерия очень стойка к разным внешним воздействиям. Хорошо живет в воде, на овощах, фруктах и прекрасно размножается в продуктах из молока.

К самым опасным бактериям относится также бактерия Clostridium tetan. Она вырабатывает яд под названием «столбнячный экзотоксин». Люди, которые заражаются этим патогеном, испытывают страшные боли, судороги и очень тяжело умирают. Болезнь называется столбняк. Несмотря на то что вакцину создали ещё в 1890 году, каждый год на Земле от неё умирает 60 тысяч человек.

И ещё одна бактерия, которая способна привести к смерти человека, - это Mycobacterium tuberculosis. Она вызывает туберкулез, который устойчив к воздействию лекарств. При несвоевременном обращении за помощью человек может умереть.

Меры профилактики распространений инфекций

Вредные бактерии, названия микроорганизмов изучают со студенческой скамьи медики всех направлений. Здравоохранение ежегодно ищет новые методы для профилактики распространения инфекций, опасных для жизни человека. При соблюдении мер профилактики не придется тратить силы на поиск новых способов борьбы с такими заболеваниями.

Для этого необходимо вовремя выявлять источник появления инфекции, определить круг заболевших и возможных пострадавших. Обязательно необходимо изолировать тех, кто заражен, и провести дезинфекцию очага заражения.

Второй этап – это уничтожение путей, через которые могут передаваться вредные бактерии. Для этого проводят соответствующую пропаганду среди населения.

Под контроль берут объекты питания, водоемы, склады с хранением продовольствия.

Каждый человек может противостоять вредным бактериям, всячески укрепляя свой иммунитет. Здоровый образ жизни, соблюдение элементарных правил гигиены, защита себя при половом контакте, использование стерильных одноразовых медицинских инструментов и оборудования, полное ограничение от общения с людьми, находящимися на карантине. При попадании в эпидемиологический район или в очаг заражения необходимо строго выполнять все требования санитарно-эпидемиологических служб. Ряд инфекций приравниваются по своему воздействию к бактериологическому оружию.

Какие бывают бактерии: названия и виды

Самый древний живой организм на нашей планете. Его представители не только выжили в течение миллиардов лет, но и обладают достаточной силой, чтобы уничтожить все остальные виды на Земле. В данной статье мы рассмотрим, какие бывают бактерии.

Поговорим об их строении, функциях, а также назовем некоторые полезные и вредные виды.

Открытие бактерий

Виды бактерий в моче

Строение

Метаболизм

Размножение

Место в мире

Ранее мы с вами разобрались, какие бывают бактерии. Теперь стоит поговорить о том, какую роль они исполняют в природе.

Исследователи говорят, что бактерии - это первые живые организмы, которые появились на нашей планете. Существуют как аэробные, так и анаэробные разновидности. Поэтому одноклеточные существа способны выжить при различных катаклизмах, происходящих с Землей.

Несомненная польза бактерий заключается в ассимиляции атмосферного азота. Они задействованы в формировании плодородия почв, разрушении останков мертвых представителей флоры и фауны. Кроме этого, микроорганизмы участвуют в создании полезных ископаемых и отвечают за поддержание запасов кислорода и углекислого газа в атмосфере нашей планеты.

Всего биомасса прокариот составляет около пяти сотен миллиардов тонн. В ней хранятся более чем восемьдесят процентов фосфора, азота и углерода.

Однако на Земле существуют не только полезные, но и патогенные виды бактерий. Они вызывают множество смертельных заболеваний. Например, среди таковых находятся туберкулез, проказа, чума, сифилис, сибирская язва и многие другие. Но даже те, которые условно безопасны для жизнедеятельности человека, могут стать угрозой при снижении уровня иммунитета.

Также существуют бактерии, которые заражают зверей, птиц, рыб и растения. Таким образом, микроорганизмы не только находятся в симбиозе с более развитыми существами. Далее мы поговорим о том, какие бывают болезнетворные бактерии, а также о полезных представителях этого вида микроорганизмов.

Бактерии и человек

Еще в школе учат тому, какие бывают бактерии. 3 класс знает всякие цианобактерии и прочие одноклеточные организмы, их строение и размножение. Сейчас же мы поговорим о практической стороне вопроса.

Еще полвека назад никто и не задумывался о таком вопросе, как состояние микрофлоры в кишечнике. Все было в порядке. Питание более натуральным и здоровым, минимум гормонов и антибиотиков, меньше химических выбросов в окружающую среду.

Сегодня же в условиях плохого питания, стрессов, переизбытка антибиотиков дисбактериоз и связанные с ним проблемы выходят на лидирующие позиции. Как же врачи предлагают с этим бороться?

Один из основных ответов – это использование пробиотиков. Это специальный комплекс, который заново заселяет кишечник человека полезными бактериями.

Подобное вмешательство способно помочь при таких неприятных моментах, как пищевая аллергия, непереносимость лактозы, расстройства желудочно-кишечного тракта и прочие недомогания.

Давайте теперь коснемся того, какие полезные бактерии бывают, а также узнаем об их влиянии на здоровье.

Наиболее детально изучены и широко применяются для положительного воздействия на организм человека три вида микроорганизмов – ацидофилус, болгарская палочка и бифидобактерии.

Первые две призваны стимулировать иммунитет, а также снизить рост некоторых вредных микроорганизмов вроде дрожжей, кишечной палочки и так далее. Бифидобактерии ответственны за переваривание лактозы, выработку некоторых витаминов и снижение холестерина.

Вредные бактерии

Ранее мы с вами поговорили о том, какие бывают бактерии. Виды и названия наиболее распространенных полезных микроорганизмов были озвучены выше. Далее речь пойдет об «одноклеточных врагах» человека.

Есть такие, которые вредны только человеку, есть смертельно опасные для животных или растений. Люди научились использовать последние, в частности, для уничтожения сорняков и назойливых насекомых.

Прежде чем углубиться в то, какие бывают вредные бактерии, стоит определиться с путями их распространения. А таковых имеется очень много. Есть микроорганизмы, которые передаются с помощью зараженных и немытых продуктов, воздушно-капельным и контактным путями, через воду, почву или с помощью укусов насекомых.

Самое плохое, что всего одна клеточка, попав в благоприятную среду человеческого организма, способна в течение всего лишь нескольких часов размножиться до нескольких миллионов бактерий.

Если говорить о том, какие бывают бактерии, названия болезнетворных и полезных сложно отличить непрофессионалу. В науке для обозначения микроорганизмов используют латинские термины. В просторечье заумные слова заменяют понятиями – «кишечная палочка», «возбудители» холеры, коклюша, туберкулеза и прочие.

Превентивные меры для предупреждения заболевания бывают трех видов. Это прививки и вакцины, прерывание путей передачи (марлевые повязки, перчатки) и карантин.

Откуда берутся бактерии в моче

Какие бактерии полезны

Бактерии повсюду – подобный лозунг мы слышим с младенчества. Всеми силами мы пытаемся противостоять этим микроорганизмам, стерилизуя окружение. А нужно ли так поступать?

Существуют бактерии, которые являются защитниками и помощниками, как человека, так и окружающего мира. Эти живые микроорганизмы укрывают человека и природу миллионными колониями. Они являются активными участниками всех происходящих процессов на планете и непосредственно в организме любого живого существа. Их цель - отвечать за правильное протекание жизненных процессов и бывать повсюду, где без них не обойтись.

Огромный мир бактерий

Согласно исследованиям, проводимым регулярно учеными, в человеческом организме находится более двух с половиной килограмм разнообразных бактерий.

Все бактерии задействованы в жизненных процессах. Например, одни помогают в переваривании пищи, другие - активные помощники в производстве витаминов, третьи выступают защитниками от вредоносных вирусов и микроорганизмов.

Одной из весьма полезных живых существ, имеющихся во внешней среде, является азотфиксирующая бактерия, которая имеется в корневых клубеньках растений, выделяющих в атмосферу необходимый для дыхания человека азот.

Существуют и другая группа микроорганизмов, которая связана с перевариванием отходов органических соединений, помогающая поддерживать на надлежащем уровне плодородие почвы. К ней относятся азотфиксирующие микробы.

Лечебные и пищевые бактерии

Другие микроорганизмы принимают активное участие в процессе получения антибиотиков - это стрептомицин и тетрациклин. Эти бактерии называются Streptomyces и относятся к почвенным бактериям, которые используются в изготовлении не только антибиотиков, но и продуктов в промышленном и пищевом производстве.

Для этих пищевых отраслей широко используется бактерия Lactobacillis, которая участвует в процессах брожения. Поэтому она востребована в изготовлении йогурта, пива, сыров, вина.

Все эти представители микроорганизмов-помощников живут по своим строгим правилам. Нарушение их баланса приводит к самым негативным явлениям. Прежде всего, в организме человека вызывается дискбактериоз, последствия которого порой необратимы.

Во-вторых, все восстановительные функции человека связанные с внутренними или внешними органами, при дисбалансе полезных бактерий проходят значительно труднее. То же самое относится к группе, которая задействована в производстве продуктов питания.

Бактерии это одноклеточные организмы, лишенные хлорофилла.

Бактерии встречаются повсеместно, населяя все среды обитания. Наибольшее количество их находится в почве на глубине до 3 км (до 3 миллиардов в одном грамме почвы). Их много в воздухе (на высоте до 12 км), в организмах животных и растений (как живых, так и мертвых), не является исключением и организм человека.

Среди бактерий встречаются неподвижные и подвижные формы. Передви-гаются бактерии с помощью одного или нескольких жгути-ков, которые располагаются на всей поверхности тела или на определенном участке.

Клетки бактерий разнообразны по форме:

  • шаровидные - кокки,
  • палочковидные - ба-циллы,
  • в форме запятой - вибрионы,
  • извитые - спириллы.

Кокки :

Монококки: это отдельно расположенные клетки.

Диплококки: это парные кокки, после деления могут образовывать пары.

Гонококк Нейссера: возбудитель гонореи

Пневмококки: возбудитель крупозной пневмонии

Менингококки: возбудитель менингита (острое воспаление мозговых оболочек)

Стрептококки: это клетки округлой формы, которые после деления образуют цепочки.

α - зеленящие стрептококки

β - гемолитические стрептококки возбудители скарлатины, ангины, фарингита…

γ - не гемолитические стрептококки

Стафилококки: это группа микроорганизмов, которая не разошлась после деления, образует огромные беспорядочные грозди.

Возбудитель: гнойничковых заболеваний, сепсиса, фурункулов, абсцессов, флегмон, мастита, пиодермита и пневмонию у новорожденных.

Сарцины: это скопление кокков в группы в виде пакетиков по 8 и более кокков.

Палочковидные:

Это бактерии цилиндрической формы, похожие на палочки размером 1-5×0,5-1 мкм, чаще располагаются одиночно.

Собственно бактерии: это палочковидные бактерии, которые не образуют споры.

Бациллы: это палочковидные бактерии, которые образуют споры.

(бацилла Коха, кишечная палочка, возбудитель сибирской язвы, синегнойная палочка, возбудитель чумы, возбудитель коклюша, возбудитель мягкого шанкра, возбудитель столбняка, возбудитель ботулизма, возбудитель…)

Вибрионы:

Это слабо изогнутые клетки, напоминающие по форме запятые размером 1-3 мкм.

Холерный вибрион: возбудитель холеры. Обитает в воде, через которую происходит заражение.

Спириллы:

Это извитые микроорганизмы в виде спирали, с одни, двумя и более спиралевидными кольцами.

Безвредные бактерии, живущие в сточных водах и запруженных водоемах.

Спирохеты:

Это тонкие длинные топоровидные бактерии, представлены тремя видами: Трепонемы, Боррелия, Лертоспира. Для человека патогенна бледная трепонема - возбудитель сифилива передается половым путем.

Строение бактериальной клетки:

Структура бактериальной клетки хорошо изучена с помощью электронной микроскопии. Бактериальная клетка состоит из оболочки, наружный слой которой называется клеточная стенка, а внутренний - цитоплазматическая мембрана, а также цитоплазмы с включениями и нуклеотидами. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили, плазмиды;

Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму, и «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она защищает клетку от дейст-вия вредных факторов внешней среды.

Наружная мембрана представлена липополисахаридами, фосфолипидами и белками. С ее внешней стороны расположен липо-полисахарид.

Между клеточной стенкой и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты.

Цитоплазматическая мембрана прилегает к внутренней по-верхности клеточной стенки бактерий и окружает наружную часть цитоплазмы бактерий. Она состоит из двойного слоя липидов, а также интегральных белков, пронизывающих ее насквозь.

Цитоплазма занимает основной объем бактериальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответст-венных за синтез белков. В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, жирных ки-слот и полифосфатов.

Нуклеотид - эквивалент ядра у бактерий. Он расположен в цито-плазме бактерий в виде двух нитчатой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Обычно в бактериальной клетке содер-жится одна хромосома, представленная замкнутой в кольцо мо-лекулой ДНК.

Кроме нуклеотида в бактериальной клетке могут находиться внехромосомные факторы наследственности - плазмиды, пред-ставляющие собой ковалентно замкнутые кольца ДНК и способ-ные к репликации независимо от бактериальной хромосомы.

Капсула - слизистая структура, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние грани-цы. Обычно капсула состоит из полисахаридов, иногда из поли-пептидов,

Многие бактерии содержат микрокапсулу - слизистое образова-ние, выявляемое лишь при электронной микроскопии.

Жгутики бактерий определяют подвижность клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, они прикреплены к цитоплазматической мембране и клеточной стенке специальными дисками, имеют большую длину, они состоят из белка - флагеллина, закрученного в виде спирали. Жгутики выяв-ляют с помощью электронного микроскопа.

Споры - своеобразная форма покоящихся грамположительных бактерий, образующихся во внешней среде при неблагопри-ятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.).

L-формы бактерий .

У многих бактерий при частичном или полном разрушении клеточных стенок образуются L-формы. У некоторых они возникают спонтанно. Обра-зование L-форм происходит под действием пенициллина, который нарушает синтез мукопептидов клеточной стен-ки. По морфологии L-формы разных видов бактерий сходны между собой. Они представляют шаровидные, образования различной величины: от 1-8 мкм до 250 нм, они способных, как и вирусы, прохо-дить через поры фарфоровых фильтров. Однако в отли-чие от вирусов L-формы можно выращивать на искусст-венных питательных средах, добавляя к ним пенициллин, сахара, лошадиную сыворотку. При удалении из пита-тельной среды пенициллина L-формы вновь превращают-ся в исходные формы бактерий.

В настоящее время получены L-формы протея, кишечной палочки, холерного вибриона, бруцелл, возбудителей газовой гангрены и столбняка и других микроорганизмов.

Грамположительные микроорганизмы (гр + м/о).

К ним относят : золотистый и эпидермальный стафилококк и стрептококк...

Место обитания : верхние дыхательные пути и кожа.

Резервуар : кожа, воздух, предметы ухода, мебель, постельные принадлежности, одежду.

При высушивании не погибают.

Размножение: вне человека не размножаются, но способны к размножению в продуктах питания при не правильном хранении.

Грамотрицательные микроорганизмы (гр - м /о).

К ним относят : кишечная палочка, клебсиелла, цитробактер, протей, синегнойная палочка...

Место обитания : кишечник, слизистая мочевыводящих и дыхательных путей…

Резервуар : влажная ветошь, щетки для мытья посуды, дыхательная аппаратура, влажные поверхности, лекарственные и слабые дез. растворы.

При высушивании погибают.

Размножение: накапливаются во внешней среде, в дез. растворах с заниженной концентрацией.

Передаются : воздушно-капельным и контактно-бытовым путем.

Бактерии — самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Поскольку это были первые представители живой природы, их тело имело примитивное строение.

Со временем их строение усложнилось, но и поныне бактерии считаются наиболее примитивными одноклеточными организмами. Интересно, что некоторые бактерии и сейчас ещё сохранили примитивные черты своих древних предков. Это наблюдается у бактерий, обитающих в горячих серных источниках и бескислородных илах на дне водоёмов.

Большинство бактерий бесцветно. Только немногие окрашены в пурпурный или в зелёный цвет. Но колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в окружающую среду или пигментированием клеток.

Первооткрывателем мира бактерий был Антоний Левенгук — голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп, увеличивающую предметы в 160-270 раз.

Бактерии относят к прокариотам и выделяют в отдельное царство — Бактерии.

Форма тела

Бактерии — многочисленные и разнообразные организмы. Они различаются по форме.

Название бактерии Форма бактерии Изображение бактерии
Кокки Шарообразная
Бацилла Палочковидная
Вибрион Изогнутая в виде запятой
Спирилла Спиралевидная
Стрептококки Цепочка из кокков
Стафилококки Грозди кокков
Диплококки Две круглые бактерии, заключённые в одной слизистой капсуле

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других — на двух или по всей поверхности.

Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

Место обитания

В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде: в капле даже самой чистой родниковой воды, в крупинках почвы, в воздухе, на скалах, в полярных снегах, песках пустынь, на дне океана, в добытой с огромной глубины нефти и даже в воде горячих источников с температурой около 80ºС. Обитают они на растениях, плодах, у различных животных и у человека в кишечнике, ротовой полости, на конечностях, на поверхности тела.

Бактерии — самые мелкие и самые многочисленные живые существа. Благодаря малым размерам они легко проникают в любые трещины, щели, поры. Очень выносливы и приспособлены к различным условиям существования. Переносят высушивание, сильные холода, нагревание до 90ºС, не теряя при этом жизнеспособность.

Практически нет места на Земле, где не встречались бы бактерии, но в разных количествах. Условия жизни бактерий разнообразны. Одним из них необходим кислород воздуха, другие в нём не нуждаются и способны жить в бескислородной среде.

В воздухе: бактерии поднимаются в верхние слои атмосферы до 30 км. и больше.

Особенно много их в почве. В 1 г. почвы могут содержаться сотни миллионов бактерий.

В воде: в поверхностных слоях воды открытых водоёмов. Полезные водные бактерии минерализуют органические остатки.

В живых организмах: болезнетворные бактерии попадают в организм из внешней среды, но лишь в благоприятных условиях вызываю заболевания. Симбиотические живут в органах пищеварения, помогая расщеплять и усваивать пищу, синтезируют витамины.

Внешнее строение

Клетка бактерии одета особой плотной оболочкой — клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи — капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула — не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Внутреннее строение

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота — ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

В центральной части клетки локализовано ядерное вещество — ДНК, не отграниченная от цитоплазмы мембраной. Это аналог ядра — нуклеоид. Нуклеоид не обладает мембраной, ядрышком и набором хромосом.

Способы питания

У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы — организмы, способные самостоятельно образовывать органические вещества для своего питания.

Растения нуждаются в азоте, но сами усваивают азот воздуха не могут. Некоторые бактерии соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

Корни дают бактериям углеводы, а бактерии корням — такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

Корни растений выделяют много органических веществ (сахара, аминокислоты и другие), которыми питаются бактерии. Поэтому в слое почвы, окружающем корни, поселяется особенно много бактерий. Эти бактерии превращают отмершие остатки растений в доступные для растения вещества. Этот слой почвы называют ризосферой.

Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня:

  • через повреждения эпидермальной и коровой ткани;
  • через корневые волоски;
  • только через молодую клеточную оболочку;
  • благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты;
  • благодаря стимуляции синтеза В-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений.

Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз:

  • инфицирование корневых волосков;
  • процесс образования клубеньков.

В большинстве случаев внедрившаяся клетка, активно размножается, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина.

Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные. К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Бактерии клубеньков создают десятки и сотни килограммов азотных удобрений на гектаре почвы.

Обмен веществ

Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода, у других — без его участия.

Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

Бактерии впитывают вещества извне, разрывают их молекулы на части, из этих частей собирают свою оболочку и пополняют своё содержимое (так они растут), а ненужные молекулы выбрасывают наружу. Оболочка и мембрана бактерии позволяет ей впитывать только нужные вещества.

Если бы оболочка и мембрана бактерии были полностью непроницаемыми, в клетку не попали бы никакие вещества. Если бы они были проницаемыми для всех веществ, содержимое клетки перемешалось бы со средой — раствором, в которой обитает бактерия. Для выживания бактерии необходима оболочка, которая нужные вещества пропускает, а ненужные — нет.

Бактерия поглощает находящиеся близ неё питательные вещества. Что происходит потом? Если она может самостоятельно передвигаться (двигая жгутик или выталкивая назад слизь), то она перемещается, пока не найдёт необходимые вещества.

Если она двигаться не может, то ждёт, пока диффузия (способность молекул одного вещества проникать в гущу молекул другого вещества) не принесёт к ней необходимые молекулы.

Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Превращая различные соединения, они получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий разнообразны.

Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счёт неорганических соединений. Они называются автотрофами. Автотрофные бактерии способны синтезировать органические вещества из неорганических. Среди них различают:

Хемосинтез

Использование лучистой энергии — важнейший, но не единственный путь создания органического вещества из углекислого газа и воды. Известны бактерии, которые в качестве источника энергии для такого синтеза используют не солнечный свет, а энергию химических связей, происходящих в клетках организмов при окислении некоторых неорганических соединений — сероводорода, серы, аммиака, водорода, азотной кислоты, закисных соединений железа и марганца. Образованное с использованием этой химической энергии органическое вещество они используют для построения клеток своего тела. Поэтому такой процесс называют хемосинтезом.

Важнейшую группу хемосинтезирующих микроорганизмов составляют нитрифицирующие бактерии. Эти бактерии живут в почве и осуществляют окисление аммиака, образовавшегося при гниении органических остатков, до азотной кислоты. Последняя, реагирует с минеральными соединениями почвы, превращаются в соли азотной кислоты. Этот процесс проходит в две фазы.

Железобактерии превращают закисное железо в окисное. Образованная гидроокись железа оседает и образует так называемую болотную железную руду.

Некоторые микроорганизмы существуют за счёт окисления молекулярного водорода, обеспечивая тем самым автотрофный способ питания.

Характерной особенностью водородных бактерий является способность переключаться на гетеротрофный образ жизни при обеспечении их органическими соединениями и отсутствии водорода.

Таким образом, хемоавтотрофы являются типичными автотрофами, так как самостоятельно синтезируют из неорганических веществ необходимые органические соединения, а не берут их в готовом виде от других организмов, как гетеротрофы. От фототрофных растений хемоавтотрофные бактерии отличаются полной независимостью от света как источника энергии.

Бактериальный фотосинтез

Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты — бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка — карбоновые кислоты), а у зелёных растений — вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

6СО 2 +12Н 2 S+hv → С6Н 12 О 6 +12S=6Н 2 О

Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.

Спорообразование

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий.

Споры — не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий — это приспособление к выживанию в неблагоприятных условиях.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес — 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Бактерия (1), поглотившая достаточно пищи, увеличивается в размерах (2) и начинает готовиться к размножению (делению клетки). Её ДНК (у бактерии молекула ДНК замкнута в кольцо) удваивается (бактерия производит копию этой молекулы). Обе молекулы ДНК (3,4) оказываются, прикреплены к стенке бактерии и при удлинении бактерии расходятся в стороны (5,6). Сначала делится нуклеотид, затем цитоплазма.

После расхождения двух молекул ДНК на бактерии появляется перетяжка, которая постепенно разделяет тело бактерии на две части, в каждой из которых есть молекула ДНК (7).

Бывает (у сенной палочки), две бактерии слипаются, и между ними образуется перемычка (1,2).

По перемычке ДНК из одной бактерии переправляется в другую (3). Оказавшись в одной бактерии, молекулы ДНК сплетаются, слипаются в некоторых местах (4), после чего обмениваются участками (5).

Роль бактерий в природе

Круговорот

Бактерии — важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Эти вещества возвращаются в почву с отмершими грибами, растениями и трупами животных. Бактерии разлагают сложные вещества на простые, которые снова используют растения.

Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

Почвообразование

Поскольку бактерии распространены практически повсеместно и встречаются в огромном количестве, они во многом определяют различные процессы, происходящие в природе. Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

Некоторые почвенные бактерии способны поглощать азот из воздуха, используя его в процессах жизнедеятельности. Эти азотофиксирующие бактерии живут самостоятельно или поселяются в корнях бобовых растений. Проникнув в корни бобовых, эти бактерии вызывают разрастание клеток корней и образование на них клубеньков.

Эти бактерии выделяют азотные соединения, которые используют растения. От растений бактерии получают углеводы и минеральные соли. Таким образом, между бобовым растением и клубеньковыми бактериями существует тесная связь, полезная как одному, так и другому организму. Это явление носит название симбиоза.

Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

Распространение в природе

Микроорганизмы распространены повсеместно. Исключение составляют лишь кратеры действующих вулканов и небольшие площадки в эпицентрах взорванных атомных бомб. Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жёсткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы — аборигены нашей планеты, активно осваивающие самые невероятные природные субстраты.

Микрофлора почвы

Количество бактерий в почве чрезвычайно велико — сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв.

На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.

Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора — один из факторов образования почв.

Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов

Вода — природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается.

Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая — 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные.

По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха

Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека

Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками — прекрасная среда для развития микроорганизмов.

Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре.

Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Бактерии в круговороте веществ

Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным. Различные этапы круговорота элементов осуществляются организмами разного типа. Существование каждой отдельной группы организмов зависит от химического превращения элементов, осуществляемого другими группами.

Круговорот азота

Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Свыше 90% общей фиксации азота обусловлено метаболической активностью определённых бактерий.

Круговорот углерода

Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии осуществляют полное окисление органических веществ. В аэробных условиях органические соединения первоначально расщепляются путём сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода (нитрат, сульфат или СО 2).

Круговорот серы

Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

Круговорот железа

В некоторых водоёмах с пресной водой содержатся в высоких концентрациях восстановленные соли железа. В таких местах развивается специфическая бактериальная микрофлора — железобактерии, окисляющие восстановленное железо. Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа.

Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они - первые организмы, появившиеся на Земле.

Бактерии представляют собой одноклеточные организмы, лишенные хлорофилла. Эта группа микроорганизмов наиболее многочисленна, широко распространена в природе и хорошо изучена. Среди бактерий имеется значительное число возбудителей инфекционных заболеваний человека и животных.

Форма и размеры бактерий. По форме клеток бактерии разделяются на шаровидные — кокки; палочковидные или цилиндрические — собственно бактерии; извитые— вибрионы и спириллы. Между основными формами имеются переходные. Различные формы бактерий показаны на рис. 1.

Кокки (от греч. coccus— зерно, ягода) различаются между собой в зависимости от расположения клеток после их деления. Одиночные кокки называются микрококками (рис. 1,1), парные — диплококками. Если кокки после деления не расходятся, а образуют цепочку, их называют стрептококками (рис. 1,3). Все эти кокки делятся только в одной плоскости. При делении в двух взаимно перпендикулярных плоскостях могут образоваться сочетания из четырех кокков — тетракокки (рис. 1,6), а при делении в трех взаимно перпендикулярных плоскостях — сарцины (от лат. sarcio — связывать; рис. 1,7), состоящие из 8—16 клеток. Если деление происходит без определенного порядка, кокки остаются вместе и образуют скопления, напоминающие грозди винограда, — стафилококки (рис.1,2). Обычно размеры кокков достигают 1—1,5 мкм.

Среди кокков имеются возбудители различных заболеваний человека: диплококки-пневмококки (рис. 1,5), мейингококки и гонококки (рис. 1,4) вызывают соответственно воспаление легких, менингит и гонорею; стафилококки и стрептококки — различные гнойные заболевания человека и животных. Многие кокки являются обитателями различных полостей и кожи человека и широко распространены во внешней среде.

Палочковидные бактерии (от греч. bacteria— палочка) имеют цилиндрическую форму и обычно располагаются одиночно (рис. 1,8—9), но иногда попарно (диплобактерии) или в виде цепочек (стрептобактерии). Палочки могут быть прямыми, слегка изогнутыми и веретенообразными; размеры их достигают 1—5x0,5— 1 мкм. Палочки, не образующие спор, называют бактериями, а спорообразующие — бациллами (аэробы) и клостридиями (анаэробы). Под воздействием различных факторов форма и величина бактерий могут меняться. Способность бактерий изменять свою форму и величину называется полиморфизмом.

Среди бактерий много возбудителей инфекционных заболеваний: чумы, сибирской язвы, бруцеллеза, столбняка, газовой гангрены, дифтерии, кишечных инфекций.

Извитые формы бактерий имеют вид спирали, состоящей из нескольких завитков. Среди них различают вибрионы, имеющие один завиток (рис. 1, 10), и спириллы с 2—3 завитками (рис. 1, 11).

Вибрионы — слабоизогнутые клетки, напоминающие запятую, длиной 1—3 мкм, очень подвижные за счет жгутика, расположенного на конце клетки. Среди вибрионов наибольшее значение имеет возбудитель холеры.
Спириллы — безвредные микроорганизмы, живущие в сточных или загрязненных водах, гниющих отбросах. Только Spirillum minus вызывает у человека болезнь укуса крысы—содоку.

Структура бактерий. Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны и цитоплазмы, которая содержит ядерное вещество, различные органеллы и включения. Кроме того, у многих бактерий имеются капсула и слизистый слой, жгутики и пили (рис. 2).


Клеточная стенка. Оболочка, которая отделяет микробную клетку от окружающей среды, определяет и сохраняет ее форму, получила название клеточной стенки (рис. 3). Она характеризуется прочностью, эластичностью и гибкостью. Клеточная стенка выполняет жизненно важную функцию: предохраняет клетку от осмотического лизиса, так как давление внутри клетки в цитоплазме выше, чем в окружающей среде. Обладая избирательной проницаемостью, клеточная стенка обеспечивает прохождение внутрь клетки различных веществ и выведение наружу продуктов обмена. Через клеточную стенку легко проникают вода, глюкоза, аминокислоты, жирные кислоты, имеющие молекулы небольших размеров. Более крупные молекулы органических веществ не могут проникнуть внутрь клетки без предварительного расщепления их на более мелкие с помощью ферментов, выделяемых клеткой.

Клеточная стенка бактерий имеет сложную структуру и построена из компонентов двух типов. Прочность и твердость клеточной стенке придает сеть микрофибрилл, которая погружена в содержимое — матрикс. Микрофибриллы являются гликопептидами (пептидогликаны, или муреины). Слой гликопептидов определяет и сохраняет форму бактериальной клетки. Структура и химический состав клеточных стенок грамположительных и грамотрицательных бактерий различны.

Клеточная стенка грамположительных бактерий имеет наиболее простое строение. Структура ее однородна, она толще (10—15 нм), чем клеточная стенка грамотрицательных бактерий. Основная масса клеточной стенки — гликопептиды (до 90%). Сеть микрофибрилл погружена в матрикс, содержащий полисахариды (до 90%) и тейхоевые кислоты. Белки обычно отсутствуют, а липиды составляют всего 2,5%. Однако некоторые грамположительные бактерии, например коринебактерии и микобактерии, содержат в клеточной стенке большое количество липидов.

Клеточная стенка грамотрицательных бактерий имеет сложное строение и по химическому составу значительно отличается от клеточных стенок грамположительных бактерий. Внутренний слой клеточной стенки — тонкий мешочек молекул гликопептида, состоящий из одного или двух молекулярных слоев (2—3 нм). Поверх него лежит широкий внешний слой (7—8 нм) из неплотно упакованных молекул белка и фосфолипидов, над которым располагается третий слой — липополисахариды. Возможна и другая структура внешнего слоя клеточной стенки: в двойной слой фосфолипидов включены белки и липополисахариды.

В клеточной стенке этих бактерий много липидов (до 25%), белка и полисахаридов.

Цитоплазматическая мембрана. Непосредственно под клеточной стенкой расположена цитоплазматическая мембрана, очень плотно прилегающая к ней (рис.4). Цитоплазматическая мембрана имеет большое значение в жизни клетки. Она действует как осмотический барьер, концентрируя внутри клетки питательные вещества и способствуя выведению продуктов обмена. Через нее проходят частицы, имеющие молекулы небольших размеров (фрагменты ДНК, белки с низкой молекулярной массой— внеклеточные ферменты). Белки цитоплазматической мембраны — пермеазы выполняют функцию транспорта — переноса органических и неорганических веществ в клетку. Дитоплазматическая мембрана является местом биосинтеза некоторых составных частей клетки, принимает участие в процессах деления бактерий. На внутренней поверхности ее находятся специальные участки, к которым прикрепляется ДНК в процессе ее удвоения (репликации). Рост мембраны обеспечивает разделение генома клетки после завершения процесса репликации. У аэробных бактерий в цитоплазматической мембране находится цепочка переноса электронов, обеспечивающих энергетический обмен клетки.

Цитоплазматическая мембрана очень тонка (не более 8—10 нм). На электронных микрофотографиях она видна как двойная линия, разделенная светлым промежутком (трехслойная). Более половины массы цитоплазматической мембраны составляют белки и 20—30% — фосфолипиды. Цитоплазматическая мембрана бактерий имеет структуру элементарной биологической мембраны — двойного слоя фосфолипидов, на поверхности которых расположены белки.
При некоторых воздействиях на бактериальную клетку, например при помещении ее в гипертонический раствор хлорида натрия, мембрана может отделиться от клеточной стенки и стать хорошо видимой (см. рис. 3).

Цитоплазма. Содержимое бактериальной клетки — ограниченное цитоплазматической мембраной прозрачное, слегка вязкое вещество жидкой консистенции. Цитоплазма клеток бактерий является коллоидальной системой, состоящей из воды, протеинов, жиров, углеводов, различных минеральных и других веществ, соотношения которых варьируют в зависимости от вида бактерий и возраста клетки.
В цитоплазме бактерии находятся ядро клетки — нуклеоид, рибосомы, мезосомы, а также различные гранулы запасных питательных веществ, пигменты, жиры.

Нуклеоид. Содержит ДНК, которая связана с небольшим количеством специфического основного белка— гистона (нуклеопротеид) и является хранителем наследственной информации в клетке. В отличие от ядер других микроорганизмов, например простейших, нуклеоид бактерий не имеет ясно выраженной мембраны, ограничивающей его от остальной части цитоплазмы (см. рис. 4). Молекула ДНК по схеме, предложенной в 1953 г. Уотсоном и Криком, состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой наподобие винтовой лестницы (рис. 5). Наружную поверхность такой двойной спирали образует сахар — дезоксирибоза (С), которая чередуется с остатками фосфорной кислоты (Ф). Внутри спирали перпендикулярно к ее оси, как ступеньки лестницы, расположены плоские молекулы азотистых оснований: пурины — аденин (А), гуанин (Г) и пиримидины — тимин (Т), цитозин (Ц). Каждый пурин вследствие своей химической структуры обязательно соединен с пиримидином, поэтому нить ДНК имеет равномерную толщину, около 0,2 нм, на всем протяжении. Длина молекулы ДНК может быть в сотни миллионов раз больше. Например, общая длина хромосомы кишечной палочки 1— 1,4 мм.Пурины и пиримидины соединены между собой водородными связями, которые легко разрываются. Каждое азотистое основание прикреплено только к сахару наружной цепи — дезоксирибозе. Дезоксирибоза, фосфат и азотистое основание образуют один мономер ДНК, называемый нуклеотидом (Н). Для ДНК многих бактерий характерна кольцевая структура в виде замкнутого кольца. У большинства прокариотов только одна бактериальная хромосома.

Рибосомы. Помимо ДНК, в клетке есть вторая нуклеиновая кислота — рибонуклеиновая (РНК), которая в отличие от ДНК состоит из одной цепи, имеет сахар рибозу вместо дезоксирибозы и урацил вместо тимина. Основная масса РНК связана с белком в форме маленьких частиц, или рибосом, которые являются центрами синтеза белка. Рибосомы образуют большие агрегаты, называемые полирибосомами, или полисомами, состоящими из 7—8 рибосом и более. Химический состав рибосом: 40—60% РНК и 60—40% белка. У бактерий рибосомы свободно лежат в цитоплазме. Количество их в каждой клетке может быть более 100. Помимо рибосомальной РНК (рРНК), в цитоплазме бактерии находится еще информационная РНК (иРНК, или мРНК). Она осуществляет функцию переноса генетической информации от ДНК к полисомам. У кишечной палочки она составляет 2— 4 % от всей РНК. Третья рибонуклеиновая кислота — транспортная (тРНК)—выполняет функцию транспортировки в рибосомы аминокислот, необходимых для синтеза белка.

Мезосомы. У некоторых бацилл из цитоплазматической мембраны возникают сферические, закрученные в завиток структуры — так называемые мезосомы. Функция их пока не совсем ясна. Возможно, они участвуют в процессе деления клетки или в окислительно-восстановительных процессах, выполняя роль митохондрий.

Гранулы. В цитоплазме бактерий находятся различные гранулы, многие из которых содержат запасные питательные вещества. Источником углерода или энергии служат гранулы безазотистых органических веществ — полисахариды, состоящие из молекул глюкозы. Одни гранулы состоят из крахмала и окрашиваются йодом в синий цвет (иогены или гранулеза), другие содержат гликоген и окрашиваются йодом в красновато-коричневый цвет. Сернистые бактерии накапливают в цитоплазме капельки серы, некоторые бактерии синтезируют и накапливают липидные включения, которые видны в форме мелких капель благодаря большой степени их преломления.

У некоторых микробов в цитоплазме находятся зерна волютина, впервые обнаруженные у спирилл (Spirillum volutans). Они являются запасными питательными веществами, состоящими из неорганических полифосфатов и соединений, близких к нуклеиновым кислотам. Волютин в виде крупных гранул накапливается в цитоплазме бактерий при выращивании их на средах, содержащих углеводы. Зерна волютина при окраске их метиленовым синим обнаруживают явления метахромазии: синяя краска придает им ярко-красный цвет. У некоторых бактерий, например коринебактерий, обнаружение зерен волютина является ценным диагностическим признаком.

Капсула и слизистый слой. У многих бактерий с наружной стороны клеточной стенки расположен диффузный гомогенный слизистый слой различной толщины (см. рис. 2,1). Этот слой можно выявить при определенных способах окраски или соответствующем освещении.

Капсулой называют слой, который сохраняет тесную связь с клеточной стенкой и служит внешним покровом клетки. Толщина его ограничена, и капсула четко выявляется при негативном окрашивании по методу Гинса: на темном фоне препарата видна окрашенная в красный цвет бактериальная клетка, окруженная бесцветной капсулой. Толщина капсул у бактерий различна: от долей микрометра до 10 мкм. Капсулу величиной менее 0,2 мкм часто называют микрокапсулой. Поверхностные структуры типа капсул описаны у пневмококков, возбудителей сибирской язвы, коклюша, гонореи, группы капсульных бактерий — клебсиелл. У многих видов бактерий капсула появляется лишь при определенных условиях, часто неблагоприятных. Возбудители сибирской язвы, коклюша, гонореи, пневмококки образуют капсулу, попадая в организм человека или животного. В этом случае капсула выполняет защитную роль, предохраняя микроб от действия антител, фагоцитов и других защитных факторов организма. Группа капсульных бактерий сохраняет капсулу постоянно: и в организме человека, и пр,и культивировании на питательных средах. Химический состав капсул зависит от вида бактерий. Основными компонентами капсулы являются вода (до 98%) и полисахариды. В капсуле сибиреязвенных бацилл найдены полипептиды, а в капсуле стрептококка — белок М.

Слизистые слои, образующиеся вокруг поверхности некоторых бактерий, отличаются от капсул более рыхлым строением, толщиной, способностью частично отделяться от образовавшей их клетки. Материал, составляющий слизистый слой, часто обнаруживают в питательной среде, в которой культивируют микроорганизмы.

Защитные функции капсулы разнообразны. Помимо предохранения микроба от действия защитных факторов макроорганизма, капсула предохраняет микроб от притока в клетку большого количества жидкости (осмотический барьер), а также от высыхания при неблагоприятных условиях среды обитания.

Жгутики. Некоторые бактерии обладают подвижностью, которая осуществляется с помощью жгутиков. Число и расположение жгутиков являются характерным видовым признаком бактерий, который используют для дифференциации микроорганизмов. По расположению и числу жгутиков различают бактерии: монотрихи, имеющие один жгутик на одном из полюсов клетки; амфитрихи, у которых на каждом полюсе расположено по одному жгутику; лофотрихи — с пучком жгутиков на одном полюсе (сюда же относят бактерии, которые имеют пучки жгутиков на обоих полюсах), и перитрих и, жгутики у которых расположены по всей поверхности тела (рис. 6).

Жгутики представляют собой тонкие, спиральные, нитевидные фибриллы толщиной 12—18 нм. Длина жгутика может в 10 раз превышать длину самой бактерии. Жгутик отходит от специального образования — базального тельца, расположенного в цитоплазме на внутренней поверхности цитоплазматической мембраны (рис. 7). Базальное тельце имеет сложное строение, в нем находится механизм в виде двух кольцевых пластинок, вращение которых относительно друг друга сообщает движение жгутику.


Жгугики бактерий — белковые нити, состоящие из белка флагеллина, белковые мономеры которого собраны в спиральные цепи, закрученные вокруг полой сердцевины. При движении жгутик вращается вокруг своей длинной оси по или против часовой стрелки. Движение бактерий можно увидеть при исследовании их в живом состоянии с помощью метода висячей или раздавленной капли и при использовании специальных способов окраски в световом микроскопе. Скорость активного движения с помощью жгутиков у некоторых бактерий очень велика: за 1 с они могут пересечь расстояние, в 20 раз превышающее их длину. Механическое удаление приводит к потере подвижности бактерий, но не препятствует их росту и размножению.

Пили (ворсинки). Прямые нитевидные образования, обнаруженные у сальмонелл, эшерихий, протея, называют ворсинками, а также бахромками, фимбриями, ресничками, пилями (рис. 8). Пили тоньше жгутиков бактерий и короче их; состоят из особого белка пилина, мономеры которого, как и у жгутиков, расположены по спирали. Пили различаются по диаметру и длине; толщина пилёй может быть от 4—10 до 35 нм. Количество пил ей на одну бактериальную клетку может достигать нескольких сотен. Пили обеспечивают способность бактерий к прилипанию (адгезия) друг к другу или к субстрату, например к эпителиальным клеткам слизистой оболочки кишечника.


Некоторые пили, например F-ворсинки, выполняют половые функции у бактерий. Они обеспечивают передачу наследственного материала (ДНК) из одной бактериальной клетки в другую, образуя мостик между двумя клетками. Эти ворсинки шире и длиннее остальных и на конце имеют шаровидное утолщение.

Споры. Некоторые бактерии, попадая в неблагоприятные условия существования, образуют внутри тела спору (эндоспора). Эндоспора представляет собой внутриклеточное, сильно преломляющее свет образование, устойчивое (резистентное) к различным вредным факторам внешней среды: высыханию, действию высоких температур, химических и дезинфицирующих веществ (рис. 9).

Спорообразование свойственно преимущественно палочковидным формам бактерий: бациллам и клостридиям. У бактерий других видов оно встречается очень редко. Споры имеют сферическую, овальную или эллипсоидную форму. Диаметр споры обычно равен диаметру клетки, в которой она образуется, или несколько превышает его, а длина споры составляет 1/4-1/3 длины клетки бактерии. Размер и положение внутри бактериальной клетки зависят от вида, возраста и условий выращивания бактерий. Споры могут располагаться в центре клетки — центрально (рис. 9,1), как, например, у возбудителя сибирской язвы; ближе к концу — субтерминально, у возбудителя газовой гангрены (рис. 9,3); на самом конце — терминально, у возбудителя столбняка и ботулизма (рис. 9,2). Форма и расположение споры в бактериальной клетке могут быть отличительными признаками некоторых возбудителей: например, столбнячная палочка имеет круглую спору, расположенную на конце бактерии, и похожа на барабанную палочку, а ботулиническая палочка — овальную спору также на конце бактериальной клетки и напоминает теннисную ракетку. Созревшая спора имеет сложную структуру.

Процесс спорообразования происходит при попадании бактерии в неблагоприятные условия (недостаток питательных веществ, воды, большое содержание кислорода, действие высоких и низких температур и т. д.). Спорообразование начинается с появления «спорогенной зоны»: в бактериальной клетке образуется уплотненный участок, где наблюдается обособление ядерного материала и части цитоплазмы с помощью тонкой перегородки. По мере развития и созревания споры закладываются ее стенки, число и толщина которых варьируют у разных видов бактерий (стадия проспоры). Затем проспора уплотняется, уменьшается в объеме, превращается в зрелую спору, которая окружена плотной многослойной оболочкой, состоящей в основном из белков, липидов и гликопептидов. Весь процесс спорообразования длится 18—24 ч. По химическому составу споры отличаются высоким содержанием липидов, солей кальция; вода в споре находится в связанном с другими соединениями состоянии. Эти особенности спор и обусловливают их высокую устойчивость к различным факторам: кипячению, действию высоких и низких температур, высушиванию, ультрафиолетовому облучению и т. д. При попадании в благоприятные условия существования (наличие питательных веществ, достаточной влажности и оптимальной температуры) спора прорастает в вегетативную форму: она набухает, в оболочке появляется отверстие, через которое вытягивается росток, превращающийся затем в палочку. Весь процесс длится 4—5 ч.

Одной клетке соответствует только одна спора, поэтому спорообразование у бактерий не связано с процессом размножения, как у грибов, а является лишь способом переживания в неблагоприятных условиях внешней среды.

Спорообразующие микробы широко распространены в почве, воздухе, сохраняясь там десятки лет. Среди них встречаются патогенные виды — бациллы сибирской язвы, возбудители газовой гангрены, столбняка и ботулизма.

Сферопласты и протопласты. Бактериальная клетка в определенных условиях может быть лишена клеточной стенки. Эту стенку можно разрушить действием лизоцима или пенициллина, который нарушает синтез гликопептидов. Бактерии, целиком лишенные клеточной стенки, называются протопластами, а при сохранении небольших участков ее—сферопластами. Эти образования покрыты тонкой и нежной цитоплазматической мембраной и имеют сферическую форму. Цитоплазматическая мембрана неспособна сдержать высокое осмотическое давление цитоплазмы, поэтому для сохранения жизнеспособности сферопласты и протопласты помещают в специально осмотически уравновешенные среды, содержащие 5—20% сахарозы и сыворотку лошади. В этих средах они сохраняют округлую форму, а некоторые —даже жгутики. Однако такие протопласты неподвижны вследствие нарушения у них механизмов, управляющих движением жгутиков. Спустя некоторое время после хранения сферопластов и протопластов в растворах сахарозы они начинают разрушаться (лизируются) и в среде появляются мелкие зерна и пустые пузырьки — «тени» протопластов. При определенных условиях сферопласты, частично сохраняющие клеточную стенку, могут размножаться на плотных питательных средах и реверсировать (возвращаться) в исходные формы, что сближает их с нестабильными L-формами бактерий типа В.

L-формы бактерий. При частичном или полном разрушении клеточных стенок многие виды бактерий могут образовывать L-формы. Впервые они были обнаружены Клинебергер-Нобель в 1935 г. Название их происходит от первой буквы института Листера (L), в котором они были открыты.

Характерным для L-форм бактерий является их сходство с микроорганизмами группы плевропневмонии крупного рогатого скота (PPLO), которые отнесены в настоящее время к микоплазмам. Однако L-формы отличает от микоплазм то, что им несвойственна потребность в питательных веществах, в которых нуждаются микоплазмы. Генетически L-формы идентичны исходным формам, из которых они получены. У некоторых из них частично сохранена клеточная стенка (L-формы типа В), поэтому они могут превращаться в исходные формы бактерий. Образование L-форм происходит под «действием пенициллина, который нарушает синтез мукопептидов клеточной стенки. Иногда эти формы возникают спонтанно.

По морфологии L-формы разных видов бактерий и других микроорганизмов (трепонемы, дрожжи) сходны между собой. Они представляют шаровидные, вакуолизи- рованные образования величиной от 1—8 мкм до мельчайших— 250 нм, способных, как и вирусы, проходить через поры фарфоровых фильтров. Однако в отличие от вирусов L-формы можно выращивать на искусственных питательных средах, добавляя к ним пенициллин, сахара, лошадиную сыворотку. При удалении из такой среды пенициллина L-формы (тип В) вновь превращаются в. исходные формы бактерий. Этот процесс называется реверсией. Однако существуют стабильные L-формы бактерий (тип А), возвращение которых к исходной форме затруднено или невозможно. В настоящее время получены L-формы протея, кишечной палочки, холерного вибриона, бруцелл, возбудителей газовой гангрены, столбняка и других микроорганизмов.