Формула Бернулли - формула в теории вероятностей , позволяющая находить вероятность появления события A {\displaystyle A} при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли , который вывел эту формулу.

Энциклопедичный YouTube

    1 / 3

    ✪ Теория вероятностей. 22. Формула Бернулли. Решение задач

    ✪ Формула Бернулли

    ✪ 20 Повторение испытаний Формула Бернулли

    Субтитры

Формулировка

Теорема. Если вероятность p {\displaystyle p} наступления события A {\displaystyle A} в каждом испытании постоянна, то вероятность P k , n {\displaystyle P_{k,n}} того, что событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз в n {\displaystyle n} независимых испытаниях, равна: P k , n = C n k ⋅ p k ⋅ q n − k {\displaystyle P_{k,n}=C_{n}^{k}\cdot p^{k}\cdot q^{n-k}} , где q = 1 − p {\displaystyle q=1-p} .

Доказательство

Пусть проводится n {\displaystyle n} независимых испытаний, причём известно, что в результате каждого испытания событие A {\displaystyle A} наступает с вероятностью P (A) = p {\displaystyle P\left(A\right)=p} и, следовательно, не наступает с вероятностью P (A ¯) = 1 − p = q {\displaystyle P\left({\bar {A}}\right)=1-p=q} . Пусть, так же, в ходе испытаний вероятности p {\displaystyle p} и q {\displaystyle q} остаются неизменными. Какова вероятность того, что в результате n {\displaystyle n} независимых испытаний, событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз?

Оказывается можно точно подсчитать число "удачных" комбинаций исходов испытаний, для которых событие A {\displaystyle A} наступает k {\displaystyle k} раз в n {\displaystyle n} независимых испытаниях, - в точности это количество сочетаний из  n {\displaystyle n}  по  k {\displaystyle k} :

C n (k) = n ! k ! (n − k) ! {\displaystyle C_{n}(k)={\frac {n!}{k!\left(n-k\right)!}}} .

В то же время, так как все испытания независимы и их исходы несовместимы (событие A {\displaystyle A} либо наступает, либо нет), то вероятность получения "удачной" комбинации в точности равна: .

Окончательно, для того чтобы найти вероятность того, что в n {\displaystyle n} независимых испытаниях событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз, нужно сложить вероятности получения всех "удачных" комбинаций. Вероятности получения всех "удачных" комбинаций одинаковы и равны p k ⋅ q n − k {\displaystyle p^{k}\cdot q^{n-k}} , количество "удачных" комбинаций равно C n (k) {\displaystyle C_{n}(k)} , поэтому окончательно получаем:

P k , n = C n k ⋅ p k ⋅ q n − k = C n k ⋅ p k ⋅ (1 − p) n − k {\displaystyle P_{k,n}=C_{n}^{k}\cdot p^{k}\cdot q^{n-k}=C_{n}^{k}\cdot p^{k}\cdot (1-p)^{n-k}} .

Последнее выражение есть не что иное, как Формула Бернулли. Полезно также заметить, что в силу полноты группы событий, будет справедливо:

∑ k = 0 n (P k , n) = 1 {\displaystyle \sum _{k=0}^{n}(P_{k,n})=1} .

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли .

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода : либо появится событие А , либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события $А$ в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события $А$ в единичном испытании буквой $р$, т.е. $p=P(A)$, а вероятность противоположного события (событие $А$ не наступило) - буквой $q=P(\overline{A})=1-p$.

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражается формулой Бернулли

$$P_n(k)=C_n^k \cdot p^k \cdot q^{n-k}, \quad q=1-p.$$

Распределение числа успехов (появлений события) носит название биномиального распределения .

Онлайн-калькуляторы на формулу Бернулли

Некоторые наиболее популярные типы задач, в которых используется формула Бернулли, разобраны в статьях и снабжены онлайн-калькулятором, вы можете перейти к ним по ссылкам:

Примеры решений задач на формулу Бернулли

Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А – достали белый шар. Тогда вероятности
, .
По формуле Бернулли требуемая вероятность равна
.

Пример. Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки
, тогда .

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:

, ,

, .

Следовательно, искомая вероятность

.

Пример. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.

Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - «появление нестандартной детали», его вероятность , тогда . Отсюда по формуле Бернулли находим
.

Пример. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.

Решение. Вычисляем по формуле Бернулли:

Пример. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n ³ k), если в каждом из них .

Решение. Событие В – ровно n испытаний до k -го появления события А – есть произведение двух следующий событий:

D – в n -ом испытании А произошло;

С – в первых (n–1) -ом испытаниях А появилось (к-1) раз.

Краткая теория

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли , которые характеризуются двумя условиями:

1) результатом каждого испытания является один из двух возможных исходов, называемых соответственно «успехом» или «неудачей».

2) вероятность «успеха», в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Теорема Бернулли

Если производится серия из независимых испытаний Бернулли, в каждом из которых «успех» появляется с вероятностью , то вероятность того, что «успех» в испытаниях появится ровно раз, выражается формулой:

где – вероятность «неудачи».

– число сочетаний элементов по (см. основные формулы комбинаторики)

Эта формула называется формулой Бернулли .

Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний.

Схему испытаний Бернулли называют также биномиальной схемой , а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Распределение по схеме Бернулли позволяет, в частности, найти наивероятнейшее число наступления события .

Если число испытаний n велико, то пользуются:

Пример решения задачи

Условие задачи

Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Решение задачи

Воспользуемся формулой Бернулли:

В нашем случае

Пусть событие – из 10 семян взойдут 8:

Пусть событие – взойдет по крайней мере 8 (это значит 8, 9 или 10)

Пусть событие – взойдет не менее 8 (это значит 8,9 или 10)

Ответ

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А .

В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну и ту же вероятность.

Ниже воспользуемся понятием сложного события, понимая под ним совмещение нескольких отдельных событий, которые называют простыми .

Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события A в каждом испытании одна и та же, а именно равна р . Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна q = 1 - p .

Поставим перед собой задачу вычислить вероятность того, что при n испытаниях событие А осуществится ровно k раз и, следовательно, не осуществится n - k раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности.

Например, если речь идет о появлении события А три раза в четырех испытаниях, то возможны следующие сложные события: ААА, ААА, ААА, ААА . Запись ААА означает, что в первом, втором и третьем испытаниях событие А наступило, а в четвертом испытании оно не появилось, т.е. наступило противоположное событие А; соответственный смысл имеют и другие записи.

Искомую вероятность обозначим Р п (k) . Например, символ Р 5 (3) означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.

Поставленную задачу можно решить с помощью так называемой формулы Бернулли.

Вывод формулы Бернулли . Вероятность одного сложного события, состоящего в том, что в п испытаниях событие А наступит k раз и не наступит п - k раз, по теореме умножения вероятностей независимых событий равна p k q n - k . Таких сложных событий может быть столько, сколько можно составить сочетаний из п элементов по k элементов, т.е. С n k .

Так как эти сложные события несовместны , то по теореме сложения вероятностей несовместных событий искомая вероятность равна сумме вероятностей всех возможных сложных событий . Поскольку же вероятности всех этих сложных событий одинаковы, то искомая вероятность (появления k раз события А в п испытаниях) равна вероятности одного сложного события, умноженной на их число:

Полученную формулу называют формулой Бернулли .

Пример 1 . Вероятность того, что расход электроэнергии в течение одних суток не превысит установленной нормы, равна р = 0,75 . Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.


Решение . Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равна р = 0,75 . Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q = 1 - р = 1 - 0,75 = 0,25.

Искомая вероятность по формуле Бернулли равна:


Определение повторных независимых испытаний. Формулы Бернулли для вычисления вероятности и наивероятнейшего числа. Асимптотические формулы для формулы Бернулли (локальная и интегральная, теоремы Лапласа). Использование интегральной теоремы. Формула Пуассона, для маловероятных случайных событий.

Повторные независимые испытания

На практике приходится сталкиваться с такими задачами, которые можно представить в виде многократно повторяющихся испытаний, в результате каждого из которых может появиться или не появиться событие A . При этом интерес представляет исход не каждого "отдельного испытания, а общее количество появлений события A в результате определенного количества испытаний. В подобных задачах нужно уметь определять вероятность любого числа m появлений события A в результате n испытаний. Рассмотрим случай, когда испытания являются независимыми и вероятность появления события A в каждом испытании постоянна. Такие испытания называются повторными независимыми.

Примером независимых испытаний может служить проверка на годность изделий, взятых по одному из ряда партий. Если в этих партиях процент брака одинаков, то вероятность того, что отобранное изделие будет бракованным, в каждом случае является постоянным числом.

Формула Бернулли

Воспользуемся понятием сложного события , под которым подразумевается совмещение нескольких элементарных событий, состоящих в появлении или непоявлении события A в i –м испытании. Пусть проводится n независимых испытаний, в каждом из которых событие A может либо появиться с вероятностью p , либо не появиться с вероятностью q=1-p . Рассмотрим событие B_m , состоящее в том, что событие A в этих n испытаниях наступит ровно m раз и, следовательно, не наступит ровно (n-m) раз. Обозначим A_i~(i=1,2,\ldots,{n}) появление события A , a \overline{A}_i - непоявление события A в i –м испытании. В силу постоянства условий испытания имеем

Событие A может появиться m раз в разных последовательностях или комбинациях, чередуясь с противоположным событием \overline{A} . Число возможных комбинаций такого рода равно числу сочетаний из n элементов по m , т. е. C_n^m . Следовательно, событие B_m можно представить в виде суммы сложных несовместных между собой событий, причем число слагаемых равно C_n^m :

B_m=A_1A_2\cdots{A_m}\overline{A}_{m+1}\cdots\overline{A}_n+\cdots+\overline{A}_1\overline{A}_2\cdots\overline{A}_{n-m}A_{n-m+1}\cdots{A_n},


где в каждое произведение событие A входит m раз, а \overline{A} - (n-m) раз.

Вероятность каждого сложного события, входящего в формулу (3.1), по теореме умножения вероятностей для независимых событий равна p^{m}q^{n-m} . Так как общее количество таких событий равно C_n^m , то, используя теорему сложения вероятностей для несовместных событий, получаем вероятность события B_m (обозначим ее P_{m,n} )

P_{m,n}=C_n^mp^{m}q^{n-m}\quad \text{or}\quad P_{m,n}=\frac{n!}{m!(n-m)!}p^{m}q^{n-m}.

Формулу (3.2) называют формулой Бернулли , а повторяющиеся испытания, удовлетворяющие условию независимости и постоянства вероятностей появления в каждом из них события A , называют испытаниями Бернулли , или схемой Бернулли .

Пример 1. Вероятность выхода за границы поля допуска при обработке деталей на токарном станке равна 0,07. Определить вероятность того, что из пяти наудачу отобранных в течение смены деталей у одной размеры диаметра не соответствуют заданному допуску.

Решение. Условие задачи удовлетворяет требования схемы Бернулли. Поэтому, полагая n=5,\,m=1,\,p=0,\!07 , по формуле (3.2) получаем

P_{1,5}=C_5^1(0,\!07)^{1}(0,\!93)^{5-1}\approx0,\!262.

Пример 2. Наблюдениями установлено, что в некоторой местности в сентябре бывает 12 дождливых дней. Какова вероятность того, что из случайно взятых в этом месяце 8 дней 3 дня окажутся дождливыми?

Решение.

P_{3;8}=C_8^3{\left(\frac{12}{30}\right)\!}^3{\left(1-\frac{12}{30}\right)\!}^{8-3}=\frac{8!}{3!(8-3)!}{\left(\frac{2}{5}\right)\!}^3{\left(\frac{3}{5}\right)\!}^5=56\cdot\frac{8}{125}\cdot\frac{243}{3125}=\frac{108\,864}{390\,625}\approx0,\!2787.

Наивероятнейшее число появлений события

Наивероятнейшим числом появления события A в n независимых испытаниях называется такое число m_0 , для которого вероятность, соответствующая этому числу, превышает или, по крайней мере, не меньше вероятности каждого из остальных возможных чисел появления события A . Для определения наивероятнейшего числа не обязательно вычислять вероятности возможных чисел появлений события, достаточно знать число испытаний n и вероятность появления события A в отдельном испытании. Обозначим P_{m_0,n} вероятность, соответствующую наивероятнейшему числу m_0 . Используя формулу (3.2), записываем

P_{m_0,n}=C_n^{m_0}p^{m_0}q^{n-m_0}=\frac{n!}{m_0!(n-m_0)!}p^{m_0}q^{n-m_0}.

Согласно определению наивероятнейшего числа, вероятности наступления события A соответственно m_0+1 и m_0-1 раз должны, по крайней мере, не превышать вероятность P_{m_0,n} , т. е.

P_{m_0,n}\geqslant{P_{m_0+1,n}};\quad P_{m_0,n}\geqslant{P_{m_0-1,n}}

Подставляя в неравенства значение P_{m_0,n} и выражения вероятностей P_{m_0+1,n} и P_{m_0-1,n} , получаем

Решая эти неравенства относительно m_0 , получаем

M_0\geqslant{np-q},\quad m_0\leqslant{np+p}

Объединяя последние неравенства, получаем двойное неравенство, которое используют для определения наивероятнейшего числа:

Np-q\leqslant{m_0}\leqslant{np+p}.

Так как длина интервала, определяемого неравенством (3.4), равна единице, т. е.

(np+p)-(np-q)=p+q=1,


и событие может произойти в n испытаниях только целое число раз, то следует иметь в виду, что:

1) если np-q - целое число, то существуют два значения наивероятнейшего числа, а именно: m_0=np-q и m"_0=np-q+1=np+p ;

2) если np-q - дробное число, то существует одно наивероятнейшее число, а именно: единственное целое, заключенное между дробными числами, полученными из неравенства (3.4);

3) если np - целое число, то существует одно наивероятнейшее число, а именно: m_0=np .

При больших значениях n пользоваться формулой (3.3) для расчета вероятности, соответствующей наивероятнейшему числу, неудобно. Если в равенство (3.3) подставить формулу Стирлинга

N!\approx{n^ne^{-n}\sqrt{2\pi{n}}},


справедливую для достаточно больших n , и принять наивероятнейшее число m_0=np , то получим формулу для приближенного вычисления вероятности, соответствующей наивероятнейшему числу:

P_{m_0,n}\approx\frac{n^ne^{-n}\sqrt{2\pi{n}}\,p^{np}q^{nq}}{(np)^{np}e^{-np}\sqrt{2\pi{np}}\,(nq)^{nq}e^{-nq}\sqrt{2\pi{nq}}}=\frac{1}{\sqrt{2\pi{npq}}}=\frac{1}{\sqrt{2\pi}\sqrt{npq}}.

Пример 2. Известно, что \frac{1}{15} часть продукции, поставляемой заводом на торговую базу, не удовлетворяет всем требованиям стандарта. На базу была завезена партия изделий в количестве 250 шт. Найти наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, и вычислить вероятность того, что в этой партии окажется наивероятнейшее число изделий.

Решение. По условию n=250,\,q=\frac{1}{15},\,p=1-\frac{1}{15}=\frac{14}{15} . Согласно неравенству (3.4) имеем

250\cdot\frac{14}{15}-\frac{1}{15}\leqslant{m_0}\leqslant250\cdot\frac{14}{15}+\frac{1}{15}


откуда 233,\!26\leqslant{m_0}\leqslant234,\!26 . Следовательно, наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, в партии из 250 шт. равно 234. Подставляя данные в формулу (3.5), вычисляем вероятность наличия в партии наивероятнейшего числа изделий:

P_{234,250}\approx\frac{1}{\sqrt{2\pi\cdot250\cdot\frac{14}{15}\cdot\frac{1}{15}}}\approx0,\!101

Локальная теорема Лапласа

Пользоваться формулой Бернулли при больших значениях n очень трудно. Например, если n=50,\,m=30,\,p=0,\!1 , то для отыскания вероятности P_{30,50} надо вычислить значение выражения

P_{30,50}=\frac{50!}{30!\cdot20!}\cdot(0,\!1)^{30}\cdot(0,\!9)^{20}

Естественно, возникает вопрос: нельзя ли вычислить интересующую вероятность, не используя формулу Бернулли? Оказывается, можно. Локальная теорема Лапласа дает асимптотическую формулу, которая позволяет приближенно найти вероятность появления событий ровно m раз в n испытаниях, если число испытаний достаточно велико.

Теорема 3.1. Если вероятность p появления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность P_{m,n} того, что событие A появится в n испытаниях ровно m раз, приближенно равна (тем точнее, чем больше n ) значению функции

Y=\frac{1}{\sqrt{npq}}\frac{e^{-x^2/2}}{\sqrt{2\pi}}=\frac{\varphi(x)}{\sqrt{npq}} при .

Существуют таблицы, которые содержат значения функции \varphi(x)=\frac{1}{\sqrt{2\pi}}\,e^{-x^2/2}} , соответствующие положительным значениям аргумента x . Для отрицательных значений аргумента используют те же таблицы, так как функция \varphi(x) четна, т. е. \varphi(-x)=\varphi(x) .


Итак, приближенно вероятность того, что событие A появится в n испытаниях ровно m раз,

P_{m,n}\approx\frac{1}{\sqrt{npq}}\,\varphi(x), где x=\frac{m-np}{\sqrt{npq}} .

Пример 3. Найти вероятность того, что событие A наступит ровно 80 раз в 400 испытаниях, если вероятность появления события A в каждом испытании равна 0,2.

Решение. По условию n=400,\,m=80,\,p=0,\!2,\,q=0,\!8 . Воспользуемся асимптотической, формулой Лапласа:

P_{80,400}\approx\frac{1}{\sqrt{400\cdot0,\!2\cdot0,\!8}}\,\varphi(x)=\frac{1}{8}\,\varphi(x).

Вычислим определяемое данными задачи значение x :

X=\frac{m-np}{\sqrt{npq}}=\frac{80-400\cdot0,\!2}{8}=0.

По таблице прил, 1 находим \varphi(0)=0,\!3989 . Искомая вероятность

P_{80,100}=\frac{1}{8}\cdot0,\!3989=0,\!04986.

Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости опущены):

P_{80,100}=0,\!0498.

Интегральная теорема Лапласа

Предположим, что проводится n независимых испытаний, в каждом из которых вероятность появления события A постоянна и равна p . Необходимо вычислить вероятность P_{(m_1,m_2),n} того, что событие A появится в n испытаниях не менее m_1 и не более m_2 раз (для краткости будем говорить "от m_1 до m_2 раз"). Это можно сделать с помощью интегральной теоремы Лапласа.

Теорема 3.2. Если вероятность p наступления события A в каждом испытании постоянна и отлична от нуля и единицы, то приближенно вероятность P_{(m_1,m_2),n} того, что событие A появится в испытаниях от m_1 до m_2 раз,

P_{(m_1,m_2),n}\approx\frac{1}{\sqrt{2\pi}}\int\limits_{x"}^{x""}e^{-x^2/2}\,dx, где .

При решении задач, требующих применения интегральной теоремы Лапласа, пользуются специальными таблицами, так как неопределенный интеграл \int{e^{-x^2/2}\,dx} не выражается через элементарные функции. Таблица для интеграла \Phi(x)=\frac{1}{\sqrt{2\pi}}\int\limits_{0}^{x}e^{-z^2/2}\,dz приведена в прил. 2, где даны значения функции \Phi(x) для положительных значений x , для x<0 используют ту же таблицу (функция \Phi(x) нечетна, т. е. \Phi(-x)=-\Phi(x) ). Таблица содержит значения функции \Phi(x) лишь для x\in ; для x>5 можно принять \Phi(x)=0,\!5 .

Итак, приближенно вероятность того, что событие A появится в n независимых испытаниях от m_1 до m_2 раз,

P_{(m_1,m_2),n}\approx\Phi(x"")-\Phi(x"), где x"=\frac{m_1-np}{\sqrt{npq}};~x""=\frac{m_2-np}{\sqrt{npq}} .

Пример 4. Вероятность того, что деталь изготовлена с нарушениями стандартов, p=0,\!2 . Найти вероятность того, что среди 400 случайно отобранных деталей нестандартных окажется от 70 до 100 деталей.

Решение. По условию p=0,\!2,\,q=0,\!8,\,n=400,\,m_1=70,\,m_2=100 . Воспользуемся интегральной теоремой Лапласа:

P_{(70,100),400}\approx\Phi(x"")-\Phi(x").

Вычислим пределы интегрирования:


нижний

X"=\frac{m_1-np}{\sqrt{npq}}=\frac{70-400\cdot0,\!2}{\sqrt{400\cdot0,\!2\cdot0,\!8}}=-1,\!25,


верхний

X""=\frac{m_2-np}{\sqrt{npq}}=\frac{100-400\cdot0,\!2}{\sqrt{400\cdot0,\!2\cdot0,\!8}}=2,\!5,

Таким образом

P_{(70,100),400}\approx\Phi(2,\!5)-\Phi(-1,\!25)=\Phi(2,\!5)+\Phi(1,\!25).

По таблице прил. 2 находим

\Phi(2,\!5)=0,\!4938;~~~~~\Phi(1,\!25)=0,\!3944.

Искомая вероятность

P_{(70,100),400}=0,\!4938+0,\!3944=0,\!8882.

Применение интегральной теоремы Лапласа

Если число m (число появлений события A при n независимых испытаниях) будет изменяться от m_1 до m_2 , то дробь \frac{m-np}{\sqrt{npq}} будет изменяться от \frac{m_1-np}{\sqrt{npq}}=x" до \frac{m_2-np}{\sqrt{npq}}=x"" . Следовательно, интегральную теорему Лапласа можно записать и так:

P\left\{x"\leqslant\frac{m-np}{\sqrt{npq}}\leqslant{x""}\right\}=\frac{1}{\sqrt{2\pi}}\int\limits_{x"}^{x""}e^{-x^2/2}\,dx.

Поставим задачу найти вероятность того, что отклонение относительной частоты \frac{m}{n} от постоянной вероятности p по абсолютной величине не превышает заданного числа \varepsilon>0 . Другими словами, найдем вероятность осуществления неравенства \left|\frac{m}{n}-p\right|\leqslant\varepsilon , что то же самое, -\varepsilon\leqslant\frac{m}{n}-p\leqslant\varepsilon . Эту вероятность будем обозначать так: P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\} . С учетом формулы (3.6) для данной вероятности получаем

P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\}\approx2\Phi\left(\varepsilon\,\sqrt{\frac{n}{pq}}\right).

Пример 5. Вероятность того, что деталь нестандартна, p=0,\!1 . Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности p=0,\!1 по абсолютной величине не более чем на 0,03.

Решение. По условию n=400,\,p=0,\!1,\,q=0,\!9,\,\varepsilon=0,\!03 . Требуется найти вероятность P\left\{\left|\frac{m}{400}-0,\!1\right|\leqslant0,\!03\right\} . Используя формулу (3.7), получаем

P\left\{\left|\frac{m}{400}-0,\!1\right|\leqslant0,\!03\right\}\approx2\Phi\left(0,\!03\sqrt{\frac{400}{0,\!1\cdot0,\!9}}\right)=2\Phi(2)

По таблице прил. 2 находим \Phi(2)=0,\!4772 , следовательно, 2\Phi(2)=0,\!9544 . Итак, искомая вероятность приближенно равна 0,9544. Смысл полученного результата таков: если взять достаточно большое число проб по 400 деталей в каждой, то примерно в 95,44% этих проб отклонение относительной частоты от постоянной вероятности p=0,\!1 по абсолютной величине не превысит 0,03.

Формула Пуассона для маловероятных событий

Если вероятность p наступления события в отдельном испытании близка к нулю, то даже при большом числе испытаний n , но при небольшом значении произведения np получаемые по формуле Лапласа значения вероятностей P_{m,n} оказываются недостаточно точными и возникает потребность в другой приближенной формуле.

Теорема 3.3. Если вероятность p наступления события A в каждом испытании постоянна, но мала, число независимых испытаний n достаточно велико, но значение произведения np=\lambda остается небольшим (не больше десяти), то вероятность того, что в этих испытаниях событие A наступит m раз,

P_{m,n}\approx\frac{\lambda^m}{m!}\,e^{-\lambda}.

Для упрощения расчетов с применением формулы Пуассона составлена таблица значений функции Пуассона \frac{\lambda^m}{m!}\,e^{-\lambda} (см. прил. 3).

Пример 6. Пусть вероятность изготовления нестандартной детали равна 0,004. Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.

Решение. Здесь n=1000,p=0,004,~\lambda=np=1000\cdot0,\!004=4 . Все три числа удовлетворяют требованиям теоремы 3.3, поэтому для нахождения вероятности искомого события P_{5,1000} применяем формулу Пуассона. По таблице значений функции Пуассона (прил. 3) при \lambda=4;m=5 получаем P_{5,1000}\approx0,\!1563 .

Найдем вероятность того же события по формуле Лапласа. Для этого сначала вычисляем значение x , соответствующее m=5 :

X=\frac{5-1000\cdot0,\!004}{\sqrt{1000\cdot0,\!004\cdot0,\!996}}\approx\frac{1}{1,\!996}\approx0,\!501.

Поэтому согласно формуле Лапласа искомая вероятность

P_{5,1000}\approx\frac{\varphi(0,\!501)}{1,\!996}\approx\frac{0,\!3519}{1,\!996}\approx0,\!1763


а согласно формуле Бернулли точное ее значение

P_{5,1000}=C_{1000}^{5}\cdot0,\!004^5\cdot0,\!996^{995}\approx0,\!1552.

Таким образом, относительная ошибка вычисления вероятностей P_{5,1000} по приближенной формуле Лапласа составляет

\frac{0,\!1763-0,\!1552}{0,\!1552}\approx0,\!196 , или 13,\!6\%


а по формуле Пуассона -

\frac{0,\!1563-0,\!1552}{0,\!1552}\approx0,\!007 , или 0,\!7\%

Т. е. во много раз меньше.
Перейти к следующему разделу
Одномерные случайные величины
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!