4.1. Линейное диофантово уравнение с двумя неизвестными

В этом разделе рассматривается линейное уравнение

где `a`, `b`, `c` - целые числа, причём `ab!=0` (иначе это уравнение с не более одной неизвестной).

Уравнения с целыми числами с двумя (и более) неизвестными наряду с большим количеством других интересных задач рассматривал в своей книге «Арифметика» греческий математик Диофант Александрийский (III в.). Такие уравнения были впоследствии названы его именем.

Докажите, что монетами в `2` и `5` рублей можно заплатить любую натуральную сумму рублей, кроме `1` и `3`.

Пусть сумма, которую нужно составить, равняется рублей, и мы заплатим её `x` монетами по `2` рубля и монетами по `5` рублей.

Отсюда получим уравнение `2x+5y=n`. Выразим `x` через `y`: `x=(n-5y)/2`.

Наша задача - найти хотя бы одно решение этого уравнения в целых неотрицательных числах. Если `n` делится на `2`, то в качестве такого решения можно взять `y=0`, `x=n//2`. Если же `n` не делится на `2`, то можно взять `y=1`, `x=(n-5)/2`. Здесь `x` не будет являться отрицательным, если `b>=5`. Таким образом, любую натуральную сумму рублей, кроме `1` и `3` можно заплатить монетами в `2` и `5` рублей.

Замечание

Если же в этой задаче разрешить давать сдачу (также только монетами `2` и `5` рублей), то тогда можно будет с учётом сдачи заплатить любую сумму рублей.

Перейдём к решению уравнения `ax+by=c`.

Уравнение `ax+by=c` имеет бесконечное множество целочисленных решений, если `c` делится на `"НОД"(a,b)` и не имеет целочисленных решений в противном случае.

Условие «`c` делится на `"НОД"(a,b)`», частности, всегда выполнено, когда числа `a` и `b` взаимно просты.

Диофантово уравнение `ax+by=c` можно решать по следующему алгоритму:

1. Разделим обе части уравнения `ax+by=c` на `"НОД"(a,b)`. Числа `a` и `b`, поделённые на свой НОД, станут взаимно простыми. Если число `c`, разделённое нацело на `"НОД"(a,b)`, не является целым, то уравнение решений не имеет (слева стоит целое число, справа - нецелое).
Таким образом, мы пришли к равносильному уравнению `bar(a)x+bar(b)y=bar(c)`, где `"НОД"(bar(a),bar(b))=1`.

2. Итак, пусть теперь есть уравнение `ax+by=c`, где числа `a` и `b` являются взаимно простыми. Найдём какое-то одно (так называемое «частное») решение этого уравнения - `(x_0,y_0)` . Это можно сделать путём подбора или с помощью алгоритма Евклида (см. конец этого раздела).

3. Выпишем ответы: x = x 0 - b t y = y 0 + a t ,   t ∈ ℤ . \left\{\begin{array}{l}x=x_0-bt\\y=y_0+at\end{array}\right.,\:t\in\mathbb{Z}.

Почему все ответы имеют такой вид?

Пусть `(x_0,y_0)` - решение уравнения `ax+by=c`. Рассмотрим выражение `a(x-x_0)+b(y-y_0)`. Оно равняется нулю:

`a(x-x_0)+b(y-y_0)=ax+by-(ax_0+by_0)=c-c=0`.

Таким образом, числа `x-x_0` и `y-y_0` являются решениями уравнения `aX+bY=0`. Перепишем это уравнение в виде `aX=-bY`. Так как числа `a` и `b` - взаимно просты, число `Y` должно делиться на число `a`, т. е. `Y=at` при каком-то целом `t`. Подставим `Y` в уравнение `aX=-bY`, получим `aX=-bat`, что в свою очередь после сокращения на `a` преобразуется к виду `X=-bt`.

Итак, x - x 0 = - b t , y - y 0 = a t , \left\{\begin{array}{l}x-x_0=-bt,\\y-y_0=at,\end{array}\right. откуда и получаем выписанные в п. 3 ответы.

Решите уравнение `10x+4y=100`.

Разделим обе части уравнения на `"НОД"(10,4)=2`, получив уравнение `5x+2y=50`. Подбором получаем частное решение `x_0=10`, `y_0=0`.

Затем выпишем все решения этого уравнения: x = 10 - 2 t y = 5 t ,   t ∈ ℤ . \left\{\begin{array}{l}x=10-2t\\y=5t\end{array}\right.,\:t\in\mathbb{Z}.

x = 10 - 2 t y = 5 t ,   t ∈ ℤ . \left\{\begin{array}{l}x=10-2t\\y=5t\end{array}\right.,\:t\in\mathbb{Z}.

Опишем процесс нахождения «частного» решения с помощью алгоритма Евклида на примере диофантова уравнения `7x+18y=2`.

Найдите частное решение уравнения `7x+18y=2`.

Для начала найдём частное решение уравнения `7x+18y=1`, затем, домножим полученное решение на `2`, получим частное решение уравнения `7x+18y=2`.

Найдём `"НОД"(18,7)` с помощью алгоритма Евклида. `18=7*2+4`, поэтому `"НОД"(18,7)= "НОД"(7,4)`. Будем записывать каждое новое число, к которому мы приходим, выполняя алгоритм Евклида, в виде `7x+18y`. Так, `4 = 18 - 7*2`.

Затем `"НОД"(7,4) = "НОД"(4,3)`, где `3 = 7 - 4 = 7- (18 -7*2) = 7*3 - 18`.

Наконец, `"НОД"(4,3) = "НОД"(3,1) = 1`, причём

`1 = 4 - 3 = (18 - 7×2) - (7*3 -18) = 18*2 - 7×5`.

Вот, мы получили частное решение уравнения `7x+18y=1:` `x=-5, y=2`.

Отсюда частное решение уравнения `7x+18y=2` имеет вид `x_0=-10, y_0=4`.

Решая задачу другими способами, можно найти и другие частные решения.

Например, `x_0=8, y_0=-3`.

`x=-10, y=4`.*

4.2. Примеры решения нелинейных уравнений

Пример 21 (ЕГЭ, тренировочный вариант)

Группу школьников нужно перевезти из летнего лагеря одним из двух способов: либо двумя автобусами типа А за несколько рейсов, либо тремя автобусами типа В за несколько рейсов, причём в этом случае число рейсов каждого автобуса типа В будет на один меньше, чем рейсов каждого автобуса типа А. В каждом из случаев автобусы заполняются полностью. Какое максимальное количество школьников можно перевезти при указанных условиях, если в автобус типа В входит на `7` человек меньше, чем в автобус типа А.

Пусть в автобус типа В входит `x` человек (тогда в автобус типа А входит `x+7` человек), и автобусы типа B должны совершить `y` рейсов (тогда автобусы типа A должны совершить `y+1` рейс). По условию задачи составим выражение для количества детей, перевезённых обоими способами:

`2(x+7)(y+1)=3xy`.

Выразим переменную этого выражения через `y`.

`14y+2x+14-xy=0`; `x=(14y+14)/(y-2)`.

Выделим целую часть числа:

`(14y+14)/(y-2)`; `x=(14y+14)/(y-2)=14+42/(y-2)`.

Напомним, число `x` должно быть целым, отсюда получаем, что число `(y-2)` должно быть делителем числа `42`.

Переберём все делители числа `42` и выясним, какое максимальное количество детей `(3xy)` можно увезти:

`y-2`
`y`
`x`
`3xy`

Максимальное количество школьников, которое можно перевезти согласно условиям задачи, равно `1980`.

Решите в целых числах уравнение `xy=5(x+y)`.

Перепишем уравнение в виде: `xy-5x-5y=0`;

`x(y-5)-5(y-5)-25=0`; `(x-5)(y-5)=25`.

Заметим, что `25` можно разложить на множители (в том числе отрицательные) только следующими способами:

`25=1*25=5*5=(-1)*(-25)=(-5)*(-5)`.

Из каждого из разложений получаем решения.

`(x,y)=(6,30);(30,6);(10,10);(4,-20);(-20,4);(0,0)`.

Решите в целых числах уравнение `x^2=2y^2+xy+7`.

Перепишем это уравнение в виде: `(x+y)(x-2y)=7`.

Это разложение можно получить следующим образом: запишем выражение `x^2-xy-2y^2=0` и вынесем `y^2` за скобки: `y^2[(x/y)^2-x/y-2]`.

Т. к. `(x+y)` и `(x-2y)` - целые числа, то нужно посмотреть на разложение числа `7` на два целых множителя. Возможные разложения выпишем в таблицу:

`x+y=` `7` `1` `-7` `-1`
`x-2y=` `1` `7` `-1` `-7`

Получаются `4` системы линейных уравнений. Решим одну из них (первую):

x + y = 7 , x - 2 y = 1 . \left\{\begin{array}{l}x+y=7,\\x-2y=1.\end{array}\right.

Получим: `x=5, y=2`.

Остальные системы выписываются аналогично, и все полученные решения будут являться целыми.

`(x,y)=(5,2);(-5,-2);(3;-2);(-3,2)`.

В обоих примерах мы раскладывали многочлен на множители и использовали свойства делимости.

Решите в целых числах уравнение `x^3-xy-7x+2y+23=0`.

В это уравнение переменная `y` входит в первой степени, выразим её через `x:`

`x^3+y(2-x)-7x+23=0, y=(x^3-7x+23)/(x-2)`.

Сделаем замену: `t=x-2`. Тогда `x=t+2`; `x^3=t^3+6t^3+12t+8` и, следовательно,

Разложив левую часть, получим `(1+x)(1+x^2)=2^y`.

Т. к. числа `x` и `x^2` - натуральные, `1+x>=2`; `1+x^2>=2`, значит, оба числа - `(1+x)` и `(1+x^2)` являются натуральными степенями двойки. Пусть `1+x=2^t`. Выразив из этого уравнения `x`, получим, `1+x^2=2^(2t)-2*2^t+2`. Это число также должно являться степенью двойки.

Если `t=1`, то `(x,y)=(1,2)` - решения нашего уравнения.

Если `t=2`, то `1+x^2=10`, что не является степенью двойки; решений в данном случае нет.

Если `t>=3`, то `2*2^t-2>0` и `2^(2t)-2*2^t+2<2^(2t)`. Докажем, что `2^(2t)-2*2^t+2>2^(2t-1)`. Это неравенство можно переписать в виде

`2^(2t-1)=2^(2t)-2^(2t-1)>2*2^t-2; 2^(2t-2)>2^t-1`.

Последнее неравенство является верным, т. к. при `t>=3` верно `2t-2>t`, что приведёт к неравенству `2^(2t-2)-2^t>0> -1`.

Таким образом, мы получили, что число `1+x^2=2^(2t)-2*2^t+2` заключено строго между двумя соседними степенями двойки, `2^(2t-1)<2^(2t)-2*2^t+2<2^(2t)`, а, значит, само степенью двойки не является. Противоречие, решений при `t>=3` нет.

Задача 62:

Решите уравнение 3x + 5y = 7 в целых числах. Решение:

Найдем сначала какое-нибудь конкретное решение (эта идея, кстати, часто помогает и при решении других задач). Так как 3 • 2 + 5 • (- 1) = 1, то 3 • 14 + 5 • (- 7) = 7 и, следовательно, x 0 = 14, y 0 = - 7 - это решение нашего уравнения (одно из многих, не более!). Итак,

Вычтем одно уравнение из другого, обозначим x - x 0 и y - y 0 через a и b, и получим 3a + 5b = 0. Отсюда мы видим, что b делится на 3, а a - на 5. Положим a = 5k, тогда b = - 3k - здесь k, очевидно, может быть любым целым числом. Итак, мы получаем набор решений:

Где k может быть любым целым числом. Других решений, конечно, нет.Задача 63:

Найдите все целые решения уравнения 3x - 12y = 7. Решение:

Это уравнение не имеет целых решений. Левая часть делится на 3, в то время как правая часть не делится на 3.

Задача 64:

Решите уравнение 1990x - 173y = 11. Решение:

Числа, участвующие в формулировке, так велики, что подбором здесь конкретного решения не найти. Однако нам поможет то, что числа 1990 и 173 взаимно просты (проверьте это).

Лемма. Их НОД, равный 1, можно представить в виде 1990m - 173n, где m и n - некоторые целые числа.

Доказательство этой леммы следует из того факта, что все числа, которые получаются в процессе алгоритма Евклида, представимы в указанном виде.

Конкретно, в данном случае, используя алгоритм Евклида, можно получить m = 2, n = 23. Итак, при помощи такого мощного оружия, как алгоритм Евклида, мы получаем конкретное решение вспомогательного уравнения 1990m - 173n = 1: пару (2, 23). Следовательно, x 0 = 22, y 0 = 253 - решение уравнения 1990x - 173y = 11. Дальше получаем, что

K - любое целое число.Задача 65:

Найдите все целые решения уравнения 21x + 48y = 6. Решение:

x = 16k - 2, y = - 7k + 1; k - любое целое число.

Задача 66:

Решите уравнение 2x + 3y + 5z = 11 в целых числах. Решение:

x = 5p + 3q - 11, y = 11 - 5p - 2q, z = p; p, q - любые целые числа.

Задача 67:

Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево. При каких m и n она сможет переместиться в соседнюю справа клетку? За какое наименьшее число ходов она сможет это сделать? Решение:

При взаимно простых m и n.

Задача 68:

(2x + y)(5x + 3y) = 7. Решение:

(- 4,9), (14, - 21), (4, - 9), (- 14,21).

Задача 69:

xy = x + y + 3. Решение:

Так как xy - x - y = 3, то (x - 1)(y - 1) = 4. Осталось только перебрать возможные разложения числа 4 в произведение двух целых множителей. Ответ: (x = 5,y = 2), (2,5), (0, - 3), (- 3,0), (3,3), (- 1, - 1).

Задача 70:

x² = 14 + y². Решение:

Решений в целых числах нет.

Задача 71:

x² + y² = x + y + 2. Решение:

(2,0), (2,1), (- 1,0), (- 1,1), (0,2), (1,2), (0, - 1), (1, - 1).

Вот как решается задача 69. Так как xy - x - y = 3, то (x - 1)(y - 1) = 4. Осталось только перебрать возможные разложения числа 4 в произведение двух целых множителей. Ответ: (x = 5,y = 2), (2,5), (0, - 3), (- 3,0), (3,3), (- 1, - 1).

Задача 72:

x² + y² = 4z - 1.

В самом деле, посмотрим, какие остатки могут давать точные квадраты по модулю 4 (выбор модуля 4 подсказан нам самим видом правой части уравнения). Недолгий перебор показывает, что это остатки 0 и 1. Так как сумма двух остатков такого вида не может давать остаток - 1, то мы получаем, что решений данное уравнение не имеет.

Задача 73:

x² - 7y = 10. Решение:

Решений в целых числах нет (модуль 7).

Задача 74:

x³ + 21y² + 5 = 0. Решение:

Так как x³ может по модулю 7 быть сравнимым лишь с 0, 1 и - 1, то выражение x³ + 21y² + 5 сравнимо (mod %)%7 с 5, 6 или с 4, и, следовательно, не может быть равным нулю.

Задача 75:

15x² - 7y² = 9. Решение:

Решений в целых числах нет (модуль 5).

Задача 76:

x² + y² + z² = 8t - 1. Решение:

Решений в целых числах нет (модуль 8).

Задача 77:

3 m + 7 = 2 n . Решение:

По модулю 3 левая часть сравнима с 1, и отсюда мы делаем вывод, что n - четно, т.е. n = 2k. Уравнение преобразуется к виду 3 m + 7 = 4 k . Теперь в игру включается модуль 4. 4 k - 7 = 1 (mod %)%4, и мы видим, что и m четно, т.е. m = 2p. Итак, мы имеем уравнение 3 2p + 7 = 2 2k . Преобразуем уравнение: 7 = 2 2k - 3 2p = (2 k - 3 p )(2 k + 3 p ). Отсюда 2 k + 3 p = 7, 2 k - 3 p = 1, и мы получаем единственное решение k = 2, p = 1, т.е. m = 2, n = 4.

Задача 78:

3 • 2 m + 1 = n². Решение:

Сразу ясно, что n не делится на 3 и, значит, n = 3k + 1 или n = 3k + 2. Разберем оба случая.

а) n = 3k + 2, 3 • 2 m + 1 = 9k² + 12k + 4. Сокращая, получаем 2 m = 3k² + 4k + 1 = (3k + 1)(k + 1). Следовательно, и k + 1 и 3k + 1 - степени двойки. Видно, что и k = 0 и k = 1 подходят, и мы получаем решения n = 2, m = 1 и n = 5, m = 3. Но при k ≥ 2 4(k + 1) > 3k + 1 > 2(k + 1) и, следовательно, k + 1 и 3k + 1 не могут одновременно быть степенями двойки.

б) n = 3k + 1. Разбирая этот случай аналогичным образом, мы получаем еще одно решение n = 7, m = 4.

Задача 79:

1/a + 1/b + 1/c = 1. Решение:

a = b = c = 3; a,b,c = 1,2,3 или 2,4,4; одно из чисел равно 1, а сумма двух других равна 0, например, a = 1, b = - c = 13.

Задача 80:

x² - y² = 1988. Решение:

x = ± 498, y = ± 496 или x = ± 78, y = ± 64, причем знаки выбираются независимо.

Задача 81:

Докажите, что уравнение 1/x - 1/y = 1/n имеет единственное решение в натуральных числах тогда и только тогда, когда n - простое число. Решение:

Если n = pq (p, q > 1), то 1/n = 1/(n - 1) - 1/n(n - 1) и 1/n = 1/p(q - 1) - 1/pq(q - 1). Если же n - простое, то n(y - x) = xy, и значит, xy делится на n, т.е. x или y делится на n. Ясно, что именно y делится на n: y = kn. Тогда x = kn/(n + 1), откуда k = n - 1, т.е. есть ровно одно представление 1/n = 1/(n - 1) - 1/n(n - 1).

Задача 82:

Решите уравнение в целых числах: x³ + 3 = 4y(y + 1).

Задача 83:

Решите уравнение в целых числах: x² + y² = z².

Задача 84:

Решите уравнение в целых числах: x² - 5y² = 1.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Объект исследования.

Исследования касаются одного из наиболее интересных разделов теории чисел - решения уравнений в целых числах.

Предмет исследования.

Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших и древнейших математических задач и не достаточно глубоко представлена в школьном курсе математики. В своей работе я представлю достаточно полный анализ уравнений в целых числах, классификацию данных уравнений по способам их решения, описание алгоритмов их решения, а также практические примеры применения каждого способа для решения уравнений в целых числах.

Цель.

Познакомиться со способами решения уравнений в целых числах.

Задачи:

    Изучить учебную и справочную литературу;

    Собрать теоретический материал по способам решения уравнений;

    Разобрать алгоритмы решения уравнений данного вида;

    Описать способы решения;

    Рассмотреть примеры решения уравнений с применением данных способов.

Гипотеза:

Столкнувшись с уравнениями в целых числах в олимпиадных заданиях, я предположила, что трудности в их решении обусловлены тем, что далеко не все способы их решения мне известны.

Актуальность:

Решая примерные варианты заданий ЕГЭ, я заметила, что часто встречаются задания на решение уравнений первой и второй степени в целых числах. Кроме того олимпиадные задания различных уровней также содержат уравнения в целых числах или задачи, которые решаются с применением умений решать уравнения в целых числах. Важность знания способов решения уравнений в целых числах и определяет актуальность моих исследований.

Методы исследования

Теоретический анализ и обобщение сведений научной литературы об уравнениях в целых числах.

Классификация уравнений в целых числах по методам их решения.

Анализ и обобщение методов решения уравнений в целых числах.

Результаты исследования

В работе описаны способы решений уравнений, рассмотрен теоретический материал теоремы Ферма, теорема Пифагора, алгоритма Евклида, представлены примеры решений задач и уравнений различных уровней сложности.

2.История уравнений в целых числах

Диофант - ученый - алгебраист Древней Греции, по некоторым данным он жил до 364 года н. э. Он специализировался на решении задач в целых числах. Отсюда и пошло название Диофантовы уравнения. Наиболее известной, решенной Диофантом, является задача «о разложении на два квадрата». Ее эквивалентом является известная всем теорема Пифагора. Жизнь и деятельность Диофанта протекала в Александрии, он собирал и решал известные и придумывал новые задачи. Позднее он объединил их в большом труде под названием «Арифметика». Из тринадцати книг, входивших в состав «Арифметики», только шесть сохранились до Средних веков и стали источником вдохновения для математиков эпохи Возрождения.«Арифметика» Диофанта — это сборник задач, каждая включает в себя решение и необходимое пояснение. В собрание входят разнообразные задачи, а их решение часто в высшей степени остроумно. Диофанта интересуют только положительные целые и рациональные решения. Иррациональные решения он называет «невозможными» и тщательно подбирает коэффициенты так, чтобы получились искомые положительные, рациональные решения.

Для решения уравнений в целых числах применяется теорема Ферма. История доказательства которой достаточно интересная. Над полным доказательством Великой теоремы работало немало выдающихся математиков, и эти усилия привели к получению многих результатов современной теории чисел. Считается, что теорема стоит на первом месте по количеству неверных доказательств.

Замечательный французский математик Пьер Ферма высказал утверждение, что уравнение при целом n ≥ 3 не имеет решений в целых положительных числах x, y, z (xyz = 0 исключается положительностью x, y, z.Для случая n = 3 эту теорему в X веке пытался доказать среднеазиатский математик ал-Ходжанди, но его доказательство не сохранилось. Несколько позже сам Ферма опубликовал доказательство частного случая для n = 4.

Эйлер в 1770 доказал теорему для случая n = 3, Дирихле и Лежандр в 1825 — для n = 5,Ламе — для n = 7. Куммер показал, что теорема верна для всех простых n, меньших 100, за возможным исключением 37, 59, 67.

В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла, доказанной Фальтингсом в 1983 году, следует, что уравнение

при n > 3 может иметь лишь конечное число взаимно простых решений.

Последний, но самый важный, шаг в доказательстве теоремы был сделан в сентябре 1994 года Уайлсом. Его 130-страничное доказательство было опубликовано в журнале «AnnalsofMathematics». Доказательство основано на предположении немецкого математика Герхарда Фрая о том, что Великая теорема Ферма является следствием гипотезы Таниямы — Симуры (это предположение было доказано Кеном Рибетом при участии Ж.‑П.Серра.).Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после 7 лет напряжённой работы), но в нём вскоре обнаружился серьёзный пробел; с помощью Ричарда Лоуренса Тейлора пробел удалось достаточно быстро ликвидировать. В 1995 году был опубликован завершающий вариант. 15 марта 2016 года Эндрю Уайлз получает премию Абеля. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью».

3.Линейные уравнения в целых числах

Линейные уравнения - самые простые из всех диофантовых уравнений.

Уравнение вида ах=b, где a и b - некоторые числа, а х- неизвестная переменная, называется линейным уравнением с одной неизвестной. Здесь требуется найти только целые решения уравнения. Можно заметить, что если а ≠ 0, то целочисленное решение уравнение будет иметь только в том случае, когда b нацело делится на а и это решение х= b/ф. Если же а=0, то целочисленное решение уравнение будет иметь тогда, когда b=0 и в этом случае х любое число.

т.к. 12 нацело делится на 4, то

Т.к. а=о и b=0, то х любое число

Т.к. 7 нацело не делится на 10, то решений нет.

4. Способ перебора вариантов .

В способе перебора вариантов необходимо учитывать признаки делимости чисел, рассмотреть все возможные варианты равенства конечного перебора. Этот способ можно применить решая данные задачи:

1 Найти множество всех пар натуральных чисел, которые являются решением уравнения 49x+69y=602

Выражаем из уравнения х =,

Т.к. x и y натуральные числа, то х = ≥ 1, умножаем все уравнение на 49, чтобы избавиться от знаменателя:

Переносим 602 в левую сторону:

51y ≤ 553, выражаем y, y= 10

Полный перебор вариантов показывает, что натуральными решениями уравнения являются x=5, y=7.

Ответ:(5,7).-

2 Решить задачу

Из цифр 2, 4, 7 следует составить трёхзначное число, в котором ни одна цифра не может повторяться более двух раз.

Найдем количество всех трехзначных чисел, которые начинаются с цифры 2: (224, 242, 227, 272, 247, 274, 244, 277) - их 8.

Аналогично находим все трехзначные цифры начинающиеся с цифр 4 и 7: (442, 424, 422, 447, 474, 427, 472, 477).

(772, 774, 727, 747, 722, 744, 724, 742) - их тоже по 8 чисел. Следует всего 24 числа.

Ответ: 24 числа.

5. Цепная дробь и алгоритм Евклида

Цепной дробью называется выражение обыкновенной дроби в виде

где q 1 - целое число, а q 2 , … ,qn - натуральные числа. Такое выражение называется цепной (конечной непрерывной) дробью. Различают конечные и бесконечные цепные дроби.

Для рациональных чисел цепная дробь имеет конечный вид. Кроме того, последовательность a i — это ровно та последовательность частных, которая получается при применении алгоритма Евклида к числителю и знаменателю дроби.

Решая уравнения цепной дробью, я составила общий алгоритм действий для данного способа решения уравнений в целых числах.

Алгоритм

1) Составить отношение коэффициентов при неизвестных в виде дроби

2) Преобразовать выражение в неправильную дробь

3) Выделить целую часть неправильной дроби

4) Правильную дробь заменить равной ей дробью

5) Проделать 3,4 с полученной в знаменателе неправильной дробью

6) Повторять 5 до конечного результата

7) У полученного выражения отбросить последнее звено цепной дроби, превратить получающуюся при этом новую цепную дробь в простую и вычесть ее из исходной дробь.

Пример №1 Решить в целых числах уравнение 127x- 52y+ 1 = 0

Преобразуем отношение коэффициентов при неизвестных.

Прежде всего, выделим целую часть неправильной дроби; = 2 +

Правильную дробь заменим равной ей дробью.

Откуда = 2+

Проделаем такие же преобразования с полученной в знаменателе неправильной дробью.

Теперь исходная дробь примет вид: .Повторяя те же рассуждения для дроби получим Выделяя целую часть неправильной дроби, придем к окончательному результату:

Мы получили выражение, которое называется конечной цепной или непрерывной дробью. Отбросив последнее звено этой цепной дроби - одну пятую, превратим получающуюся при этом новую цепную дробь в простую и вычтем ее из исходной дроби:

Приведем полученное выражение к общему знаменателю и отбросим его.

Откуда 127∙9-52∙22+1=0. Из сопоставления полученного равенства с уравнением 127x- 52y+1 = 0 следует, что тогда x= 9, y= 22 - решение исходного уравнения, и согласно теореме все его решения будут содержаться в прогрессиях x= 9+ 52t, y= 22+ 127t, где t=(0; ±1; ±2…..).Полученный результат наводит на мысль о том, что и в общем случае для нахождения решения уравнения ax+by+c=0 надо разложить отношение коэффициентов при неизвестных в цепную дробь, отбросить ее последнее звено и проделать выкладки, подобные тем, которые были приведены выше.

Для доказательства этого предположения будут нужны некоторые свойства цепных дробей.

Рассмотрим несократимую дробь. Обозначим через q 1 частное и через r 2 остаток от деления a на b. Тогда получим:

Тогда b=q 2 r 2 +r 3 ,

Точно так же

r 2 =q 3 r 3 +r 4 , ;

r 3 =q 4 r 4 +r 5 ,;

………………………………..

Величины q 1 , q 2 ,… называются неполными частными. Приведенный выше процесс образования неполных частных называется алгоритмом Евклида . Остатки от деления r 2 , r 3 ,…удовлетворяют неравенствам

т.е. образуют ряд убывающих неотрицательных чисел.

Пример№2 Решить уравнение170х+190у=3000 в целых числах

После сокращения на 10 уравнение выглядит так,

Для нахождения частного решения воспользуемся разложением дроби в цепную дробь

Свернув предпоследнюю подходящую к ней дробь в обыкновенную

Частное решение данного уравнения имеет вид

Х 0 = (-1)4300∙9=2700, y 0 =(-1)5300∙8=-2400,

а общее задается формулой

х=2700-19k, y= -2400+17k.

откуда получаем условие на параметр k

Т.е. k=142, x=2, y=14. .

6. Метод разложения на множители

Метод перебора вариантов неудобный способ, так как бывают случаи когда найти перебором всецелые решения, невозможно, так как таких решений бесконечное множество. Метод разложения на множители очень интересный прием и встречается он как и в элементарной математике так и в высшей.

Суть состоит в тождественном преобразовании. Смысл любого тождественного преобразования - это запись выражения в другом виде с сохранением его сути. Рассмотрим примеры применения данного метода.

1 Решить уравнение в целых числах y 3 - x 3 = 91.

Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y - x)(y 2 + xy + x 2) = 91

Выписываем все делители числа 91: ± 1; ± 7; ± 13; ± 91

Замечаем, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 - 2|y||x| + x 2 = (|y| - |x|) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда исходное уравнение равносильно совокупности систем уравнений:

Решив системы, отбираем те корни, которые являются целыми числами.

Получаем решения исходного уравнения: (5; 6), (-6; -5); (-3; 4),(-4;3).

Ответ: (5; 6); (-6; -5); (-3; 4); (-4;3).

2 Найти все пары натуральных чисел, удовлетворяющих уравнению х 2 2 = 69

Разложим левую часть уравнения на множители и запишем уравнение в виде

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что х-у > 0, получим две системы уравнений, решив которые мы сможем найти искомые числа:

Выразив одну переменную и подставив ее в второе уравнение находим корни уравнений.Первая система имеет решение x=35;y=34 , а вторая система имеет решение x=13, y=10.

Ответ: (35; 34), (13; 10).

3 Решить уравнение х+у =ху в целых числах:

Запишем уравнение в виде

Разложим левую часть уравнения на множители. Получим

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.Ответ: (2; 2), (0; 0).

4 Доказать, что уравнение (x - y) 3 + (y - z) 3 + (z - x) 3 = 30 не имеет решений в целых числах.

Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

(x - y)(y - z)(z - x) = 10

Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

7. Метод остатков

Основная задача метода - находить остаток от деления обоих частей уравнения на целое число, на основе полученных результатов. Часто полученная информация уменьшает возможности множеств решений уравнения. Рассмотрим примеры:

1 Доказать, что уравнение x 2 = 3y + 2 не имеет решений в целых числах.

Доказательство.

Рассмотрим случай, когда x, y ∈ N. Рассмотрим остатки от деления обоих частей на 3. Правая часть уравнения дает остаток 2 при делении на 3 при любом значении y. Левая же часть, которая является квадратом натурального числа, при делении на 3 всегда дает остаток 0 или 1. Исходя из этого получаем, что решения данного уравнения в натуральных числах нет.

Рассмотрим случай, когда одно из чисел равно 0. Тогда очевидно, решений в целых числах нет.

Случай, когда y - целое отрицательное не имеет решений, т.к. правая часть будет отрицательна, а левая - положительна.

Случай, когда x - целое отрицательное, также не имеет решений, т.к. попадает под один из рассмотренных ранее случаев ввиду того, что (-x) 2 = (x) 2 .

Получается, что указанное уравнение не имеет решений в целых числах, что и требовалось доказать.

2 Решите в целых числах 3 х = 1 + y 2 .

Не сложно заметить, что (0; 0) — решение данного уравнения. Остаётся доказать, что других целых корней уравнение не имеет.

Рассмотрим случаи:

1) Если x∈N, y∈N, то З делится на три без остатка, а 1 + y 2 при делении на 3 дает

остаток либо 1, либо 2. Следовательно, равенство при натуральных

значениях х, у невозможно.

2) Если х— целое отрицательное число,y∈Z , тогда 0< 3 х < 1, а 1 + y 2 ≥ 0 и

равенство также невозможно. Следовательно, (0; 0) — единственное

Ответ: (0; 0).

3 Решить уравнение 2х 2 -2ху+9х+у=2 в целых числах:

Выразим из уравнения то неизвестное, которое входит в него только в первой степени, то есть переменную у:

2х 2 +9х-2=2ху-у, откуда

Выделим у дроби целую часть с помощью правила деления многочлена на многочлен «углом». Получим:

Очевидно, разность 2х-1 может принимать только значения -3, -1, 1 и 3.

Осталось перебрать эти четыре случая, в результате чего получаем решения: (1;9), (2;8), (0;2), (-1;3)

Ответ: (1;9), (2;8), (0;2), (-1;3)

8.Пример решения уравнений с двумя переменными в целых числах как квадратных относительно одной из переменных

1 Решить в целых числах уравнение 5х 2 +5у 2 + 8ху+2у-2х +2=0

Данное уравнение можно решить методом разложения на множители, однако этот способ применительно к данному уравнению достаточно трудоёмкий. Рассмотрим более рациональный способ.

Запишем уравнение в виде квадратного относительно переменной х:

5x 2 +(8y-2)x+5y 2 +2y+2=0

Находим его корни.

Данное уравнение имеет решение тогда и только тогда, когда дискриминант

этого уравнения равен нулю, т.е. - 9(у+1) 2 =0, отсюда у= - 1.

Если у= -1,то х= 1.

Ответ: (1; — 1).

9.Пример решения задач с помощью уравнений в целых числах.

1. Решить в натуральных числах уравнение : где n>m

Выразим переменную n через переменную m:

Найдем делители числа 625: это 1; 5; 25; 125; 625

1) если m-25 =1, то m=26, n=25+625=650

2) m-25 =5, то m=30, n=150

3) m-25 =25, то m=50, n=50

4) m-25 =125, то m=150, n=30

5) m-25 =625, то m=650, n=26

Ответ: m=150, n=30

2. Решить уравнение в натуральных числах: mn +25 = 4m

Решение: mn +25 = 4m

1) выразим переменную 4m через n:

2) найдем натуральные делители числа 25: это 1; 5; 25

если 4-n =1, то n=3, m=25

4-n=5, то n=-1, m=5; 4-n =25, то n=-21, m=1 (посторонние корни)

Ответ: (25;3)

Помимо заданий решить уравнение в целых числах, встречаются задания на доказательство того факта, что уравнение не имеет целых корней.

При решении таких задач, необходимо помнить следующие свойства делимости:

1) Если n Z; n делится на 2, то n = 2k, k ∈ Z.

2) Если n ∈ Z; n не делится на 2, то n = 2k+1, k ∈ Z.

3) Если n ∈ Z; n делится на 3, то n = 3k, k ∈ Z.

4) Если n ∈ Z; n не делится на 3, то n = 3k±1, k ∈ Z.

5) Если n ∈ Z; n не делится на 4, то n = 4k+1; n = 4k+2; n = 4k+3. k ∈ Z.

6) Если n ∈ Z; n(n+1) делится на 2, то n (n+1)(n+2) делится на 2;3;6.

7) n; n+1 - взаимно простые.

3 Доказать, что уравнение x 2 - 3у = 17 не имеет целых решений.

Доказательство:

Пусть x; y - решения уравнения

x 2 = 3(у+6)-1 Т.к. y ∈ Z то y+6 ∈ Z , значит 3(y+6) делится на 3, следовательно, 3(y+6)-1 не делится на 3, следовательно, x 2 не делится на 3, следовательно, x не делится на 3, значит x = 3k±1, k ∈ Z.

Подставим это в исходное уравнение.

Получили противоречие. Значит у уравнения нет целых решений, что и требовалось доказать.

10.Формула Пика

Формула Пика была открыта австрийским математиком Георгом Пиком в 1899 году. Формула связанна с уравнениями в целых числах тем, что из многоугольников берут только целые узлы, как и целые числа в уравнениях.

При помощи этой формулы можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник).

В этой формуле будем находить целые точки внутри многоугольника и на его границе.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

Пример№1

М - количество узлов на границе треугольника (на сторонах и вершинах)

N - количество узлов внутри треугольника.

*Под «узлами» имеется ввиду пересечение линий. Найдём площадь треугольника:

Отметим узлы:

M = 15 (обозначены красным)

N = 34 (обозначены синим)

Пример №2

Найдём площадь многоугольника: Отметим узлы:

M = 14 (обозначены красным)

N = 43 (обозначены синим)

12.Метод спуска

Один из методов решений уравнений в целых числах - метод спуска - опирается на теорему Ферма.

Методом спуска называется метод, который заключается в построении одного решения бесчисленной последовательности решений с неограниченно убывающим положительным z.

Алгоритм этого метода рассмотрим на примере решения конкретного уравнения.

Пример 1. Решить уравнение в целых числах 5x + 8y = 39.

1) Выберем неизвестное, имеющее наименьший коэффициент (в нашем случае это х), и выразим его через другое неизвестное:

2) Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 - 3y без остатка делится на 5.

3) Введем дополнительную целочисленную переменную z следующим образом: 4 -3y = 5z. В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами.

4) Решаем его уже относительно переменной y, рассуждая точно также как в п.1, 2: Выделяя целую часть, получим:

5) Рассуждая аналогично предыдущему, вводим новую переменную u: 3u = 1 - 2z.

6) Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z: . Требуя, чтобы было целым, получим: 1 - u = 2v, откуда u = 1 - 2v. Дробей больше нет, спуск закончен (процесс продолжаем до тез пор, пока в выражении для очередной переменной не останется дробей).

7) Теперь необходимо «подняться вверх». Выразим через переменную v сначала z, потом y и затем x:

8) Формулы x = 3+8v и y = 3 - 5v, где v - произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Таким образом, метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

12.Заключение

В результате исследования подтвердилась гипотеза о том, что трудности при решении уравнений в целых числах обусловлены тем, что далеко не все способы их решения были мне известны. В ходе исследований мне удалось отыскать и описать малоизвестные способы решения уравнений в целых числах, проиллюстрировать их примерами. Результаты моих исследований могут быть полезны всем ученикам, интересующимся математикой.

13.Библиография

Книжные ресурсы:

1. Н. Я. Виленкин и др., Алгебра и математический анализ/10класс, 11 класс// М., «Просвещение», 1998 год;

2. А. Ф. Иванов и др., Математика. Учебно-тренировочные материалы для подготовки к экзамену// Воронеж, ГОУВПО ВГТУ, 2007 год

3. А. О. Гельфонд, Математика, теория чисел// Решение уравнений в целых числах// Книжный дом «ЛИБРОКОМ»

Ресурсы сети интернет:

4. Демонстрационные варианты контрольных измерительных материалов единого государственного экзамена по математике http://fipi.ru/

5. Примеры решений уравнений в целых числахhttp://reshuege.ru

6. Примеры решений уравнений в целых числахhttp://mat-ege.ru

7.История Диофантовых уравнений http://www.goldenmuseum.com/1612Hilbert_rus.html

8. История Диофанта http://nenuda.ru/%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F-%D1%81-%D0%B4%D0%B2%D1%83%D0%BC%D1%8F-%D0%BD%D0%B5%D0%B8%D0%B7%D0%B2%D0%B5%D1%81%D1%82%D0%BD%D1%8B%D0%BC%D0%B8-%D0%B2-%D1%86%D0%B5%D0%BB%D1%8B%D1%85-%D1%87%D0%B8%D1%81%D0%BB%D0%B0%D1%85.htm

9.История Диофантовых уравненийhttp://dok.opredelim.com/docs/index-1732.html

10. История Диофанта http://www.studfiles.ru/preview/4518769/

Задачи с целочисленными неизвестными

Павловская Нина Михайловна,

учитель математики МБОУ «СОШ № 92

г. Кемерово


Алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, имеющими число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения получили название диофантовых уравнений .

Проблема решения уравнений в целых числах решена до конца только для уравнений с одним неизвестным, для уравнений первой степени и для уравнений второй степени с двумя неизвестными. Для уравнений выше второй степени с двумя или более неизвестными трудной является даже задача доказательства существования целочисленных решений. Более того, доказано, что не существует единого алгоритма, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения.


  • Простейшими диофантовыми уравнениями являются уравнения вида

ax + by = c , a ≠ 0; b ≠ 0

Если с = 0 , то решение очевидно х = 0, у = 0.

Если с ≠ 0 , и решение 0 ; у 0 ) , то целое число

ax 0 + by 0 делится на d = (a ; b) , поэтому с так же должно делиться на общий делитель a и b .

Например: 3х + 6у = 5 не имеет целых решений, так как (3; 6) = 3, а с = 5 не делится на 3 без остатка.

  • Если уравнение ax + by = c имеет решение 0 ; у 0 ) , и (a ; b) = 1 , то все решения уравнения задаются формулами х = х 0 + bn; y = у 0 – an, где nлюбое целое решение.

Например: 3х + 5у = 13, (3; 5) = 1, значит уравнение имеет бесконечно много решений, х 0 =1; у 0 =2


Большая (великая) теорема Ферма гласит: уравнение вида не имеет решений в натуральных числах.

Эта теорема была сформулирована итальянским математиком Пьером Ферма более 300 лет назад, а доказана лишь в 1993 году.


Метод разложения на множители .

1) Решить в целых числах уравнение

x + y = xy.

Решение. Запишем уравнение в виде

(x - 1)(y - 1) = 1.

Произведение двух целых чисел может равняться 1 только в том случае, когда оба они равны 1. Т. е. исходное уравнение равносильно совокупности

с решениями (0,0) и (2,2).


2. Решите в целых числах уравнение:

3х² + 4ху – 7у²= 13.

Решение: 3х² - 3ху + 7ху – 7у²= 13,

3х(х – у) +7у(х – у) = 13,

(х – у)(3х + 7у) = 13.

Так как 13 имеет целые делители ±1 и ±13,

1. х – у = 1, 7х – 7у = 7, х = 2,

3х + 7у= 13; 3х + 7у = 13; откуда у = 1

2. х – у = 13, 7х – 7у = 91, х = 9,2,

3х + 7у= 1; 3х + 7у =1; откуда у=- 3,8.

3 . х – у = -1, 7х – 7у = -7, х = -2,

3х + 7у= -13; 3х + 7у = -13; откуда у = -1.

4. х – у = -13, 7х – 7у = -91, х = -9,2,

3х + 7у= -1; 3х +7у= -1; откуда у =3,8.

Следовательно уравнение имеет два решения в целых числах: (2;1) и (-2;-1)


3 . Решите в целых числах уравнение:

9х² + 4х – ху +3у = 88.

Решение: 9х² + 4х – 88 = ху – 3у,

9х² + 4х – 88 = у(х – 3)

так как 5 имеет целые делители ± 1и ± 5, то

Генрих Г.Н. ФМШ №146 г. Пермь

54 ≡ 6× 5≡ 2(mod 7),

55 ≡ 2× 5≡ 3(mod 7), 56 ≡ 3× 5≡ 1(mod 7).

Возводя в степень k, получаем 56k ≡ 1(mod 7) при любом натуральном k. Поэтому 5555 =56 × 92 × 53 ≡ 6 (mod7).

(Геометрически это равенство означает, что мы проходим по кругу, стартуя от 5, девяносто два цикла и еще три числа). Таким образом, число 222555 дает при делении на 7 остаток 6.

Решение уравнений в целых числах.

Несомненно, одна из интересных тем математики – решение диофантовых уравнений. Эта тема изучается в 8, а затем и в 10 и 11 классе.

Любое уравнение, которое требуется решить в целых числах, называется диофантовым уравнением. Простейшим из них является уравнение вида ах+bу=с, где а, b и с Î Z. При решении этого уравнения используется следующая теорема.

Теорема. Линейное диофантово уравнение ах+bу=с, где а, b и сÎ Z имеет решение тогда и только тогда, когда с делится на НОД чисел а и b. Если d=НОД (а, b), a=a1 d, b=b1 d, c=c1 d и (x0 , y0 ) – некоторое решение уравнения ах+bу=с, то все решения задаются формулами х=x0 +b1 t, y=y0 –a1 t, где t ─ произвольное целое число.

1. Решить в целых числах уравнения:

3ху–6х2 =у–2х+4;

(х–2)(ху+4)=1;

у–х–ху=2;

2х2 +ху=х+7;

3ху+2х+3у=0;

х2 –ху–х+у=1;

х2 –3ху=х–3у+2;

10. х2 –ху– у=4.

2. Следующие задачи рассматривала с выпускниками при подготовке к ЕГЭ по математике по данной теме.

1). Решить в целых числах уравнение: ху+3у+2х+6=13. Рещение:

Разложим на множители левую часть уравнения. Получим:

у(х+3)+2(х+3)=13;

(х+3)(у+2)=13.

Так как x,уÎ Z, то получим совокупность систем уравнений:

Генрих Г.Н.

ì x +

ì x +

ì x +

ê ì x +

ФМШ №146 г. Пермь

ì x =

ì x =

ì x =

ê ì x =

Ответ: (–2;11), (10; –1), (–4; –15), (–15, –3)

2). Решить в натуральных числах уравнение: 3х +4у =5z .

9). Найти все пары натуральных чисел m и n, для которых справедливо равенство 3m +7=2n .

10). Найти все тройки натуральных чисел k, m и n, для которых справедливо равенство: 2∙k!=m! –2∙n! (1!=1, 2!=1∙2, 3!= 1∙2∙3, …n!= 1∙2∙3∙…∙n)

11). Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, или в 14 раз больше, или в 14 раз меньше предыдущего. Сумма всех членов последовательности равна 4321.

в) Какое наибольшее число членов может иметь последовательность? Решение:

а) Пусть а1 =х, тогда а2 = 14х или а1 =14х, тогда а2 =х. Тогда по условию а1 + а2 = 4321. Получим: х+14х=4321, 15х=4321, но 4321 не кратно 15, значит, двух членов в последовательности быть не может.

б) Пусть а1 =х, тогда а2 = 14х, а3 =х, или 14х+х+14х=4321, или х+14х+х=4321. 29х=4321, тогда х=149, 14х=2086. Значит, последовательность может иметь три члена. Во втором случае 16х=4321, но тогда х не является натуральным числом.

Ответ: а) нет; б) да; в) 577.

Генрих Г.Н.

ФМШ №146 г. Пермь

12). Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, или в 10; раз больше, или в 10 раз меньше предыдущего. Сумма всех членов последовательности равна 1860.

а) Может ли последовательность иметь два члена? б) Может ли последовательность иметь три члена?

в) Какое наибольшее число членов может иметь последовательность?

Очевидно, что говорить о делимости целых чисел и рассматривать задачи по данной теме можно бесконечно. Я постаралась рассмотреть эту тему так, чтобы в большей степени заинтересовать учащихся, показать им красоту математики еще и с этой с точки зрения.

Генрих Г.Н.

ФМШ №146 г. Пермь

Список литературы:

1. А. Я. Каннель-Белов, А. К. Ковальджи. Как решают нестандартные задачи Москва МЦНМО 2001

2. А.В.Спивак. Приложение к журналу Квант№4/2000 Математический праздник, Москва 2000

3. А.В.Спивак. Математический кружок, «Посев» 2003

4. Санкт-Петербургский городской дворец творчества юных. Математический кружок. Задачник первого-второго года обучения. Санкт-Петербург. 1993

5. Алгебра для 8 класса. Учебное пособие для учащихся школ и классов с углубленным изучением математики. Под редакцией Н.Я.Виленкина. Москва, 1995 г.

6. М.Л.Галицкий, А.М.Гольдман, Л.И.Звавич. Сборник задач по алгебре для 8-9 классов. Учебное пособие для учащихся школ и классов с углубленным изучением математики. Москва, Просвещение. 1994 г.

7. Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков. Алгебра 8 класс. Учебник для школ и классов с углубленным изучением математики. Москва, 2001 г.

8. М.И.Шабунин, А.А.Прокофьев УМК МАТЕМАТИКА Алгебра. Начала математического анализа. Профильный уровень. Учебник для 11 класса. Москва Бином. Лаборатория знаний 2009

9. М.И.Шабунин, А.А.Прокофьев, Т.А.Олейник, Т.В.Соколова. УМК МАТЕМАТИКА Алгебра. Начала математического анализа. Профильный уровень Задачник для 11 класса. Москва Бином. Лаборатория знаний 2009

10. А.Г.Клово, Д.А.Мальцев, Л.И.Абзелилова Математика. Сборник тестов по плану ЕГЕ 2010

11. ЕГЭ-2010. «Легион-М». Ростов-на-Дону 2009

12. ЕГЭ УМК «Математика. Подготовка к ЕГЭ». Под редакцией Ф.Ф.Лысенко, С.Ю.Кулабухова. Подготовка к ЕГЭ-2011. «Легион-М». Ростов-на-Дону 2010

13. УМК «Математика. ЕГЭ-2010». Под редакцией Ф.Ф.Лысенко, С.Ю.Кулабухова. МАТЕМАТИКА Подготовка к ЕГЭ-2010. Учебно-тренировочные тесты. «Легион-М». Ростов-на-Дону 2009

14. ФИПИ ЕГЭ. Универсальные материалы для подготовки учащихся МАТЕМАТИКА 2010 «Интеллект-Центр» 2010

15. А.Ж.Жафяров. Математика. ЕГЭ-2010 Экспресс-консультация. Сибирское университетское издательство, 2010