Форма круга является интересной с точки зрения оккультизма, магии и древних значений, придаваемых ей людьми. Все мельчайшие составляющие вокруг нас - атомы и молекулы - имеют круглую форму. Солнце круглое, Луна круглая, наша планета тоже круглая. Молекулы воды - основы всего живого - тоже имеют круглую форму. Даже природа создает свою жизнь в кругах. Например, можно вспомнить про птичье гнездо - птицы вьют его также в этой форме.

Данная фигура в древних помыслах культур

Круг - это символ единства. Он присутствует в разных культурах во многих мельчайших деталях. Мы даже не придаем столько значения этой форме, как это делали наши предки.

Издавна круг - это знак бесконечной линии, который символизирует время и вечность. В дохристианскую эпоху он был древним знаком колеса солнца. Все точки в эквивалентны, линия круга не имеет ни начала, ни конца.

А центр круга был источником бесконечного вращения пространства и времени для масонов. Круг - конец всех фигур, недаром в нем была заключена тайна творения, по мнению масонов. Форма циферблата часов, имеющая тоже такую форму, обозначает собой непременное возвращение в точку отправления.

Эта фигура имеет глубокий магический и мистический состав, которым его наделили многие поколения людей из разных культур. Но что собой представляет круг как фигура в геометрии?

Что такое окружность

Часто понятие круга путают с понятием окружности. Это немудрено, ведь они между собой очень тесно взаимосвязаны. Даже названия их схожи, что вызывает много путаницы в незрелых умах школьников. Чтобы разобраться, «кто есть кто», рассмотрим эти вопросы подробнее.

По определению, окружностью является такая кривая, которая замкнута, и каждая точка которой находится равноудалённо от точки, именуемой центром окружности.

Что необходимо знать и чем уметь пользоваться, чтобы построить окружность

Чтобы построить окружность, достаточно выбрать произвольную точку, которую можно обозначить как О (именно так в большинстве источников именуются центр окружности, не будем отходить от традиционных обозначений). Следующим этапом идет использование циркуля - инструмента для черчения, который состоит из двух частей с закрепленными на каждой из них либо иглой, либо пишущим элементом.

Эти две части соединены между собой шарниром, что позволяет выбирать произвольный радиус в определенных границах, связанных с длиной этих самых частей. С помощью данного прибора в произвольную точку О устанавливается остриё циркуля, а карандашом уже очерчивается кривая, которая из итоге получается окружностью.

Какими величинами характеризуется окружность

Если соединить при помощи линейки центр окружности и любую произвольную точку на кривой, полученной в результате работы циркулем, мы получим Все такие отрезки, именуемые радиусами, будут равны. Если же соединить при помощи линейки прямой линией две точки на окружности и центр, мы получим ее диаметр.

Для окружности также характерно вычисление ее длины. Чтобы ее найти, необходимо знать либо диаметр, либо радиус окружности и воспользоваться формулой, представленной на рисунке ниже.

В этой формуле С - длина окружности, r - радиус окружности, d - диаметр, а число Пи - константа со значением 3,14.

Кстати, константа Пи была вычислена как раз из окружности.

Оказалось, что независимо от того, каков диаметр круга, соотношение длины окружности и диаметра одинаковое, равное примерно 3,14.

В чем же главное отличие круга от окружности

По сути, окружность - это линия. Она не является фигурой, она является кривой замкнутой линией, не имеющей ни конца, ни начала. А то пространство, что расположено внутри нее - это пустота. Простейшим примером окружности выступает обруч или, по-иному, хула-хуп, который дети используют на занятии физической культуры или же взрослые, для того чтобы создать себе стройную талию.

Теперь мы подошли к понятию того, что такое круг. Это в первую очередь фигура, то есть некое множество точек, ограниченных линией. В случае круга этой линией выступает окружность, рассмотренная выше. Выходит, что круг - это окружность, в середине которой не пустота, а множество точек пространства. Если натянуть на хула-хуп ткань, то мы уже не сможем его крутить, ведь он будет уже не окружностью - его пустота замещена тканью, куском пространства.

Перейдем непосредственно к понятию круга

Круг - геометрическая фигура, которая является частью плоскости, ограниченной окружностью. Для него также характерны такие понятия, как радиус и диаметр, рассмотренные выше при определении окружности. И вычисляются они точно таким же образом. Радиус круга и радиус окружности являются идентичными по размеру. Соответственно, длина диаметра тоже аналогична в обоих случаях.

Так как круг является частью плоскости, то для него характерно наличие площади. Вычислить ее можно снова-таки при помощи радиуса и числа Пи. Формула выглядит следующими образом (см. рисунок ниже).

В данной формуле S - площадь, r - радиус круга. Число Пи - снова та же константа, равная 3,14.

Формула круга, для вычисления которой возможно также использовать диаметр, изменяется и принимает вид, представленный на следующем рисунке.

Одна четвертая появляется из того, что радиус - это 1/2 диаметра. Если радиус в квадрате, выходит, что соотношение преобразуется до вида:

r*r = 1/2*d*1/2*d;

Круг - это фигура, в которой можно выделить отдельные части, например сектор. Выглядит он как часть круга, которая ограничена отрезком дуги и его двумя радиусами, проведенными из центра.

Формула, которая позволяет вычислить площадь данного сектора, представлена на нижеследующем рисунке.

Использование фигуры в задачах с многоугольниками

Также круг - геометрическая фигура, которая часто используется в комплекте с другими фигурами. Например, такими как треугольник, трапеция, квадрат или ромб. Нередко встречаются задачи, где нужно найти площадь вписанного круга или, наоборот, описанного вокруг определенной фигуры.

Вписанный круг является таким, который соприкасается со всеми сторонами многоугольника. С каждой стороной любого многоугольника у окружности должна быть точка соприкосновения.

Для определенного вида многоугольника определение радиуса вписанной окружности вычисляется по отдельным правилам, которые доступно объясняются в курсе геометрии.

Можно привести для примера несколько из них. Формула круга, вписанного в многоугольники, может вычисляться следующим образом (ниже на фото приведено несколько примеров).

Несколько простых примеров из жизни, для того чтобы закрепить понимание разницы между кругом и окружностью

Перед нами Если он открыт, то железная каемка люка - это окружность. Если он закрыт, то крышка выступает в роли круга.

Окружностью также можно назвать любое кольцо - золотое, серебряное или бижутерию. Кольцо, которое держит на себе связку ключей, - тоже окружность.

А вот круглый магнит на холодильнике, тарелка или блинчики, испеченные бабушкой, -это круг.

Горлышко бутылки или банки при виде сверху - это окружность, а вот крышка, которая закроет это горлышко, при том же виде сверху является кругом.

Таких примеров можно привести множество, и для усвоения такого материала их нужно приводить, чтобы дети лучше улавливали связь теории с практикой.

Тема урока

Геометрические фигуры

Что такое геометрическая фигура

Геометрические фигуры – это совокупность множества точек, линий, поверхностей или тел, которые расположены на поверхности, плоскости или пространстве и формирует конечное количество линий.

Термин «фигура» в какой-то степени формально применяется к множеству точек, но как правило фигурой принято называть такие множества, которые расположенные на плоскости и ограничиваются конечным числом линий.

Точка и прямая - это основные геометрические фигуры, расположенные на плоскости.

К самым простым геометрическим фигурам на плоскости принадлежат - отрезок, луч и ломаная линия.

Что такое геометрия

Геометрия – это такая математическая наука, которая занимается изучением свойств геометрических фигур. Если дословно перевести на русский язык термин «геометрия», то он обозначает «землемерие», так как в стародавние времена основной задачей геометрии, как науки, стало измерение расстояний и площадей на поверхности земли.

Практическое применение геометрии бесценно во все времена и независимо от профессии. Без знаний геометрии не может обойтись ни рабочий, ни инженер, ни архитектор и даже художник.

В геометрии есть такой раздел, который занимается изучением различных фигур на плоскости и называется планиметрия.

Вам уже известно, что фигурой называют произвольное множество точек, находящиеся на плоскости.

К геометрическим фигурам принадлежат: точка, прямая, отрезок, луч, треугольник, квадрат, круг и другие фигуры, которые изучает планиметрия.

Точка

Из выше изученного материала вам уже известно, что точка относится к главным геометрическим фигурам. И хотя это самая малая геометрическая фигура, но она необходима для построения других фигур на плоскости, чертеже или изображении и является основой для всех остальных построений. Ведь построение более сложноватых геометрических фигур складывается из множества точек, характерных для данной фигуры.

В геометрии точки обозначают прописными буквами латинского алфавита, например, такими, как: А, В, С, D ….


А теперь подведем итог, и так, с математической точки зрения, точка является таким абстрактным объектом в пространстве, который не имеет объема, площади, длины и других характеристик, но остается одним из фундаментальных понятий в математике. Точка – это такой нульмерный объект, которые не имеет определения. По определению Евклида, точкой называют то, что невозможно определить.

Прямая

Как и точка, прямая относится к фигурам на плоскости, которая не имеет определения, так как состоит из бесконечного множества точек, находящихся на одной линии, которая не имеет ни начала ни конца. Можно утверждать, что прямая линия бесконечна и не имеет предела.


Если же прямая начинается и заканчивается точкой, то она уже не является прямой и называется отрезком.

Но иногда прямая, с одной стороны имеет точку, а с другой нет. В таком случае прямая превращается в луч.

Если же взять прямую и на ее средине поставить точку, то она разобьет прямую на два противоположно направленных луча. Данные лучи являются дополнительными.

Если же перед вами несколько отрезков, соединенных между собой так, что конец первого отрезка становиться началом второго, а конец второго отрезка - началом третьего и т. д., и эти отрезки находятся не на одной прямой и при соединении имеют общую точку, то такая цепочка является ломаной линией.

Задание

Какая ломаная линия называется незамкнутой?
Как обозначается прямая?
Как называется ломаная линия, у которой четыре замкнутых звена?
Какое название имеет ломаная линия с тремя замкнутыми звеньями?

Когда конец последнего отрезка ломаной совпадает с началом 1-го отрезка, то такую ломаную линию называют замкнутой. Примером замкнутой ломаной является любой многоугольник.

Плоскость

Как точка и прямая, так и плоскость является первичным понятием, не имеет определения и у нее нельзя увидеть ни начала, ни конца. Поэтому, при рассмотрении плоскости, мы рассматриваем только ту ее часть, которая ограничивается замкнутой ломаной линией. Таким образом, плоскостью можно считать любую гладкую поверхность. Этой поверхностью может быть лист бумаги или стола.

Угол

Фигура, которая имеет два луча и вершину, называется углом. Место соединения лучей, является вершиной этого угла, а его сторонами считаются лучи, которые этот угол образуют.



Задание:

1. Как в тексте обозначают угол?
2. Какими единицами можно измерить угол?
3. Какие бывают углы?

Параллелограмм

Параллелограмм - это четырехугольник, противолежащие стороны которого попарно параллельны.

Прямоугольник, квадрат и ромб являются частными случаями параллелограмма.

Параллелограмм, имеющий прямые углы равные 90 градусам, является прямоугольником.

Квадрат - это тот же параллелограмм, у него и углы и стороны равны.

Что до определения ромба, то это такая геометрическая фигура, все стороны которого равны.

Кроме того, следует знать, что любой квадрат является ромбом, но не каждый ромб может быть квадратом.

Трапеция

При рассмотрении такой геометрической фигуры, как трапеция, можно сказать, что в частности она, как и четырехугольник имеет одну пару параллельных противолежащих сторон и является криволинейной.

Окружность и круг

Окружность - геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом.


Треугольник

Также к простым геометрическим фигурам принадлежит и уже изучаемый вами треугольник. Это один из видов многоугольников, у которого часть плоскости ограничена тремя точками и тремя отрезками, которые соединяют эти точки попарно. Любой треугольник имеет три вершины и три стороны.

Задание: Какой треугольник называют вырожденным?



Многоугольник

К многоугольникам относятся геометрические фигуры разных форм, у которых замкнутая ломаная линия.


В многоугольнике все точки, которые соединяют отрезки, являются его вершинами. А отрезки, из которых состоит многоугольник, являются его сторонами.

А известно ли вам, что возникновение геометрии уходит в глубину веков и связано с развитием различных ремесел, культуры, искусства и наблюдением за окружающим миром. Да и название геометрических фигур является тому подтверждением, так как их термины, возникли не просто так, а благодаря своей схожести и подобию.

Ведь термин «трапеция» в переводе с древнегреческого языка от слова «трапезион» обозначает столик, трапеза и другие производные слова.

«Конус» произошел от греческого слова «конос», что в переводе звучит, как сосновая шишка.

«Линия» имеет латинские корни и происходит от слова «линум», в переводе это звучит, как льняная нить.

А знаете ли вы, что если взять геометрические фигуры с одинаковым периметром, то среди них обладателем самой большой площади оказался круг.

И круг - геометрические фигуры, взаимосвязанные между собой. есть граничная ломаная линия (кривая) круга ,

Определение. Окружность - замкнутая кривая, каждая точка которой равноудалена от точки, называемой центром окружности.

Для построения окружности выбирается произвольная точка О, принятая за центр окружности, и с помощью циркуля проводится замкнутая линия.

Если точку О центра окружности соединить с произвольными точками на окружности, то все полученные отрезки будут между собой равны, и называются такие отрезки радиусами, сокращенно обозначаются латинской маленькой или большой буквой «эр» (r или R ). Радиусов в окружности можно провести столько же, сколько точек имеет длина окружности.

Отрезок, соединяющий две точки окружности и проходящий через ее центр, называется диаметром. Диаметр состоит из двух радиусов , лежащих на одной прямой. Диаметр обозначается латинской маленькой или большой буквой «дэ» (d или D ).

Правило. Диаметр окружности равен двум ее радиусам .

d = 2r
D = 2R

Длина окружности вычисляется по формуле и зависит от радиуса (диаметра) окружности. В формуле присутствует число ¶, которое показывает во сколько раз длина окружности больше, чем ее диаметр. Число ¶ имеет бесконечное число знаков после запятой. Для вычислений принято ¶ = 3,14.

Длина окружности обозначается латинской большой буквой «цэ» (C ). Длина окружности пропорциональна ее диаметру. Формулы для расчета длины окружности по ее радиусу и диаметру:

C = ¶d
C = 2¶r

  • Примеры
  • Дано: d = 100 см.
  • Длина окружности: C = 3,14 * 100 см = 314 см
  • Дано: d = 25 мм.
  • Длина окружности: С = 2 * 3,14 * 25 = 157 мм

Секущая окружности и дуга окружности

Всякая секущая (прямая линия) пересекает окружность в двух точках и делит ее на две дуги. Величина дуги окружности зависит от расстояния между центром и секущей и измеряется по замкнутой кривой от первой точки пересечения секущей с окружностью до второй.

Дуги окружности делятся секущей на большую и малую, если секущая не совпадает с диаметром, и на две равные дуги, если секущая проходит по диаметру окружности.

Если секущая проходит через центр окружности, то ее отрезок, расположенный между точками пересечения с окружностью, есть диаметр окружности, или самая большая хорда окружности.

Чем дальше секущая расположена от центра окружности, тем меньше градусная мера меньшей дуги окружности и больше - большей дуги окружности, а отрезок секущей, называемый хордой , уменьшается по мере удаления секущей от центра окружности.

Определение. Кругом называется часть плоскости, лежащая внутри окружности.

Центр, радиус, диаметр окружности являются одновременно центром, радиусом и диаметром соответствующего круга.

Так как круг - это часть плоскости, то одним из его параметров является площадь.

Правило. Площадь круга (S ) равна произведению квадрата радиуса (r 2 ) на число ¶.

  • Примеры
  • Дано: r = 100 см
  • Площадь круга:
  • S = 3,14 * 100 см * 100 см = 31 400 см 2 ≈ 3м 2
  • Дано: d = 50 мм
  • Площадь круга:
  • S = ¼ * 3,14 * 50 мм * 50 мм = 1 963 мм 2 ≈ 20 см 2

Если в круге провести два радиуса к разным точкам окружности, то образуется две части круга, которые называется секторами . Если в круге провести хорду, то часть плоскости между дугой и хордой называется сегментом окружности .

ольга ковалева
РЭМП «Геометрическая фигура Круг»

Организованная образовательная деятельность РЭМП «Геометрическая фигура КРУГ».

Коррекционно-развивающие: - развивать зрительную память, воображение, творчество, связную речь, расширяем словарный запас.

Образовательные: - уточнять знания детей о геометрической фигуре-круг;

Воспитательные: - воспитывать аккуратность при работе, внимательность, усидчивость, самостоятельность.

Демонстрационный материал: круг синего цвета, рисунок с изображением различных круглых предметов.

Раздаточный материал: задания на листочках на каждого ребенка, цветные карандаши.

Предметный: круг, рисунок, предметы.

Слова действия: отгадать, найти, закрасить.

Слова признаки: большой, синий.

познание, социально-коммуникативное, речевое, физическое.

Деятельность воспитателя

Ребята я сегодня принесла вам геометрическую фигуру, хотите узнать какую?

Отгадайте, пожалуйста, мою загадку:

«Нет углов у меня

И похож на блюдце я,

На кольцо, на колесо.

Кто же я такой, друзья?»

Правильно – это круг (показ геометрической фигуры).

Ваня и т. д. что это за геометрическая фигура?

Маша и т. д. круг, какого цвета?

Дима и т. д. круг, какого размера?

Ребята, поиграем еще в одну игру, которая называется «Посмотри и найди». Подойдите, пожалуйста, к мольберту. Перед вами рисунок, вы внимательно посмотрите и тот, кого я назову, выйдет и найдет предмет круглой формы и назовет его.

Молодцы! Вы так быстро нашли и назвали все предметы, потому, что вы какие?

Правильно дружные, у нас есть игра, которая так и называется «Друзья».

Играем в игру «Друзья».

Ф-ка «Друзья».

Молодцы! Предлагаю поиграть еще в одну игру, которая называется «Найди и закрась». Поиграем, подойдем к столу

Перед вами лежит рисунок, вы внимательно посмотрите, найдете только круги и закрасите их мальчики зеленым цветом, а девочки желтым цветом. Семен, какую геометрическую фигуру будешь искать? Дима, каким цветом будешь закрашивать круги? Серафима, каким цветом ты будешь закрашивать круги?

Чтобы пальчики вас слушались, надо поиграть с ними.

П/г «Веселые пальчики».

Самостоятельная деятельность детей. Индивидуальная помощь при необходимости.

Алиса, Ваня, Вика, какую фигуру ты закрашивал? Правильно круг. Скажем все вместе – круг.

Серафима, Алиса и т. д. каким цветом твои круги?

Коля, и т. д. каким цветом ты закрашивал круги?

Ребята вы сегодня молодцы!

Ребята поиграем в еще одну игру «Хлопни, топни, покружись». Если вам все понравилось, и вы со всем, справились, хлопните в ладошки, если вам было что-то сделать трудно и вы немного загрустили, покружитесь, ну а если кому-то было очень грустно и трудно, топните ножкой (воспитатель смотрит кто какие движения, показал, чтобы в дальнейшем проанализировать свое занятие).

Воспитатель хвалит детей за старательность.

Публикации по теме:

Цель:- познакомить с геометрической фигурой- овалом; -учить считать до 2; -учить соотносить цифру с количеством предметов; -закрепление.

Конспект НОД по ФЭМП «Игра-цирковое представление «Клоун Клепа». Геометрическая фигура треугольник» Конспект непосредственно-образовательной деятельности (НОД) по образовательной области «Познавательное развитие» НОД - ФЭМП Игра –цирковое.

Конспект НОД в коррекционной средней группе VII вида «Понятия длинный, короткий. Геометрическая фигура овал» Тема: «Понятия: короткий, длинный. Геометрическая фигура: овал» Цель: Учить сравнивать предметы по величине (короткий, длинный). Закреплять.

Конспект НОД по РЭМП Конспект НОД по РЭМП в средней группе. Задачи: 1. Развивать умение конструировать плоскостные фигуры, развивать воображение. 2. Закреплять.

Является теперь возможность установить иной взгляд на получение угла: каждый угол можно рассматривать, как результат вращения луча вокруг точки. Если мы имеем луч OA и, отметив его исходное положение, станем его вращать вокруг точки O (по плоскости), то, дойдя, например, до положения OM этого вращающегося луча, получим ∠AOM, являющийся результатом этого вращения (чер. 26).

Обратив внимание на какую-либо точку A этого луча OA, мы видим, что эта точка описывает во время вращения луча некоторую линию. Называем ее именем «круг» или «окружность». Так как точки O и A определяют отрезок OA, то устанавливаем возможность получения окружности вращением отрезка около одного из его концов. Строим круг при помощи циркуля (ножки циркуля являются как бы концами воображаемого отрезка) и вводим термины: центр, радиус, диаметр, площадь круга (или окружности), понимая под этим именем часть плоскости, ограничиваемую кругом (или окружностью), дуга и хорда. Является также возможность установить деление всех точек плоскости на точки внутри круга, на круге и вне круга. Легко также явится возможным установить возможность иметь на одном круге равные и неравные дуги.

Итак, круг рассматривается нами как линия, которую опишет, например, точка A при вращении отрезка OA около O (чер. 27). Но ясно, что мы получим все то же самое, если начнем вращение с радиуса OB (а не OA) или с радиуса OC или OD и т. п. Это обстоятельство является указанием на полную симметрию круга относительно центра (для учащихся этот род симметрии приходится выражать фразами вроде: «в круге, куда из центра ни смотреть бы, все должно быть одинаковым»). Эта симметрия позволит установить, что если, например, построить в разных местах круга равные хорды (AB = CD = EF …) (а это легко сделать при помощи циркуля, чер. 28) и соединить лучами концы этих хорд с центром O, то получим и равные дуги (◡AB = ◡CD = ◡EF = …) и равны центральные углы (∠AOB = ∠COD = ∠EOF = …). Также ясно, что если удастся построить при центре равные углы, то они высекут из круга равные дуги и определят собою равные хорды, стягивающие эти дуги. Итак, здесь устанавливается ряд положений: равным центральным углам в круге соответствуют равные хорды и равные дуги; равным хордам (или дугам) соответствуют равные центральные углы. Выясняется также, что большему центральному углу соответствует большая дуга и т. п. Подробнее на этом останавливаться не приходится, и тем более не следует из этих положений делать теоремы, подлежащие доказательствам, цель педагогического достижения здесь такова – должно сделать каждому ученику: 1) ясною симметрию круга относительно центра и 2) ясным, что из этой симметрии вытекают вышеуказанные положения.

Выясненными свойствами можно пользоваться для построения угла, равного данному, сначала при той же вершине, а затем, когда уяснится (а это делается легко, мимоходом), что круги с равными радиусами равны (конгруэнтны) и при разных вершинах (чер. 29). Пусть имеем ∠1; приняв его вершину за центр, строим круг произвольным радиусом, на этом круге определится дуга MN (или хорда MN, не построенная на чертеже), перенесем при помощи циркуля эту хорду (или дугу) на другое место круга, например, в положение M`N`, соединим концы этой хорды с центром, и мы должны получить угол, равный ∠1. Затем строим круг тем же радиусом, принимая за центр иную точку (а не точку O), после чего является возможным получить угол, равный ∠1 при другой вершине. (В моем курсе (Н. Извольский. – «Геометрия на плоскости») была избрана иная система. Опыт показывает мне предпочтительность системы, излагаемой в настоящей книге; поэтому в 3-м издании «Геометрии на плоскости» я провожу эту систему.) Вводятся упражнения: 1) построить угол, равный данному, при данной вершине так, чтобы одна его сторона шла по данному лучу; 2) построить сумму или разность двух заданных углов (имеющих разные вершины).

Далее, также опираясь на получение круга вращением отрезка, можно установить симметрию круга относительно диаметра: безразлично, вращать ли луч OA для получения круга по стрелке 1 или по стрелке 2 (чер. 30). Отсюда явствует, что части круга, расположенные по разные стороны диаметра AB, тождественны: если плоскость перегнуть по диаметру AB, то одна часть круга совпадет с другою.

Удобно, напомнив учащимся одну из их любимых забав в детстве (а именно: капнуть несколько капель чернил на лист бумаги, перегнуть его, размазать и, развернув его вновь, получить фигуру, симметричную относительно линии перегиба), здесь установить общее понятие о симметрии фигур относительно оси: если при перегибании плоскости по прямой линии одна часть какой-либо фигуры совпадает с другой, то эта фигура симметрична относительно прямой перегиба или эта прямая (перегиба) есть ось симметрии фигуры. Для круга осью симметрии может служить любой диаметр.

Если рассмотреть теперь фигуры (их можно строить по разному), состоящие из двух кругов, то учащиеся должны суметь найти ось симметрии каждой из этих фигур. Здесь уясняется симметрия точек пересечения двух кругов относительно их линии центров.