Джеймс Максвелл - физик, который первым сформулировал основы классической электродинамики. Их применяют до сих пор. Известно знаменитое уравнение Максвелла, именно он ввел в эту науку такие понятия, как ток смещения, электромагнитное поле, предсказал электромагнитные волны, природу и давление света, сделал множество других важных открытий.

Детство физика

Физик Максвелл родился в XIX веке, в 1831 году. Он появился на свет в шотландском Эдинбурге. Герой нашей статьи происходил из рода Клерков, его отец владел фамильным имением в Южной Шотландии. В 1826 году он нашел себе супругу по имени Фрэнсис Кей, они сыграли свадьбу, а через 5 лет у них родился Джеймс.

В младенчестве Максвелл с родителями переехал в имение Миддлби, здесь он и провел детство, которое было сильно омрачено смертью матери от рака. Еще в первые годы жизни он активно интересовался окружающим миром, увлекался поэзией, его окружали так называемые "научные игрушки". Например, предшественник кинематографа "магический диск".

В 10-летнем возрасте он начал заниматься с домашним учителем, но это оказалось неэффективным, тогда в 1841 году он переехал в Эдинбург к своей тете. Здесь он начал посещать Эдинбургскую академию, в которой упор делался на классическое образование.

Учеба в Эдинбургском университете

В 1847 году будущий физик Джеймс Максвелл начинает учиться в Тут он изучал труды по физике, магнетизму и философии, ставил многочисленные лабораторные опыты. Больше всего его интересовали механические свойства материалов. Он их исследовал с помощью поляризованного света. Такая возможность у физика Максвелла появилась после того, как его коллега Уильям Николь подарил ему два собственноручно собранных поляризационных прибора.

В то время он изготавливал большое количество моделей из желатина, подвергал их деформациям, следил за цветными картинами в поляризованном свете. Сравнивая свои опыты с теоретическими изысканиями, Максвелл вывел много новых закономерностей и проверил старые. В то время результаты этой работы были чрезвычайно важны для строительной механики.

Максвелл в Кембридже

В 1850 году Максвелл желает продолжить образование, хотя отец и не в восторге от этой затеи. Ученый отправляется в Кембридж. Там он поступает в недорогой колледж Питерхаус. Имевшаяся там учебная программа не удовлетворяла Джеймса, к тому же учеба в Питерхаусе не давала никаких перспектив.

Только в конце первого семестра ему удалось убедить отца и перевестись в более престижный Тринити-колледж. Через два года он становится стипендиатом, получает отдельную комнату.

При этом Максвелл практически не занимается научной деятельностью, больше читает и посещает лекции видных ученых своего времени, пишет стихи, участвует в интеллектуальной жизни университета. Герой нашей статьи много общается с новыми людьми, за счет этого компенсирует природную застенчивость.

Интересным был распорядок дня Максвелла. С 7 утра до 5 вечера он трудился, затем засыпал. Снова вставал в 21.30, читал, а с двух до полтретьего ночи занимался бегом прямо в коридорах общежития. После этого снова ложился, чтобы проспать до самого утра.

Работы по электричеству

Во время пребывания в Кембридже физик Максвелл всерьез увлекается проблемами электричества. Он исследует магнитных и электрических эффектов.

К тому времени Майкл Фарадей выдвинул теорию электромагнитной индукции, силовых линий, способных соединять отрицательный и положительный электрические заряды. Однако такая концепция действия на расстоянии не нравилась Максвелла, интуиция ему подсказывала, что где-то есть противоречия. Поэтому он решил построить математическую теорию, которая объединила бы результаты, полученные сторонниками дальнодействия, и представление Фарадея. Он использовал метод аналогии и применил результаты, которых ранее добился Уильямом Томсоном при анализе процессов теплопередачи в твердом теле. Так он впервые дал аргументированное математическое обоснование тому, как идет передача электрического действия в определенной среде.

Цветные снимки

В 1856 году Максвелл отправляется в Абердин, где вскоре женится. В июне 1860 году на съезде Британской ассоциации, который проходит в Оксфорде, герой нашей статьи делает важный доклад о своих исследования в области теории цветов, подкрепляя их конкретными экспериментами с помощью цветового ящика. В том же году его награждают медалью за работу над соединением оптики и цветов.

В 1861 году он предоставляет в Королевском институте неопровержимые доказательства верности своей теории - это цветная фотография, над которой он работал еще с 1855 года. Такого в мире еще никто не делал. Негативы он снял через несколько фильтров - синий, зеленый и красный. Освещая негативы через те же фильтры, ему удается получить цветное изображение.

Уравнение Максвелла

Сильное влияние в биографии Джеймса Клерка Максвелла на него оказали и Томсон. В результате он приходит к заключению, что магнетизм обладает вихревой природой, а электрический ток - поступательной. Он создает механическую модель, чтобы наглядно все продемонстрировать.

В результате ток смещения привел к знаменитому уравнению непрерывности, которое до сих пор используется для электрического заряда. По мнению современников, это открытие стало самым значимым вкладом Максвелла в современную физику.

Последние годы жизни

Последние годы своей жизни Максвелл провел в Кембридже на различных административных должностях, становился президентом философского общества. Вместе с учениками исследовал распространение волн в кристаллах.

Сотрудники, которые с ним работали, неоднократно отмечали, что он был максимально прост в общении, всецело отдавался исследованиям, имел уникальную способность проникать в суть самой проблемы, был очень проницательным, при этом адекватно реагировал на критику, никогда не стремился стать знаменитым, но в то же время был способен на весьма утонченный сарказм.

Первые симптомы серьезного заболевания у него проявились в 1877 году, когда Максвеллу исполнилось всего 46 лет. Он все чаще стал задыхаться, ему трудно было есть и проглатывать пищу, возникали сильные боли.

Уже через два года ему было совсем тяжело читать лекции, выступать на публике, он очень быстро уставал. Врачи отмечали, что его состояние постоянно ухудшалось. Диагноз медиков был неутешителен - рак брюшной полости. В конце года, окончательно ослабев, он вернулся из Гленлэра в Кембридж. Облегчить его страдания пытался доктор Джеймс Паджет, известный в то время.

В ноябре 1879 году Максвелл умер. Гроб с его телом перевезли из Кембриджа в фамильное имение, похоронив рядом с родителями на небольшом деревенском кладбище в Партоне.

Олимпиада в честь Максвелла

Память о Максвелле сохранилась в названиях улиц, зданий, астрономических объектов, наград и благотворительных фондов. Также ежегодно в Москве проходит олимпиада по физике имени Максвелла.

Она проходит для учеников с 7 по 11 классы включительно. Для школьников 7-8 классов результаты олимпиады Максвелла по физике являются заменой регионального и Всероссийского этапа олимпиады школьников по физике.

Чтобы участвовать в региональном этапе, нужно получить достаточное количество баллов на предварительном отборе. Региональный и финальный этапы олимпиады Максвелла по физике проходят в два этапа. Один из них теоретический, а второй - экспериментальный.

Интересно, что задания олимпиады Максвелла по физике на всех этапах совпадают по уровню сложности с испытаниями финальных этапов Всероссийской олимпиады школьников.

МАКСВЕЛЛ Джеймс Клерк (Maxwell James Clerk) (13. VI .1831 - 5. XI .1879) - английский физик, член Эдинбургского (1855) и Лондонского (1861) королевских об-в. Р. в Эдинбурге. Учился в Эдинбургском (1847-50) и Кембриджском (1850-54) ун-тах. По окончании последнего непродолжительный период преподавал в Тринити колледж, в 1856 - 60 - профессор Абердинского ун-та, в 1860 - 65 - Лондонского королевского колледжа, с 1871 - первый профессор экспериментальной физики в Кембридже. Под его руководством создана известная Кавендишская лаборатория в Кембридже, которую он возглавлял до конца своей жизни.

Работы посвящены электродинамике, молекулярной физике, общей статистике, оптике, механике, теории упругости. Наиболее весомый вклад Максвелл сделал в молекулярную физику и электродинамику.
В кинетической теории газов, одним из основателей которой является, установил в 1859 статистический закон, описывающий распределение молекул газа по скоростям (распределение Максвелла). В 1866 он дал новый вывод функции распределения молекул по скоростям, основанный на рассмотрении прямых и обратных столкновений, развил теорию переноса в общем виде, применив ее к процессам диффузии, теплопроводности и внутреннего трения, ввел понятие времени релаксации.
В 1867 первый показал статистическую природу второго начала термодинамики («демон Максвелла»), в 1878 ввел термин «статистическая механика».

Самым большим научным достижением Максвелла является созданная им в 1860 - 65 теория электромагнитного поля, которую он сформулировал в виде системы нескольких уравнений (уравнения Максвелла), выражающих все основные закономерности электромагнитных явлений (первые дифференциальные уравнения поля были записаны Максвеллом в 1855 - 56). В своей теории электромагнитного поля Максвелл использовал (1861) новое понятие - ток смещения, дал (1864) определение электромагнитного поля и предсказал (1865) новый важный эффект: существование в свободном пространстве электромагнитного излучения (электромагнитных волн) и его распространение в пространстве со скоростью света. Последнее дало ему основание считать (1865) свет одним из видов электромагнитhoго излучения (идея электромагнитной природы света) и раскрыть связь между оптическими и электромагнитными явлениями. Теоретически вычислил давление света (1873). Установил соотношение ε = n 2 (1860).
Предсказал эффекты Стюарта - Толмена и Эйнштейна - де Гааза (1878), скин-эффект.

Также сформулировал теорему в теории упругости (теорема Максвелла), установил соотношения между основными теплофизическими параметрами (термодинамические соотношения Максвелла), развивал теорию цветного зрения, исследовал устойчивость колец Сатурна, показав, что кольца не являются твердыми или жидкими, а представляют собой рой метеоритов.
Сконструировал ряд приборов.
Был известным популяризатором физических знаний.
Опубликовал впервые (1879) рукописи работ Г. Кавендиша .

Сочинения:

  1. Избранные сочинения по теории электромагнитного поля . - Государственное издательство технико-теоретической литературы. М., 1952 (Серия "Классики естествознания).
  2. Речи и статьи . Государственное издательство технико-теоретической литературы. М.-Л., 1940 (Серия "Классики естествознания).
  3. Материя и движение . - Ижевск, НИЦ "Регулярная и хаотическая динамика", 2001.
  4. Трактат об электричесве и магнетизме. - М., Наук, 1989 (Серия "Классики науки"). Том 1. Том 2 .
  5. Отрывки из работ:

Литература:

  1. В. Карцев. Максвелл . Жизнь замечательных людей. Молодая гвардия; Москва; 1974

Фильмы :

Джеймс Кларк Максвелл прожил всего 48 лет, но его вклад в математику, физику и механику трудно переоценить. Сам Альберт Эйнштейн заявил, что теорией относительности он обязан уравнениям Максвелла для электромагниного поля.

В Эдинбурге на улице Индии есть дом, на стене которого висит мемориальная доска:
"Джеймс Кларк Максвелл
Естествоиспытатель
Родился здесь 13 июня 1831 года".

Будущий великий ученый принадлежал к старинной дворянской семье и большую часть детства провел в имении своего отца Миддлби, располагавшемся в Южной Шотландии. Он рос любопытным и активным ребенком, и уже тогда родные отмечали, что его любимые вопросы: "Как это сделать?" и "Как это происходит?".

Когда Джеймсу исполнилось десять, по решению семьи, он поступил в Эдинбургскую академию, где учился прилежно, хотя и не проявляя никаких особых талантов. Однако увлекшись геометрией, Максвелл изобрел новый способ рисования овалов. Содержание его работы, посвященной геометрии овальных кривых, было изложено в "Трудах Эдинбургского королевского общества" за 1846 год. Автору тогда исполнилось только четырнадцать лет. В шестнадцать Максвелл отправился в Эдинбургский университет, выбрав основными предметами физику и математику. Кроме того, он заинтересовался проблемами философии, прослушал курсы логики и метафизики.

Уже упомянутые "Труды Эдинбургского королевского общества" опубликовали еще два сочинения талантливого студента - о кривых качения и об упругих свойствах твердых тел. Последняя тема имела важное значение для строительной механики.

Проучившись в Эдинбурге, девятнадцатилетний Максвелл перебрался в Кембриджский университет, сначала в колледж Святого Петра, потом в более престижный колледж Святой Троицы. Изучение математики там было поставлено на более глубоком уровне, и требования к студентам заметно выше, чем в Эдинбурге. Несмотря на это, Максвеллу удалось показать второй результат на публичном трехступенчатом экзамене по математике на степень бакалавра.

В Кембридже Максвелл много общался с разными людьми, вступил в клуб апостолов, состоявший из 12 членов, объединенных широтой и оригинальностью мышления. Он участвовал в деятельности Рабочего колледжа, созданного для образования простых людей, читал там лекции.

Осенью 1855 года, когда Максвелл закончил учебу, его приняли в состав колледжа Святой Троицы и предложили остаться преподавать. Чуть позже он вошел в Эдинбургское королевское общество - национальное научное объединение Шотландии. В 1856 году Максвелл покинул Кембридж ради профессорского места в Маришальском колледже шотландского города Абердина.

Подружившись с директором колледжа преподобным Дэниэлом Дьюаром, Максвелл познакомился с его дочерью Кэтрин Мэри. Они объявили о помолвке в конце зимы 1858 года, а в июне обвенчались. По воспоминаниям биографа и друга ученого Льюиса Кэмпбелла, их брак оказался примером невероятной преданности. Известно, что Кэтрин помогала мужу в лабораторных исследованиях.

В целом, абердинский период был очень плодотворным в жизни Максвелла. Еще в Кембридже он занялся исследованием строения колец Сатурна, и в 1859 году в свет вышла его монография, где он доказывал, что они представляют собой твердые тела, вращающиеся вокруг планеты. Тогда же ученый написал статью "Пояснения к динамической теории газов", в которой вывел функцию, отражающую распределение молекул газа в зависимости от их скорости, впоследствии названную распределением Максвелла. Это был один из первых примеров статистических законов, которые описывают поведение не одного объекта или отдельной частицы, а поведение множества объектов или частиц. Придуманный исследователем позже "демон Максвелла" - мысленный эксперимент, в котором некое разумное бестелесное существо разделяет молекулы газа по скоростям, - продемонстрировал статистический характер второго закона термодинамики.

В 1860 году несколько колледжей объединили в Абердинский университет и часть кафедр упразднили. Под сокращение попал и молодой профессор Максвелл. Но он недолго оставался без работы, практически сразу его пригласили преподавать в Лондонский королевский колледж, где он пробыл последующие пять лет.

В том же году на собрании Британской ассоциации ученый прочел доклад о своих разработках, касающихся восприятия цвета, за которые позже получил медаль Румфорда от Лондонского королевского общества. Доказывая правоту собственной теории цвета, Максвелл предъявил на суд публики новинку, поразившую ее воображение, - цветную фотографию. До него никто не мог ее получить.

В 1861 году Максвелл получил назначение в Комитет по эталонам, созданный для того, чтобы определить главные электрические единицы.

Кроме того, Максвелл не отказался от исследований упругости твердых тел и за полученные результаты удостоился премии Кейта Эдинбургского королевского общества.

Работая в Лондонском королевском колледже, Максвелл завершил создание своей теории электромагнитного поля. Саму идею поля предложил знаменитый физик Майкл Фарадей, но его знаний не хватало, чтобы представить свое открытие на языке формул. Математическое описание электромагнитных полей стало главной научной проблемой для Максвелла. Опираясь на метод аналогий, благодаря которому было зафиксировано сходство между электрическим взаимодействием и теплопередачей в твердом теле, ученый перенес данные исследований теплоты на электричество и первым смог математически обосновать передачу электрического действия в среде.

1873 год ознаменовался выходом "Трактата об электричестве и магнетизме", чье значение сопоставимо со значением "Математических начал философии" Ньютона. С помощью уравнений Максвелл описал электромагнитные явления, сделал выводы о том, что существуют электромагнитные волны, что они распространяются со скоростью света и сам свет имеет электромагнитную природу.

"Трактат" издали, когда Максвелл уже два года (с 1871) занимал должность главы физической лаборатории Кембриджского университета, чье создание означало признание в ученом сообществе огромной важности экспериментального подхода к исследованиям.

Не менее значимой задачей Максвелл видел популяризацию науки. Для этого он писал статьи для энциклопедии "Британника", работы, где пытался на простом языке объяснить основные представления о материи, движении, электричестве, атомах и молекулах.

В 1879 году здоровье Максвелла сильно пошатнулось. Он знал, что тяжело болен, и его диагноз - рак. Понимая, что обречен, он мужественно переносил боли и спокойно встретил смерть, наступившую 5 ноября 1879 года.

Хотя труды Максвелла получили достойную оценку еще при жизни ученого, но их настоящая значимость стала понятна только годы спустя, когда в ХХ веке понятие поля надежно закрепилось в научном обиходе, а Альберт Эйнштейн заявил, что уравнения Максвелла для электромагнитного поля предшествовали его теории относительности.

Память ученого увековечена в названиях одного из строений Эдинбургского университета, главного корпуса и концертного холла Сэлфордского университета, Центра Джеймса Клерка Максвелла Эдинбургской академии. В Абердине и Кембридже можно найти улицы, названные в его честь. В Вестминстерском аббатстве есть мемориальная плита, посвященная Максвеллу, а посетители картинной галереи Абердинского университета могут увидеть бюст ученого. В 2008 году в Эдинбурге был установлен бронзовый памятник Максвеллу.

Множество организаций и наград также связаны с именем Максвелла. Физическая лаборатория, которой он руководил, учредила стипендию для самых способных аспирантов. Британский Институт физики вручает медаль и премию Максвелла молодым физикам, которые внесли значительный вклад в науку. В Университете Лондона есть должность максвелловского профессора и студенческое общество Максвелла. Созданный в 1977 году, Фонд Максвелла организует конференции по физике и математике.

Наряду с признанием Максвелл был назван самым известным шотландским ученым по итогам опроса 2006 года, всё это свидетельствует о той великой роли, которую он сыграл в истории науки.

(13.06.1831 - 05.11.1879)

((1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики. Родился 13 июня 1831 в Эдинбурге в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847-1850), затем в Кембриджском (1850-1854) университете. В 1855 стал членом совета Тринити-колледжа, в 1856-1860 был профессором натурфилософии Маришал-колледжа Абердинского университета, с 1860 возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Здесь он продолжал заниматься наукой, написал несколько сочинений по физике и математике.

В 1871 в Кембриджском университете была учреждена кафедра экспериментальной физики, которую Максвелл согласился занять. Здесь он взял на себя бремя по организации при кафедре научно-исследовательской лаборатории, первой физической лаборатории в Англии. Средства на ее создание были пожертвованы герцогом Девонширским, лордом-канцлером Университета, но все организационные работы велись под наблюдением и по указаниям Максвелла (кроме того, он вложил в нее немало личных средств). Лаборатория открылась 16 июня 1874 и была названа Кавендишской - в честь замечательного английского ученого конца 18 в. Г.Кавендиша, которому герцог доводился внучатым племянником. Лаборатория была приспособлена как для научной работы, так и для лекционных демонстраций. Впоследствии она стала одной из самых знаменитых физических лабораторий мира.

Последние годы жизни Максвелл много занимался подготовкой к печати и изданием огромного рукописного наследия Кавендиша - его теоретических и экспериментальных работ по электричеству. Два больших тома вышли в октябре 1879. Умер Максвелл в Кембридже 5 ноября 1879. После отпевания в часовне Тринити-колледжа он был похоронен на фамильном кладбище в Шотландии.

Свою первую научную работу Максвелл выполнил еще в школе: в возрасте 15 лет он придумал простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его "Трудах". В бытность членом Тринити-колледжа он занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца. В своих экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета ("диск Максвелла"). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую - желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. Разные комбинации цветов давали разные оттенки. Несколько позже Максвелл с успехом демонстрировал этот прибор на своих лекциях в Королевском обществе. В 1860 за работы по восприятию цвета и оптике он был награжден медалью Румфорда.

В 1857 Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна, в котором Максвелл решил принять участие. Эти образования были открыты Галилеем в начале 17 в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура является устойчивой только в том случае, если она состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж.Адамса и сразу же стал лидером математической физики.

Одной из первых работ Максвелла, внесших наиболее весомый вклад в науку, стала его кинетическая теория газов. В 1859 он выступил на заседании Британской ассоциации с докладом, в котором дал вывод распределения молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р.Клаузиуса, который ввел понятие "средней длины свободного пробега" (среднего расстояния, проходимого молекулой газа между ее столкновением с другой молекулой). Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве и претерпевающих лишь упругие столкновения. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что "частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т.е. в соответствии со статистикой Гаусса". Так впервые в описание физических явлений вошла статистика. В рамках своей теории Максвелл объяснил закон Авогадро, диффузию, теплопроводность, внутреннее трение (теория переноса).

В 1867 показал статистическую природу второго начала термодинамики ("демон Максвелла"). В 1831, в год рождения Максвелла, М.Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А.М.Ампер и Ф.Нейман, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Они заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Максвелл самым тщательным образом изучил работы Фарадея и почти всю свою творческую жизнь развивал идеи поля.

Следуя Фарадею, он разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе Фарадеевы силовые линии (Faraday"s Lines of Force), направленной Фарадею в 1857. В 1860-1865 Максвелл создал теорию электромагнитного поля, которую он сформулировал в виде системы уравнений (уравнения Максвелла), описывающих все основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е - магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е - закон сохранения количества электричества; 4-е - вихревой характер магнитного поля. Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы электричества к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3Ч1010 см/с, что очень близко к скорости света, измеренной семью годами ранее французским физиком А.Физо.

В октябре 1861 Максвелл сообщил Фарадею о своем открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап был отражен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвел знаменитый Трактат об электричестве и магнетизме (1873). Экспериментальная и техническая задача получения и использования электромагнитных волн в широком спектральном диапазоне, в котором на долю видимого света приходится лишь малая часть, была успешно решена последующими поколениями ученых и инженеров. Применения теории Максвелла дали миру все виды радиосвязи, включая радиовещание и телевидение, радиолокацию и навигационные средства, а также средства для управления ракетами и спутниками. 1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики.

МАКСВЕЛЛ, ДЖЕЙМС КЛЕРК (Maxwell, James Clerk) (1831–1879), английский физик. Родился 13 июня 1831 в Эдинбурге в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847–1850), затем в Кембриджском (1850–1854) университетах. В 1855 стал членом совета Тринити-колледжа, в 1856–1860 был профессором Маришал-колледжа Абердинского университета, с 1860 возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Продолжал заниматься наукой, написал несколько сочинений по физике и математике. В 1871 в Кембриджском университете занял кафедру экспериментальной физики. Организовал научно-исследовательскую лабораторию, которая открылась 16 июня 1874 и была названа Кавендишской – в честь Г.Кавендиша .

Свою первую научную работу Максвелл выполнил еще в школе, придумав простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его «Трудах». В бытность членом совета Тринити-колледжа занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца . В экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета (диск Максвелла). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую – желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. В 1860 за работы по восприятию цвета и оптике Максвелл был награжден медалью Румфорда.

В 1857 Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна. Эти образования были открыты Галилеем в начале 17 в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура может быть устойчивой только в том случае, если состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж.Адамса.

Одной из первых работ Максвелла стала его кинетическая теория газов. В 1859 ученый выступил на заседании Британской ассоциации с докладом, в котором привел распределение молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р.Клаузиуса, который ввел понятие «средней длины свободного пробега». Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что «частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т.е. в соответствии со статистикой Гаусса ». В рамках своей теории Максвелл объяснил закон Авогадро , диффузию, теплопроводность, внутреннее трение (теория переноса). В 1867 показал статистическую природу второго начала термодинамики («демон Максвелла»).

В 1831, в год рождения Максвелла, М.Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А.М.Ампер и Ф.Нейман , придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе Фарадеевы силовые линии (Faraday"s Lines of Force , 1857). В 1860–1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е – магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е – закон сохранения количества электричества; 4-е – вихревой характер магнитного поля.

Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3Ч 10 10 см/с, что близко к скорости света, измеренной семью годами ранее французским физиком А.Физо . В октябре 1861 Максвелл сообщил Фарадею о своем открытии: свет – это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап исследований изложен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism , 1864), а итог его работ по электродинамике подвел знаменитый Трактат об электричестве и магнетизме (1873).

Последние годы жизни Максвелл занимался подготовкой к печати и изданием рукописного наследия Кавендиша. Два больших тома вышли в октябре 1879. Умер Максвелл в Кембридже 5 ноября 1879.