Определение наночастиц

Термин наночастица или наноразмерная частица прочно вошел в научный лексикон около 20 лет назад, однако критерий наноразмерности до сих пор является предметом многих научных дискуссий.

Нано-объект - это физический объект исследований (и разработок), размеры которого принято измерять в нанометрах.

Нанотехнология имеет дело как с отдельными нано-объектами, так и с материалами на их основе, а также процессами на нано-уровне. К наноматериалам относятся такие материалы, основные физические характеристики которых определяются содержащимися в них нанообъектами.

Наноматериалы делятся на компактные материалы и нанодисперсии; к первым относятся так называемые «наноструктурированные» материалы , т.е. изотропные по макросоставу материалы, повторяющимися элементами, структуры которых являются группировки (области), имеющие размеры нескольких нанометров, иногда десятки нанометров и более ; иными словами, наноструктурированные материалы состоят из непосредственно контактирующих между собой нанообъектов. В отличие от этого, нанодисперсии состоят из среды диспергирования (вакуум, газ, жидкость или твёрдое тело), в которой распределены изолированные друг от друга нано-объекты. Расстояние между нано-объектами в нанодисперсиях может меняться в достаточно широких пределах от десятков нанометров до долей нанометра; в последнем случае мы имеем дело с нанопорошками, где нано-объекты разделены тонкими (часто - моноатомными) слоями из лёгких атомов, препятствующих их агломерации.

Наночастица - это квази-нульмерный нанообъект, у которого все характерные линейные размеры имеют один порядок величины; как правило, наночастицы имеют сфероидальную форму; если в наночастице наблюдается ярко выраженное упорядоченное расположение атомов (или ионов), то такие наночастицы называют нанокристаллитами. Наночастицы с выраженной дискретностью системы уровней энергии часто называют «квантовыми точками» или «искусственными атомами»; чаще всего они имеют состав типичных полупроводниковых материалов.

Классификация наночастиц

Согласно международной конвенции IUPAC, предельный (максимальный) размер наночастиц соответствует 100 нм, хотя эта величина является чисто условной и необходима только для формальной классификации. Различают два типа наночастиц: нанокластеры, или нанокристаллы, и собственно наночастицы. К первому типу относят частицы упорядоченного строения (часто центросимметричные) размером 1?5 нм, содержащие до 1000 атомов, ко второму - собственно наночастицы размером 5?100 нм, состоящие из 103?108 атомов. Нитевидные и пластинчатые частицы могут содержать гораздо большее количество атомов и иметь один или даже два линейных размера, превышающих пороговое значение, но их свойства в определенном направлении остаются характерными для вещества в нанокристаллическом состоянии. Если наночастица имеет сложную форму и строение, то в качестве характеристического рассматривают не линейный размер частицы в целом, а размер ее структурного элемента. Такие частицы, как правило, называют наноструктурами, причем их линейные размеры могут значительно превышать 100 нм.

Различия в линейных размерах наночастиц делают целесообразным подразделять их на нуль-, одно-, двух- и трехмерные (соответственно, 0D-, 1D-, 2D- и 3D-наночастицы). К нульмерным наноструктурам относят свободные и стабилизированные кластеры, фуллерены и эндофуллерены и квантовые точки. Класс одномерных наноструктур представлен гораздо бoльшим разнообразием нанообъектов: это наностержни, нанонити (вискеры), нанотрубки и наноленты. Среди двумерных наноструктур выделяют тонкие пленки толщиной до сотен нанометров, гетероструктуры, пленки Лэнгмюра?Блоджетт, нанопластины, адсорбционные и самособирающиеся монослои, а также двумерные массивы объектов, размеры которых лежат в нанометровом диапазоне. К классу трехмерных наноструктур следует относить как сами наночастицы и наночастицы в оболочке, так и нанокомпозиты и трехмерные самоорганизованные массивы нанообъектов. При этом сами композиты могут включать нуль-, одно- и двумерные объекты, то есть представлять собой массивы квантовых точек, нитей, многослойные пленки или слоистые соединения, а также различные комбинации этих типов наноструктур. На наноуровне оказалось возможным и существование структур промежуточной размерности, т.н. фракталов и дендримеров, обладающих самоподобием и рассматривавшихся ранее лишь в качестве математических моделей.

В последние годы большие усилия исследователей направлены на получение наночастиц заранее заданных формы и размера, а следовательно, обладающих определенными физико-химическими свойствами - описано множество различных синтетических подходов, каждый из которых обладает своими преимуществами, но и не лишен определенных недостатков. Сегодня все методы получения наноматериалов разделяют на две большие группы по типу формирования наноструктур: методы?снизу-вверх? (?Bottomup?) характеризуются ростом наночастиц или сборкой наночастиц из отдельных атомов; а методы?сверху-вниз? (?Top-down?) основаны на?дроблении? частиц до наноразмеров.

Реферат: Свойства наночастиц

Министерство науки и образования Российской Федерации

Государственное образовательное учреждение

высшего профессионального образования

Московский государственный открытый университет (МГОУ)

Кафедра химической технологии переработки полимерных материалов

и органических веществ

Курсовая работа по дисциплине

«Нанотехнологии»

Свойства наночастиц

Выполнила студентка Ефимова Л. А.

Факультет химико-технологический

Курс 4

Специальность 240502 «Технология переработки пластических масс

и эластомеров»

Шифр 405269

Проверил д.т.н., профессор

заслуженный работник высшей школы РФ Шевердяев О.Н.

Москва 2009 г.


Введение

1. История

2. Определение

3. Классификация нанообъектов

4. Свойства наночастиц

4.1 Серебро

4.2 Оксид цинка

4.3 Диоксид кремния

5. Некоторые достижения на основе наночастиц

5.1 Наноматериалы

5.2 Нанокристаллы

5.3 Наномедицина и химическая промышленность

5.4 Компьютеры и микроэлектроника

5.5 Робототехника

Литература


Введение

Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века. Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста. Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики.

С одной стороны, нанотехнологии уже нашли сферы применения, с другой – они остаются для большинства населения областью научной фантастики. В будущем значение нанотехнологий будет только расти. В специализированной области это будет пробуждать интерес и стимулировать проведение исследовательских и опытно-конструкторских работ, а также работ по нахождению новых областей применения нанотехнологий .

В данной курсовой работе рассматриваются некоторые свойства наночастиц различных химических элементов и их соединений. Представлены некоторые достижения на основе наночастиц.


1. История

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. « There s Plenty of Room at the Bottom » ), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап - полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле - таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота - невозможность создания механизма из одного атома.

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге "Opticks" Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать "тайны корпускул" .

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: грядёт эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology» ) и «Nanosystems: Molecular Machinery, Manufacturing, and Computation» . Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.


2. Определение

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 100 нанометров обычно называют наночастицами .


3. Классификация нанообъектов

Нанообъекты делятся на 3 основных класса:

Трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т.д;

Двумерные объекты - плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т.д;

Одномерные объекты - вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д.

Также существуют нанокомпозиты - материалы, полученные введением наночастиц в какие либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв.


4. Свойства наночастиц

Наиболее сильные изменения свойств наноматериалов и наночастиц наступают в диапазоне размеров кристаллитов порядка 10..100нм. Основные физические причины этого можно проиллюстрировать на рис 1.

Для наночастиц доля атомов, находящихся в тонком поверхностном слое (~ 1 нм), по сравнению с микрочастицами заметно возрастает.

Так, например, оказывается, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.


Рис. 1. Основные физические причины специфики наночастиц (наноматериалов).

4.1 Серебро

Свойства у наночастиц серебра на самом деле уникальные. Во-первых, они обладают феноменальной бактерицидной и антивирусной активностью . Об антимикробных свойствах, присущих ионам серебра, человечеству известно уже очень давно. Наверняка, многие слышали о целительных способностях церковной «святой воды», получаемой путем прогонки обычной воды через серебряный фильтр. Такая вода не содержит многих болезнетворных бактерий, которые могут присутствовать в обычной воде. Поэтому она может храниться годами, не портясь и не «зацветая». В медицинской практике иногда назначают «серебряную» воду для лечения ран, язв, болезней мочевого пузыря. Кроме того, такая вода содержит некоторую концентрацию ионов серебра, способных нейтрализовать вредные бактерии и микроорганизмы, чем и объясняется ее благотворное влияние на здоровье человека. Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы. Как показал эксперимент, ничтожные концентрации наночастиц серебра уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом (рис. 2).

Рис. 2. Вирусы атакуют клетку.

Кроме того, в отличие от антибиотиков, убивающих не только вредоносные вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается! В настоящее время проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят достаточно широкое применение.

Так, например, в настоящее время выпускаются зубные пасты с наночастицами серебра, которые не только очищают зубы, но и эффективно защищают от различных инфекций. Также небольшие концентрации наночастиц серебра добавляют в некоторые кремы из серии «элитной» косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При их использовании наблюдается также противовоспалительный и заживляющий эффект.

Текстильные ткани, содержащие наночастицы серебра, обладают самодезинфицирующими свойствами. Такие ткани незаменимы для медицинских халатов, постельного белья и т.д.

Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки, карболовой кислоты и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

Если добавить в лакокрасочные материалы, покрывающие стены зданий, наночастицы серебра, то на покрашенных такими красками стенах и потолках не может жить большинство патогенных микроорганизмов. Добавка в угольные фильтры для воды наночастиц серебра существенно увеличивает срок службы таких фильтров, а качество очистки воды при этом возрастает на порядок.

Помимо обеззараживающих свойств, наночастицы серебра обладают также высокой электропроводностью , что позволяет создавать различные проводящие клеи. Проводящий клей может быть использован, например, в микроэлектронике для соединения мельчайших электронных деталей.

Таким образом, крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических средств до обеззараживания хирургических инструментов или помещений.


4.2 Оксид цинка

Наночастицы оксида цинка также обладают рядом уникальных свойств (в том числе и бактерицидных ), среди которых особый интерес вызывает способность поглощать широкий спектр электромагнитного излучения , включая ультрафиолетовое, инфракрасное, микроволновое и радиочастотное.

Такие частицы могут служить, например, для защиты против УФ-лучей, придавая новые функции стеклам, пластмассам, краскам, синтетическим волокнам и т.д. Эти частицы также можно использовать для приготовления солнцезащитных кремов, мазей и других препаратов, так как они безопасны для человека и не раздражают кожу (рис. 3).

Способность наночастиц оксида цинка к рассеянию электромагнитных волн может использоваться в тканях одежды для придания ей свойств невидимости в инфракрасном диапазоне за счет поглощения излучаемого человеческим телом тепла. Это позволяет изготавливать камуфляжи, невидимые в широком диапазоне частот – от радио до ультрафиолета. Такая одежда просто незаменима в военных или антитеррористических операциях, поскольку позволяет вплотную подойти к противнику без риска быть замеченным приборами ночного видения.

Рис. 3. Наночастицы оксида цинка высокой чистоты, предназначенные для использования в электронике, катализаторах, медицинских продуктах, продуктах личной гигиены.


4.3 Диоксид кремния

Наночастицы диоксида кремния (SiO 2) обладают удивительным свойством: если их нанести на какой-либо материал, то они присоединяются к его молекулам и позволяют поверхности отторгать грязь и воду . Самоочищающиеся нанопокрытия на основе этих частиц защищают стекла, плитку, дерево, камень и т.д. Частицы грязи не могут прилипнуть или проникнуть в защищаемую поверхность, а вода легко стекает с нее, унося любые загрязнения (рис. 4).

Рис. 4. Принцип действия самоочищающихся нанопокрытий.

Ткань после нанесения покрытия свободно пропускает воздух, но не пропускает влагу. Можно забыть про трудновыводимые пятна от кофе, жира, грязи и пр. Покрытие устойчиво к трению, гибко, не портится от солнечного света, температуры и стирки.


5. Некоторые достижения на основе наночастиц

5.1 Наноматериалы

Материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих.

Углеродные нанотрубки - протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и обычно заканчивающиеся полусферической головкой.

Фуллерены - молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие - алмаз, карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.

Графен - монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать, как детектор молекул (NO 2), позволяющий детектировать приход и уход единичных молекул. Графен обладает высокой подвижностью при комнатной температуре, благодаря чему как только решат проблему формирования запрещённой зоны в этом полуметалле, обсуждают графен как перспективный материал, который заменит кремний в интегральных микросхемах.

5.2 Нанокристаллы

Наноаккумуляторы - в начале 2005 года компания Altair Nanotechnologies (США) объявила о создании инновационного нанотехнологического материала для электродов литий-ионных аккумуляторов. Аккумуляторы с Li 4 Ti 5 O 12 электродами имеют время зарядки 10-15 минут. В феврале 2006 года компания начала производство аккумуляторов на своём заводе в Индиане. В марте 2006 Altairnano и компания Boshart Engineering заключили соглашение о совместном создании электромобиля. В мае 2006 успешно завершились испытания автомобильных наноаккумуляторов. В июле 2006 Altair Nanotechnologies получила первый заказ на поставку литий-ионных аккумуляторов для электромобилей.

5.3 Наномедицина и химическая промышленность

Направление в современной медицине основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

ДНК-нанотехнологии - используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур.

Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис-пептиды).

5.4 Компьютеры и микроэлектроника

Центральные процессоры - 15 октября 2007 года компания Intel заявила о разработке нового прототипа процессора, содержащего наименьший структурный элемент размерами примерно 45 нм. В дальнейшем компания намерена достичь размеров структурных элементов до 5 нм. Основной конкурент Intel, компания AMD, также давно использует для производства своих процессоров нанотехнологические процессы, разработанные совместно с компанией IBM. Характерным отличием от разработок Intel является применение дополнительного изолирующего слоя SOI, препятствующего утечке тока за счет дополнительной изоляции структур, формирующих транзистор. Уже существуют рабочие образцы процессоров с транзисторами размером 45 нм и опытные образцы на 32 нм.

Жесткие диски - в 2007 году Питер Грюнберг и Альберт Ферт получили Нобелевскую премию по физике за открытие GMR-эффекта, позволяющего производить запись данных на жестких дисках с атомарной плотностью информации.

Атомно-силовой микроскоп - сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. Обычно под взаимодействием понимается притяжение или отталкивание кантилевера от поверхности из-за сил Ван-дер Ваальса. Но при использованиии специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно-силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.

Антенна-осциллятор - 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна-осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

Плазмоны - коллективные колебания свободных электронов в металле. Характерной особенностью возбуждения плазмонов можно считать так называемый плазмонный резонанс, впервые предсказанный Ми в начале XX века. Длина волны плазмонного резонанса, например, для сферической частицы серебра диаметром 50 нм составляет примерно 400 нм, что указывает на возможность регистрации наночастиц далеко за границами дифракционного предела (длина волны излучения много больше размеров частицы). В начале 2000-го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии - наноплазмонике. Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

5.5 Робототехника

Молекулярные роторы - синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.

Нанороботы - роботы, созданные из наноматериалов и размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, то есть самовоспроизводству, называются репликаторами. Возможность создания нанороботов рассмотрел в своей книге «Машины создания» американский учёный Эрик Дрекслер. Вопросы разработки нанороботов и их компонентов рассматриваются на профильных международных конференциях .

Молекулярные пропеллеры - наноразмерные молекулы в форме винта, способные совершать вращательные движения благодаря своей специальной форме, аналогичной форме макроскопического винта.

С 2006 года в рамках проекта RoboCup (чемпионат по футболу среди роботов) появилась номинация «Nanogram Competition», в которой игровое поле представляет из себя квадрат со стороной 2.5 мм. Максимальный размер игрока ограничен 300 мкм.


Литература

1. www.olymp.ifmo.ru .

Нанотехнологии [Наука, инновации и возможности] Фостер Линн

13.2.1. Применение наночастиц

13.2.1. Применение наночастиц

Многие читатели наверняка помнят, что еще несколько лет назад крем от загара представлял собой непрозрачную молочно-белую мазь, цвет которой объяснялся наличием в ней микронных частиц окиси цинка, которые и поглощали вредную для кожи ультрафиолетовую часть солнечного излучения. В настоящее время производятся прозрачные кремы, гораздо более удобные и привлекательные для потребителей. Коммерческий успех новых косметических препаратов объясняется тем, что в их состав входят частицы той же окиси цинка, но измельченные до нанометрических размеров. Такие частицы по-прежнему пропускают большую часть солнечного света, но сохраняют способность поглощать опасные волны УФ-области спектра. Позднее для этих же целей стали использоваться наночастицы другого известного белого красителя (двуокиси титана), то есть простая замена микронных частиц на нанометрические позволила создать новый и весьма успешный коммерческий продукт в косметической промышленности.

Изменение свойств частиц двуокиси титана позволило им найти еще одно важное техническое применение при так называемой сенсибилизации красителем рабочего вещества солнечных батарей. Эффективность преобразования света такими батареями определяется в первую очередь способностью частиц вещества поглощать солнечное излучение. Обнаружилось, что наночастицы двуокиси титана благодаря своей очень большой суммарной площади поглощают свет в тысячи раз (!) сильнее обычных, объемных кристаллов того же состава, не говоря уже о том, что солнечные батареи с сенсибилизацией красителем оказались намного дешевле в производстве, чем известные фотоэлектрические устройства на основе кремния. Сейчас наноматериалы такого типа все шире используются в промышленности, доказательством чего стала организация их промышленного выпуска в Австралии (2001 год).

Еще один очень важный коммерческий рынок наночастиц связан с полупроводниковой техникой. Речь идет о процессе так называемой химикомеханической планаризации (chemical mechanical planarization, CMP) в производстве чипов (микросхем), когда на поверхность обрабатываемой пластины в нескольких точках наносятся требуемые компоненты, которые затем «размазываются» по этой поверхности ровным слоем с почти атомарной точностью. Обработка большой по размерам (до 300 мм) кристаллической поверхности с такой немыслимой точностью является очень сложной технической задачей, которую невозможно решить существующими методами! В новом методе на поверхность устройства наносится суспензия наночастиц, которые затем используются в комбинированном процессе химического удаления и механического трения, в результате чего поверхность «полируется» с атомной точностью. Такой процесс оказался весьма эффективным при использовании наночастиц многих распространенных полупроводниковых материалов (оксиды алюминия, кремния, церия), в результате объем рынка изделий, полученных методом CMP, вырос с 250 миллионов долларов в 1996 году почти до 1 миллиарда в 2000 году. При этом производство исходных компонент для самого процесса CMP (суспензии наночастиц, полировальные установки), естественно, стало самостоятельным сектором рынка материалов, и его объем в 2005 году составлял около 800 миллионов долларов. Учитывая постоянную тенденцию полупроводниковой промышленности к миниатюризации и повышению точности обработки, можно быть уверенным, что рынок товаров и услуг, связанных с процессом CMP, будет и далее развиваться.

Упомянутые выше технологии относятся к известным и уже внедренным, но стоит упомянуть, что сейчас идет процесс коммерциализации и технической доработки многих других технологий, основанных на применении наночастиц. Например, профессора Пол Аливисатос (Калифорнийский университет, Беркли) и Мунджи Бавенди (Массачусетский университет) предложили новые процессы изготовления полупроводниковых наночастиц из материалов типа селенида кадмия (CdSe) и теллурида кадмия (TeSe). Частицы этих веществ, покрытые слоем сульфида цинка, приобретают способность поглощать свет в ультрафиолетовом диапазоне волн, а затем излучать свет в видимом диапазоне, что связано с так называемыми эффектами квантового удержания, причем длина волны излучения при этом зависит от размера используемых наночастиц. Такие источники намного превосходят известные излучатели (на флуоресцентных химических красителях) по стабильности работы и яркости излучения, но особую ценность им придает то, что наночастицы могут быть химически связаны с белками, олигонуклеотидами или просто небольшими молекулами. Наночастицы придают этим соединениям совершенно новые функциональные характеристики и тем самым открывают перед биологическими структурами и молекулами огромные перспективы в медицине и биотехнологиях в качестве флуоресцентных «меток». Более того, исследования показали, что длина волны излучения нанокристаллов кремния (диаметром менее 4 нм) в видимом диапазоне также зависит от размера кристаллов. Созданные на этой основе излучатели оказались гораздо более эффективными, чем используемые сейчас в твердотельной технике флуоресцентные и другие источники, что позволяет найти им много возможностей технического применения. [Наночастицы многих веществ демонстрируют совершенно удивительные свойства, позволяющие использовать их в качестве катализаторов и т. п. Читатель может ознакомиться с этой проблемой в статье Ф. Болла «Новая алхимия» в журнале «Химия и жизнь», № 1, 2006. Прим. перев. ]

С уменьшением размеров кристаллитов до нанометров существенно изменяются их не только физические, но и химические свойства (в частности, каталитическая активность), ярким примером чего может служить поведение золота. Известно, что в обычном объемном состоянии золото химически является достаточно инертным элементом. Однако осажденные на поверхность золота частицы диоксида церия в неметаллической форме (в виде нанокластеров) в очень низких концентрациях (около 0,2–0,9 ат. %) становятся исключительно активными катализаторами известной реакции конверсии водяного газа, при которой моноксид углерода и вода превращаются в двуокись углерода и водород. Эта реакция является ключевой в механизме действия топливных элементов на углеводородном топливе, которое в таких элементах превращается в водород и углеродсодержащие продукты. Давней мечтой разработчиков и производителей топливных элементов было доведение до максимума выхода водорода, то есть снижение до минимума количества непрореагировавшего моноксида углерода, который является «катализаторным ядом» электрокаталитической реакции внутри самого элемента. Использование наночастиц с указанным и очень небольшим количеством золота исключительно выгодно с экономической точки зрения, так как в используемых ранее катализаторах содержание благородного металла доходило до 10 ат. %.

Очень интересные перспективы перед исследователями открывают также значительные изменения магнитных свойств вещества при переходе к наномасштабам, позволяющие даже надеяться на возможность создания так называемых суперпарамагнетиков. Суперпарамагнитные наночастицы в отсутствие магнитного поля и при температурах выше точки Кюри ведут себя подобно обычным магнетикам, то есть их магнитные моменты располагаются случайно, однако при наложении внешнего поля они легко «выстраиваются» вдоль поля, создавая мощный общий магнитный момент. Этот механизм может быть использован для самых разных целей, в том числе и для формирования изображений на основе магнитного резонанса (magnetic resonance imaging, MRI). Метод теоретически был известен давно, но его практическое применение сдерживалось тем, что контрастность получаемых изображений обеспечивалась лишь очень небольшим числом природных входящих в состав организма веществ (например, дезоксигемоглобином). Эффективность метода и контрастность изображения могут быть существенно повышены за счет использования суперпарамагнитных наночастиц из оксидов железа, получивших название SPION (superparamagnetic iron oxide, SPION). Такие частицы, изготовленные на основе магнетита (Fe 3 O 4), магемита (гамма Fe 2 O 3) или их сочетаний, естественно, должны быть покрыты слоем вещества, повышающим стабильность коллоидной системы и обеспечивающим биологическую совместимость с организмом. Преимуществом описываемого метода магнитного резонанса выступает то, что он позволяет получать четкие изображения тканей, содержащих большое количество жидкости (например, пораженные органы или раковые опухоли). Уже сейчас такие наночастицы коммерчески производятся несколькими организациями. Понятно, что поверхность частиц SPION может быть дополнительно химически модифицирована, чтобы придать ей способность взаимодействовать с контрастными агентами, специфическим тканями или видами клеток. Этот подход является очень перспективным, что уже привело к возникновению активно развивающихся областей разнообразных медико-биологических исследований.

Из книги Информационная технология ПРОЦЕСС СОЗДАНИЯ ДОКУМЕНТАЦИИ ПОЛЬЗОВАТЕЛЯ ПРОГРАММНОГО СРЕДСТВА автора Автор неизвестен

8.2.2.3 Грамматика и ее применение Должны быть приведены рекомендации по грамматике языка и стилю ее применения.Примечание - Должен быть определен стандарт по национальной грамматике и ее применению в интересах основной аудитории пользователей в данной

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Применение роботов Понятно, что гораздо проще создать «домашнего» робота, выполняющего какую-то одну работу. Например, уже сегодня существуют небольшие мобильные роботы, которые могут «самостоятельно» постричь траву на газоне. Эти роботы работают от солнечных батарей и

Из книги Материаловедение: конспект лекций автора Алексеев Виктор Сергеевич

Применение Воздушные мышцы находят применение в робототехнике, биомеханике, создании искусственных протезов конечностей и промышленности. Основной причиной, по которой экспериментаторы и любители охотно используют воздушные мышцы, является простота их конструкции и

Из книги Секретные автомобили Советской Армии автора Кочнев Евгений Дмитриевич

Применение ИС UCN-5804 На рис. 10.8 изображена схема управления ШД с использованием ИС UCN-5804. Тактовые импульсы вырабатываются с помощью таймера ИС 555. Частота тактовых импульсов может быть увеличена или уменьшена с помощью переменного резистора V1. Изменение частоты тактовых

Из книги Электронные фокусы для любознательных детей автора Кашкаров Андрей Петрович

Применение Сама конструкция воздушной мышцы делает ее особенно пригодной к использованию в робототехнике и системах автоматизированных движений. В некоторых случаях ими можно заменить сервомоторы или двигатели постоянного тока. Их уникальные свойства –

Из книги Средний танк Panzer III автора Барятинский Михаил

7. Облицовочные материалы и их применение В современном строительстве широко применяются самые разнообразные облицовочные материалы для повышения эксплуатационных и декоративных качеств зданий и всевозможных сооружений. Облицовочные материалы изготавливают из

Из книги Нанотехнологии [Наука, инновации и возможности] автора Фостер Линн

Варианты и применение автомобилей МАЗ-535 Базовые балластные тягачи 535-й серии производства МАЗ и КЗКТ с конца 1950-х годов применяли для буксировки новых 152-мм пушек М-47 образца 1953 года и специальных низкопрофильных прицепных транспортных тележек, на которых из хранилищ на

Из книги Основы дизайна. Художественная обработка металла [Учебное пособие] автора Ермаков Михаил Прокопьевич

2.4.2. Практическое применение Практическое применение ДП (кроме рассмотренного выше варианта) может быть разнообразным.Например, датчик положения головы – при установке ДП в шлемофоны мотоциклов или в шлемофоны – аксессуары для компьютерных игр, или датчик наклона

Из книги Средний танк Т-34 автора Барятинский Михаил

2.5.5. Подключение и применение Вход усилителя (рис. 2.9) подключают к среднему выводу переменного резистора RP1 (обозначение на плате NS-881), регулятора громкости.Как уже отмечалось выше, его применение в NS-881 значительно увеличило срок службы батареи.Альтернативой описанного

Из книги Ла-5 автора

БОЕВОЕ ПРИМЕНЕНИЕ Pz.IV, как и первые «тройки», формально поступили в войска в 1938 году. Но отнюдь не в боевые части! Новые машины сосредотачивались в учебных центрах панцерваффе, укомплектованные наиболее опытными танкистами-инструкторами. В течение всего 1938 года

Из книги автора

13.2.2. Производство наночастиц Методы производства наночастиц можно грубо разделить на три основные группы, традиционно называемые сухим синтезом, мокрым синтезом и химическим размолом. При этом первые два метода относятся к так называемому восходящему производству

Из книги автора

13.2.3. Общий обзор состояния производства наночастиц Коммерческое использование любого метода должно быть обосновано экономически. В лабораторных условиях ученым удалось разработать множество интересных и красивых способов синтеза нанопорошков, но очень многие из них

Из книги автора

13.4.1. Применение нанопроволок 13.4.1.1. Биологические датчики на основе нанопроволок Известно, что электрический заряд многих биомолекул (включая белки и ДНК) меняется в зависимости от их функционального состояния, что может быть использовано для их детектирования

Из книги автора

4.17. Применение художественной чеканки В настоящее время художественная чеканка применяется в областях серийной или массовой продукции, выполненной литьем. Иногда это может быть небольшая проработка – подчеканка рельефа, подчеркивание отдельных элементов расходкой,

Из книги автора

БОЕВОЕ ПРИМЕНЕНИЕ Первые серийные танки Т-34 поступили в танковые соединения РККА поздней осенью 1940 года. Однако плановая боевая учёба началась лишь весной 1941 года. К сожалению, на освоении нового танка самым негативным образом сказались многочисленные реорганизации

Из книги автора

Боевое применение Ла-5 Первые подразделения были перевооружены на Ла-5 в конце июля - начале августа 1942 года. Первой полностью боеготовой частью стал 49 ИАП 234 ИАД из 1-й Воздушной Армии Западного фронта. На полк также была возложена задача провести войсковые испытания

Сканирующая зондовая микроскопия

Одним из методов, используемых для изучения нанообъектов, является сканирующая зондовая микроскопия. В рамках сканирующей зондовой микроскопии реализованы как не оптические, так и оптические методики.

Исследования свойств поверхности с помощью сканирующего зондового микроскопа (СЗМ) проводятся на воздухе при атмосферном давлении, в вакууме и даже в жидкости. Различные СЗМ методики позволяют изучать как проводящие, так и не проводящие объекты. Кроме того, СЗМ поддерживает совмещение с другими методами исследования, например с классической оптической микроскопией и спектральными методами.

С помощью сканирующего зондового микроскопа (СЗМ) можно не только увидеть отдельные атомы, но также избирательно воздействовать на них, в частности, перемещать атомы по поверхности. Учёным уже удалось создать двумерные наноструктуры на поверхности, используя данный метод. Например, в исследовательском центре компании IBM, последовательно перемещая атомы ксенонa на поверхности монокристалла никеля, сотрудники смогли выложить три буквы логотипа компании, используя 35 атомов ксенона .

При выполнении подобных манипуляций возникает ряд технических трудностей. В частности, требуется создание условий сверхвысокого вакуума (10 −11 тор), необходимо охлаждать подложку и микроскоп до сверхнизких температур (4-10 К), поверхность подложки должна быть атомарно чистой и атомарно гладкой, для чего применяются специальные методы её приготовления. Охлаждение подложки производится с целью уменьшения поверхностной диффузии осаждаемых атомов, охлаждение микроскопа позволяет избавиться от термодрейфа.

Для решения задач, связанных с точным измерением топографии, свойств поверхности и с манипуляцией нанообъектами посредством зонда сканирующего атомно-силового микроскопа, была предложена методология особенность-ориентированного сканирования (ООС). ООС подход позволяет в автоматическом режиме реализовать нанотехнологию «снизу-вверх», то есть технологию поэлементной сборки наноустройств. При этом работа производится при комнатной температуре, поскольку ООС в реальном масштабе времени определяет скорость дрейфа и выполняет компенсацию вызываемого дрейфом смещения. На многозондовых инструментах ООС позволяет последовательно применить к нанообъекту любое количество аналитических и технологических зондов, что даёт возможность создавать сложные нанотехнологические процессы, состоящие из большого числа измерительных, технологических и контрольных операций.

Однако, в большинстве случаев нет необходимости манипулировать отдельными атомами или наночастицами и достаточно обычных лабораторных условий для изучения интересующих объектов.


Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы размерами от 1 до 100 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дёшевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками, нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определённые структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

Нанообъекты делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т. д.; двумерные объекты - плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т. д.; одномерные объекты - вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д. Также существуют нанокомпозиты - материалы, полученные введением наночастиц в какие-либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв.

Особый класс составляют органические наночастицы как естественного, так и искусственного происхождения.

Поскольку многие физические и химические свойства наночастиц, в отличие от объемных материалов, сильно зависят от их размера, в последние годы проявляется значительный интерес к методам измерения размеров наночастиц в растворах: анализ траекторий наночастиц, динамическое светорассеяние, седиментационный анализ, ультразвуковые методы.

05 Октября 2009

Медицина и фармацевтика в наномире

Редакция STRF продолжает публиковать материалы посвященные нанотехнологиям. На этот раз речь пойдет о наномедицине, которая в последние годы развивается исключительно быстрыми темпами и привлекает всеобщее внимание не только чисто реальными достижениями, но и своим социальным вкладом.

Нанотехнология – междисциплинарная область фундаментальной и прикладной науки и техники, представляющая собой совокупность теоретического обоснования, приемов и методов, применяемых при изучении, проектировании, производстве и использовании наноструктур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, взаимодействия и интеграции составляющих их наномасштабных элементов (около 1–100 нм), для получения объектов с новыми химическими, физическими, биологическими свойствами.

В принципе, нанотехнология позволит создавать абсолютно любые объекты, манипулируя отдельными атомами вещества. Она, заменив другие технологии, позволит не только победить старение и болезни, но и обеспечит человечество фантастическими материальными богатствами. Практически же нанотехнология в медицине, фармацевтике и смежных с ними областях, решает сегодня следующие основные задачи:

  • Создание твёрдых тел и поверхностей с измененной молекулярной структурой. На практике это даст металлы, неорганические и органические соединения, нанотрубки, биологически совместимые полимеры (пластмассы) и другие материалы имитирующих ткани живых организмов, служащие транспортными средствами доставки лекарств либо имплантантами.
  • Развитие наноконтейнерных технологий векторной доставки лекарств.
  • Синтез новых химических соединений путем образования молекул без химических реакций. В ближайшие 10–20 лет это приведёт к созданию принципиально новых лекарств, которые синтетики, фармацевты и медики будут «конструировать», исходя из конкретной болезни, и, даже – конкретного пациента.
  • Разработка самореплицирующихся (саморазмножающихся) систем на базе биоаналогов – бактерий, вирусов, простейших.
  • Создание точных медицинских наноманипуляторов и диагностических устройств.

Рассматривая отдельный атом в качестве детали, нанотехнологи разрабатывают методы конструирования из этих деталей материалов с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции. В перспективе, любые молекулы будут собираться, подобно детскому конструктору, поскольку любую химически стабильную структуру, которую можно описать соответствующей формулой, можно и построить.

Развитие наномедицины

По каноническому определению ведущего учёного в данной области Р. Фрейтаса, наномедицина – это: «слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя разработанные наноустройства и наноструктуры». Таким образом, в медицине перспектива применения нанотехнологий заключается, в конечном счете, в необходимости изменять структуру клетки на молекулярном уровне с помощью нанороботов либо иными нанотехнологиями

Наномедицина в последние годы развивается исключительно быстрыми темпами и привлекает всеобщее внимание не только чисто реальными достижениями, но и своим социальным вкладом. Под этим термином (отражающим и перспективу) сегодня понимают применение нанотехнологий в диагностике, мониторинге и лечении заболеваний.

Развитие наномедицины тесно связано с революционными достижениями геномики и протеомики, которые позволили ученым приблизиться к пониманию молекулярных основ болезней. Наномедицина развивается там, где данные геномики и протеомики сочетаются с возможностями, позволяющими создать материалы с новыми свойствами на нанометрическом уровне.

Выделяют 5 основных областей применения нанотехнологий в медицине: доставка активных лекарственных веществ, новые методы и средства лечения на нанометровом уровне, диагностика in vivo, диагностика in vitro, медицинские имплантаты.

Место лекарственных препаратов и биоактивных молекул в нанометровом мире

В 1959 году знаменитый американский физик-теоретик Р. Фейнман говорил о том, что существует «поразительно сложный мир малых форм, а когда-нибудь (например, в 2000 году) люди будут удивляться тому, что до 1960 году никто не относился серьезно к исследованиям этого мира». Медицина и фармацевтика – одни из важнейших практических приложений работы нанотехнологов, потому что описанный выше мир – мир этих научных дисциплин. Именно такие размеры характерны для основных биологических структур – клеток, их составных частей (органелл) и молекул. Впервые мысль о применении микроскопических устройств (к которым следует отнести и наночастицы) в медицине была высказана Р. Фейнманом в своей знаменитой лекции «Там внизу – много места». Но только в последние годы, предложения Фейнмана приблизились к реальности, хотя, отметим, они ещё далеки от предложенного им микроробота, способного через кровеносную систему проникнуть внутрь сердца, произвести там операцию на клапане, а также выполнить целый набор подобных процедур, поражающих воображение.

Конкретизируя изложенные взгляды, сегодняшние конкретные задачи нанотехнологий в медицине можно разделить на несколько групп: наноструктурированные материалы, включая поверхности с нанорельефом, мембраны с наноотверстиями; наночастицы (включая фуллерены и дендримеры); микро- и нанокапсулы; нанотехнологические сенсоры и анализаторы; медицинские применения сканирующих зондовых микроскопов; наноинструменты и наноманипуляторы; микро- и наноустройства различной степени автономности.

То есть, «нано» (греч. – миллиардная доля) в применении к описываемым объектам подразумевает, что их размеры находятся в пределах 10 -9 м, что соответствует уровням биологической организации от атомарного до субклеточного. Таким образом, под определение «наночастицы», попадают практически любые надмолекулярные (супрамолекулярные) комплексы, то есть, образования как «малых», так и огромных органических молекул (по современной терминологии – «хозяин») с ионными либо ковалентно построенными молекулами («гость»). Однако, по уже сложившейся традиции в биологической и медицинской литературе, под наночастицами подразумевают вполне конкретные (и, прежде всего, искусственно созданные) молекулярные конструкции.

Эти представления сегодня требуют предельной конкретизации.

В своем обзоре, опубликованном буквально несколько дней назад (13 сентября, журнал Nature Nanotechnology, 2009, DOI: 10.1038/nnano.2009.242 ), исследователи из США и Франции настаивают на пересмотре термина «наночастица». Они считают, что назрела необходимость более точной систематизации этих частиц для дальнейших исследований и практического применения в различных областях. С такой точкой зрения нельзя не быть солидарным, хотя подобные предложения, отметим, достаточно часто звучали и ранее.

Вот, для примера, размеры (табл. 1) молекул некоторых веществ (молекул, частиц) в нанометрах:

Таблица 1.

Вещество Диаметр, нм
Азот 0.32
Вода 0.30
Водород 0.25
Гелий 0.20
Кислород 0.30
Оксид серы (IV) 0.34
Оксид углерода (IV) 0.33
Оксид углерода (II) 0.32
Хлор 0.37
Хлороводород 0.30
Размеры частиц пыли 0.1-0.001 мм
Размер частиц тумана 0.01-0.001 мм
Размер броуновской частицы 40
Размер молекулы гемоглобина 0.4
Аминокислоты, нуклеотиды, моносахариды (мономеры) 0.5-1
Белки, нуклеиновые кислоты, полисахариды (макромолекулы) 3-300
Небольшой белок 4
Хромосома 1
Вирусы 20-300
Органеллы от 20
Рибосомы около 20

Специалисты высказывают важнейшую мысль о том, что отнесение новых объектов к наноматериалам не должно строиться «слепо по их размеру» – а на основании того, приводит ли данный размер к появлению новых свойств таких объектов.

Несмотря на то, что во многих странах наноматериалы уже нашли широкое применение даже в косметических средствах и солнцезащитных кремах, в этих же странах не существует чётких правил, упорядочивающих безопасное применение наночастиц, при этом очевидно, что без четкого определения понятия «наночастица», появления таких правил вообще вряд ли уместно ожидать. Хотя бытует мнение о том, что нанообъектом следует считать любой объект, размер которого хотя бы по одному их измерений будет меньше 100 нм, в обзоре, опубликованном в Nature Nanotechnology, исследователи настаивают на введении более жёсткой классификации.

Авторы обзора отмечают, что нельзя просто классифицировать наночастицы, «гребя их всех под одну гребёнку», однако, добавляют, что не всё, что «мало» – непременно представляет собой наноматериалы. Возникает вопрос, какие же критерии следует использовать при систематизации наноматериалов? В обзоре рассматриваются различные физико-химические характеристики, которые могут лечь в основу предлагаемой новой классификации. Так, например, размер наносистемы влияет на строение её кристаллической структуры, которая, в свою очередь, определяет реакционную способность наночастиц и особенности их взаимодействия с окружающей средой. Обнаружено, например, что свойства наночастиц, имеющих размер 10–30 нм, значительно отличаются от более крупных образований.

Что же это такое – нанотехнологии в фармацевтике?

Индустрия направленного конструирования новых лекарственных препаратов, или, драг-дизайн (drug – лекарственный препарат, design – проектирование, конструирование) имеет прямое отношение к предмету нанотехнологий, поскольку взаимодействующие объекты – лекарство и мишень являются молекулярными объектами. Основные понятия, используемые в драг-дизайне – это мишень и лекарство. Мишень – это макромолекулярная биологическая структура, предположительно связанная с определённой функцией, нарушение которой приводит к заболеванию и на которую необходимо совершить определённое воздействие. Наиболее часто встречающиеся мишени – это рецепторы и ферменты. Лекарство – это химическое соединение (как правило, низкомолекулярное), специфически взаимодействующее с мишенью и тем или иным образом модифицирующее клеточный ответ, создаваемый мишенью. Если в качестве мишени выступает рецептор, то лекарство будет, скорее всего, его лигандом, то есть соединением, специфическим образом взаимодействующим с активным сайтом рецептора. Например, F1-аденозинтрифосфатаза (F1-АТФаза), относящаяся к группе ферментов, обеспечивающих синтез энергии во всех организмах, в том числе процесс фотосинтеза в клетках растений. Диаметр молекулы фермента составляет 10–12 нм.

Супрамолекулы – это ассоциаты двух или более химических частиц, связанных межмолекулярными нековалентными связями из обладающих геометрическим и химическим соответствием (комплиментарностью) фрагментов. Перегруппировка молекул приводит к разнообразию их комбинаций. Такие системы являются предметом изучения супрамолекулярной химии (этот термин предложен нобелевским лауреатом Ж.-М. Леном) и химии «хозяин-гость», и еще мало исследованы, хотя на их основе уже созданы новые материалы с уникальными свойствами. Например, использование пористой структуры, играющей роль «хозяина» (а в других случаях, эту роль обычно выполняет органический лиганд), позволяет обратимо разместить «гостя» наноразмерного масштаба для избирательного транспорта и выделения лекарственных веществ. Несомненно, супрамолекулярные структуры – следующий за нанокристаллами перспективный объект детального изучения. В этих терминах, взаимодействие таргетных лекарственных препаратов (размеры 1–10 нм) с биомишенью (белок или система белков, размерами до 100 нм), дает комплекс «лиганд-биомишень» (типа «субстрат-рецептор» или «хозяин-гость»), по всем известным признакам являющийся супрамолекулярной структурой (супрамолекулярным комплексом). Несомненно также, что и сами компоненты такой системы есть структурные объекты нанотехнологии.

Продолжая эти рассуждения, напомним, что терапевтическое наноразмерное воздействие таргетного препарата на биомишень может осуществляться только при условии образования супрамолекулярной наносистемы «лиганд-биомишень» и лишь в во время существования последней.

То есть, разработка таргетных лекарственных препаратов попадает под данное выше определение нанотехнологии, так как, в основе механизма их действия лежит целенаправленное взаимодействие с биомишенью, ответственной за болезнь. Именно это взаимодействие в наномасштабах, реализующееся посредством нековалентной (а координационной, в то числе, водородной) химической связи между препаратом (лигандом) и белком (мишенью), которое изучается при разработке, и определяет избирательность, эффективность и более низкую токсичность таргетных препаратов сравнительно с предыдущим поколением лекарств, то есть улучшает потребительские свойства.

Более того, во время своего существования, система «лиганд-биомишень» по всем своим характеристикам является биомашиной, а результатом её работы будет модификация болезни (полное или частичное излечение). Таким образом, к. п. д. нанобиомашины зависит от силы и продолжительности связывания компонентов обсуждаемого комплекса, что, для постоянной мишени, зависит исключительно от свойств инновационного таргетного препарата-лиганда.

Тогда, формализуя понятия, можно утверждать, что нанотехнологии в фармацевтике – это совокупность методов и приёмов изучения, проектирования, производства и использования, основными этапами которых следует считать:

  • биологический скрининг, то есть., поиск активных молекул (1–10 нм), взаимодействующих с биомишенью (белок или система белков, размером до 100 нм).
  • изучение механизма действия (поиск биомишени и выявление механизма взаимодействия с ней активной молекулы).
  • компьютерный дизайн потенциально активных соединений, путем расчёта энергий взаимодействия молекул-кандидатов и биомишени (белка) на расстоянии нескольких нанометров, то есть расчёт возможных структур и положений молекул, соответствующих минимальной энергии такого взаимодействия (динамическое моделирование которого занимает примерно 24 часа на суперкомпьютере мощностью около 200 терафлопс).
  • целенаправленный контроль и модификация формы, размера, взаимодействия и интеграции составляющих наномасштабных элементов («лиганд-биомишень», около 1–100 нм), что приводит к улучшению либо появлению дополнительных эксплуатационных и\или потребительских характеристик и свойств получаемых продуктов (повышение эффективности, биодоступности, уменьшение токсичности и побочных эффектов получаемых инновационных лекарственных препаратов).
  • производство наноразмерных готовых лекарственных форм (липосомальные формы, биодеградируемые полимеры, наночастицы для направленного транспорта и т. д.).
  • применение таргетных инновационных препаратов, обеспечивающее наноразмерное воздействие на биомишень, что приводит к терапевтическому эффекту.

Хотелось бы напомнить слова, сказанные академиком В. Л. Гинзбургом: «В то же время, биология, используя в основном всё более совершенные физические методы, быстро прогрессировала и, после расшифровки в 1953 году генетического кода, начала особенно бурно развиваться. Сегодня именно биология, особенно молекулярная биология, заняла место лидирующей науки. Можно не соглашаться с подобной терминологией и маловажным, по существу, распределением „мест“ в науке. Я хочу лишь подчеркнуть факты, не всеми физиками, особенно в России, понимаемые. Для нас физика остается делом жизни, молодой и прекрасной, но для человеческого общества и его развития место физики заняла биология».

Системы доставки биологически активных веществ

Один из наиболее простых и эффективных способов доставки молекул лекарства в организм человека, является трансдермальный (через кожу). Именно из-за своей простоты, пока не существует теоретических запретов на доставку таким образом большинства из известных биологически активных соединений, вне зависимости от его молекулярной массы (размеров) или физико-химических свойств. Тем не менее, для описанных ниже нанопереносчиков, трансдермальный метод рассматривается, как один из возможных способов транспорта нанообъектов. (На рисунке – наночастицы, используемые для доставки терапевтических молекул: 1 – липосома и аденовирус; 2 – полимерная наноструктура; 3 – дендример; 4 – углеродная нанотрубка

Уже давно известны различные однокомпонентные и многокомпонентные липосомы , образующиеся в растворах липидов. Интерес для практических целей могут представлять липосомы, размерами не более 20–50 нм, которые и используются как средства доставки лекарственного средства к биологической мишени. Кроме того, сама природа заблаговременно подготовила большой набор нанопереносчиков, например, вирусов . Обработанные определенным образом аденовирусы могут быть эффективно использованы для вакцинации через кожу. К искусственным биогенным наночастицам, способным к направленной доставке, помимо липосом относят также липидные нанотрубки, наночастицы и наноэмульсии липидного происхождения, некоторые циклические пептиды, хитозаны, наночастицы из нуклеиновых кислот.

Бактерии как нанобиомашины , доставляющие лекарства. Уже доказано, что бактерии можно использовать в качестве средства точечной доставки лекарств к больным тканям. Специалисты запустили в кровяную систему крысы бактерии MC–1. Эти бактерии способны быстро двигаться за счёт вращения своих жгутиков, но кроме того, они содержат магнитные наночастицы, что делает их чувствительными к магнитному полю и заставляет двигаться вдоль силовых линий. Такие силовые линии способно создавать, например, устройство магнитного резонанса. Исследователи считают, что прежде чем пытаться создавать искусственные наномашины, способные продвигаться по телу человека, следует обратить внимание на уже существующие создания природы.

Наносферы и нанокапсулы относятся к семейству полимерных наночастиц . Если наносферы являются цельными матрицами, на полимерной поверхности которых распределяется активное вещество, то в нанокапсулах полимерная оболочка образует полость, наполненную жидкостью. Вследствие этого, активное вещество выделяется в организм по различным механизмам – из наносфер высвобождение носит экспоненциальный характер, а из нанокапсул – происходит с постоянной скоростью в течение длительного времени. Полимерные наночастицы можно получить из естественных либо синтетических полимеров, каковыми являются полисахариды, полимолочная и полигликолевая кислоты, полилактиды, полиакрилаты, акрилполимеры, полиэтиленгликоль (ПЭГ) и его аналоги, и др. Полимерные материалы характеризуются набором ценных свойств для лекарственного транспорта, как биосовместимость, способность к биодеградации, функциональная совместимость.

Особый интерес вызывают дендримеры . Они представляют собой новый тип полимеров, имеющих не привычное линейное, а «ветвящееся» строение. Первый образец был получен ещё в 50-е годы, а основные методы их синтеза разработаны в 80-е годы. Термин «дендримеры» появился раньше, чем «нанотехнология», и первое время между собой они не ассоциировались. Однако, в последнее время, дендримеры всё чаще упоминаются именно в контексте их нанотехнологических и наномедицинских применений. Дендримеры являются уникальным классом полимеров, поскольку их размер и форма могут быть очень точно заданы при химическом синтезе, что крайне важно для нанопереносчиков. Дендримеры получают из мономеров, проводя последовательные конвергентную и дивергентную полимеризации (в том числе, используя методы пептидного синтеза), задавая, таким способом, характер ветвления. Типичными мономерами, используемыми в синтезе, служат полиамидоамин и аминокислота лизин. «Целевые» молекулы связываются с дендримерами либо путём образования комплексов с их поверхностью либо встраиваясь глубоко между их отдельными цепями. Кроме того, на поверхности дендримеров можно стереоспецифически расположить необходимые функциональные группы, которые с максимальным эффектом будут взаимодействовать с вирусами и клетками. Примером создания активного вещества на основе дендримера является препарат Vivigel – гель, способный защитить от ВИЧ-инфекции.

Среди углеродных наночастиц, образованных только атомами углерода, наиболее широко распостранены фуллерены и нанотрубки , которые можно получить с помощью разнообразных химических или физико-химических методов. Например, в промышленных масштабах фуллерены получают термическим распылением углеродсодержащей сажи в атмосфере инертного газа, при пониженном давлении, в присутствии катализатора. Фуллерены, по мнению экспертов, могут стать основой не только для систем доставки, но и для нового класса лекарственных средств. Главная особенность – их каркасная форма: молекулы выглядят как замкнутые, полые внутри «оболочки». Самая знаменитая из углеродных каркасных структур – это фуллерен С 60 , абсолютно неожиданное открытие которого в 1985 году вызвало целый бум исследований в этой области (Нобелевская премия по химии за 1996 год была присуждена именно первооткрывателям фуллеренов). После разработки методики получения фуллеренов в макроколичествах, было обнаружено множество других, более легких либо более тяжелых фуллеренов: начиная от С 20 и до С 70 , С 82 , С 96 и выше. На основе фуллеренов разрабатываются средства доставки препаратов для лечения ВИЧ-инфицированных пациентов и онкологических больных.

В 1991 году, снова – совершенно неожиданно (теоретики их существование не предсказывали), были обнаружены длинные, цилиндрические углеродные образования, получившие названия нанотрубок . Они характеризуются разнообразием форм: большие и маленькие, однослойные и многослойные, прямые и спиральные; уникальной прочностью, демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств. Вообще-то нанотрубки можно использовать как микроскопические контейнеры для транспорта многих химически или биологически активных веществ: белков, ядовитых газов, компонентов топлива и даже расплавленных металлов. Для нужд медицины нанотрубки обладают важным повышенным сродством к липидным структурам, они способны образовывать стабильные комплексы с пептидами и ДНК-олигонуклеотидами и, даже инкапсулировать эти молекулы. Совокупность указанных свойств обуславливает их применение в виде эффективных систем доставки вакцин и генетического материала.

К неорганическим наночастицам , одному из важнейших классов нанопереносчиков, относятся соединения оксида кремния, а также различных металлов (золото, серебро, платина). Часто такая наночастица имеет кремниевое ядро и внешнюю оболочку, сформированную атомами металла. Использование металлов позволяет создавать переносчики, обладающие рядом уникальных свойств. Так, их активность (и, в частности, высвобождение терапевтического агента) может быть модулирована термическим воздействием (инфракрасное излучение), а также изменением магнитного поля. В случае гетерогенных твёрдофазных композитов, например, наночастиц металла на поверхности пористого носителя, вследствие их взаимодействие появляются новые свойства.

Пожалуй, самыми распространенными платформенными технологиями являются микрокапсулирование, а также технологии получения матричных, многослойных, оболочечных таблеток и капсул. Например, в России разработаны и сейчас патентуются платформенные технологии создания наноразмерных комплексов действующих веществ с биосовместимыми и биодеградируемыми синтетическими и природными полимерами. Наноформулировка может приводить к увеличению активности препарата в 2–4 раза, а также к появлению более выраженных терапевтических свойств. В ряде случаев уже ведутся доклинические исследования известных лекарств в новых наноупаковках (например, таксол или нурофен пролонгированного действия). Платформенные технологии контролируемого высвобождения лекарств актуальны для направленной доставки высокотоксичных противоопухолевых лекарственных веществ. Традиционные онкологические препараты равномерно распределяются по всему организму: попадают в очаги болезни и в здоровые органы. Проблему можно решить при помощи направленной доставки лекарственного вещества вместе с биодеградируемым полимером – тогда лекарство высвобождается не моментально, а по мере деградации полимера. Но есть ещё более продвинутые методы целевой доставки лекарства при помощи наночастиц генетического материала, ДНК или РНК. Частицы размером около 200 нанометров или немного меньше, могут выйти из кровотока только в местах воспаления – там, где у капилляров расширены поры.

Во время путешествия по кровотоку наночастицы могут обрастать белками плазмы крови, их поглощают иммунные стражи – макрофаги. Для продления срока пребывания наночастиц в организме к ним прикрепляют полимерные цепочки. Еще один вариант – прикрепление к наночастице антител опухолевых клеток, которые знают дорогу к мишени, и антибиотика, который уничтожит злокачественное образование. Например, учёные конструируют липосомный противораковый препарат, в котором термочувствительные липосомы завернуты в полимер и снабжены антителами, определяющими «адрес доставки».

Многочисленные прививки от всевозможных заболеваний стали рутинной процедурой, но сама методика практически не изменилась за последнее столетие. На смену шприцам с раствором антигенов в ближайшем будущем придут нанопереносчики (размеры до 500 нм), способные доставлять антигены через кожу, к присутствующим там иммунным клеткам. Показано, что использование малых наночастиц (всего 40 нм) позволяет доставлять антигены непосредственно через волосяные фолликулы.

В то же время, системы доставки активных веществ сегодня связаны с рисками, то есть побочными эффектами. Недаром, фармацевтический гигант Novartis, концерн Ciba и некоторые другие крупные компании связали свои дальнейшие разработки в этом направлении только с биологически расщепляемым наноносителями.

Нанотерапия

Нанометровые молекулы могут применяться и в качестве активных веществ. Одним из новых походов является размельчение активных лекарственных веществ до нанометровых размеров – около половины новых активных веществ, которые сейчас находятся в разработке, растворяются плохо, то есть, обладают недостаточной биодоступностью.

Кристаллы активного лекарственного нановещества состоят из активного вещества и производятся в виде суспензии (наносуспензии), которую можно вводить внутривенно, а для перорального приема можно производить из нее гранулы или таблетки. При этом не нужна полимерная матрица, разрушение которой, как считают некоторые ученые, может оказывать токсическое действие на клетки. Обычный размер нанокристаллов составляет 200–600 нм. Одним из нанокристаллических препаратов, внедренных в клиническую практику еще в 2000 году, является Rapamune (Wyeth-Ayers Laboratories) – иммуносупрессивное средство, которое применяют после трансплантации органов. Термотерапия наночастицами , по всей видимости, имеет большую перспективу. Известно, что при попадании ближнего ИК излучения на нанотрубки, последние начинают вибрировать и разогревают вещество вокруг себя. Эффективность такой терапии оказалась весьма велика: у 80 процентов мышей, получившую дозу раствора многослойных нанотрубок, раковые опухоли в почке через некоторое время полностью исчезли. Почти все мыши из этой группы дожили до конца исследования, которое продолжалось около 9 месяцев. Проводятся клинические исследования термотерапии опухолей мозга и рака предстательной железы. Исследователи обнаружили, что контакт нанотрубок с поврежденной костной тканью мышей ускоряет регенерацию костной ткани и понижает вероятность возникновения воспалительных процессов в процессе лечения. Аналогично, частицы нанозолота убивают микробы, распознают и разрушают раковые клетки.

Наночастицы также могут использоваться для стимулирования врождённых механизмов регенерации. Основное внимание здесь сосредоточено на искусственной активации и управлении взрослыми стволовыми клетками. Вот несколько достижений: амфифильные белки, которые поддерживают рост клеток для восстановления поврежденного спинного мозга; покрытия областей опухоли головного мозга из магнитных наночастиц и чувствительных к ферментам частиц; зонды из наночастиц для внутриклеточной доставки препарата и экспрессии генов, квантовые точки, которые обнаруживают и определяют количество биомаркеров рака молочной железы человека.

Наноантитела представляют собой наименьшие из известных на сегодня белковых антиген-узнающих молекул (размером 2?4 нм). Они являются фрагментами (вариабельными доменами) особых однодоменных антител – состоят из димера только одной укороченной тяжелой цепи иммуноглобулина и являются полнофункциональными в отсутствие легкой цепи. После синтеза наноантитела уже функциональны и никаких пострансляционных модификаций не требуют. Это позволяет сразу нарабатывать их в бактериальных клетках или в дрожжах, что делает путь создания данных белков существенно более экономичным. С наноантителами довольно просто проводить всевозможные генно-инженерные манипуляции, например, создавать более эффективные комбинированные конструкции, включающие два или несколько наноантител, а также другие белковые домены или функциональные группы. Такие антитела не существуют в организме человека, и поэтому приспосабливания к ним нет. Таким образом, появляется возможность обойти ухищрения аномальных, патологических клеток и микроорганизмов, которые сумели адаптироваться к иммунной системе человека и нащупать слабое звено в их защите.

Биологически активные добавки (БАД), разработанные с применением нанотехнологий, так называемые наноцевтики (nanoceuticals), нацелены на мощное усиление возможностей организма: от усиления усвояемости активных компонентов пищи и до улучшения умственной деятельности и возможности сконцентрироваться, являются изюминкой современного рынка. Однако, общества по правам потребителей настаивают на более жёстком государственном контроле реальной безопасности и эффективности продуктов, попадающих на прилавки магазинов.

О безопасности нанотехнологий в здравоохранении

Общее мнение экспертов – исследователи еще не создали инструментарий, необходимый для 100%-ной оценки рисков, связанных с нанотехнологиями в здравоохранении. Такие разработки на 3–5 лет, а по некоторых оценкам – и больше, отстают по срокам от собственно создания важнейших медицинских наноматериалов. Наноматериалы относятся к абсолютно новому классу продукции, и характеристика их потенциальной опасности для здоровья человека и состояния среды обитания во всех случаях является обязательной. Наночастицы и наноматериалы обладают комплексом физических, химических свойств и биологическим действием (в том числе токсическим), которые часто радикально отличаются от свойств этого же вещества в форме сплошных фаз или макроскопических дисперсий (Таблица 2).

Физико-химические особенности поведения веществ в наноразмерном состоянии Изменения физико-химических свойств и биологического (в т.ч., токсического) действия
Увеличение химического потенциала веществ на межфазной границе большой кривизны Изменение топологии связи атомов на поверхности приводит к изменению их химических потенциалов, изменению растворимости, реакционной и каталитической способности наночастиц и их компонентов.
Высокая удельная поверхность наноматериалов (в расчете на единицу массы) Увеличение адсорбционной емкости, химической реакционной способности и каталитических свойств может приводить к увеличению продукции свободных радикалов и активных форм кислорода и далее к повреждению биологических структур (липиды, белки, нуклеиновые кислоты, в частности, ДНК).
Небольшие размеры и разнообразие форм наночастиц Возможно связывание с нуклеиновыми кислотами (вызывая образование аддуктов ДНК), белками, встраивание в мембраны, проникновение в клеточные органеллы и, как результат, изменение функции биоструктур. Процессы переноса наночастиц в окружающей среде с воздушными и водными потоками, их накопления в почве, донных отложениях могут также значительно отличаться от поведения частиц веществ более крупного размера.
Высокая адсорбционная активность Возможна адсорбция на наночастицах различных контаминантов и облегчение их транспорта внутрь клетки, что резко увеличивает токсичность последних. Многие наноматериалы обладают гидрофобными свойствами или являются электрически заряженными, что усиливает процессы адсорбции на них различных токсикантов и способность последних проникать через барьеры организма.
Высокая способность к аккумуляции Возможно, что из-за малого размера наночастицы могут не распознаваться защитными системами организма, не подвергаться биотрансформации и не выводиться из организма, что ведет к накоплению наноматериалов в растительных, животных организмах, а также в микроорганизмах, к передаче по пищевой цепи и в результате – к увеличению их поступления в организм человека