Основными операциями, осуществляемыми над множествами, являются сложение (объединение), умножение (пересечение) и вычитание . Эти операции, как мы увидим дальше, не тождественны одноименным операциям, производимым над числами.

Определение : Объединением (или суммой) двух множеств A и B называется множество, содержащее все такие и только такие элементы, которые являются элементами хотя бы одного из этих множеств. Объединение множеств A и B обозначают как A  B.

Это определение означает, что сложение множеств A и B есть объединение всех их элементов в одно множество A  B. Если одни и те же элементы содержатся в обоих множествах, то в объединение эти элементы входят только по одному разу.

Аналогично определяется объединение трёх и более множеств.

Определение : Пересечением (или умножением) двух множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат множеству A и множеству В одновременно. Пересечение множеств A и B обозначают как A  B.

Аналогично определяется пересечение трёх и более множеств.

Определение : Разностью множеств A и B называется множество, состоящее из тех и только тех элементов множества A и которые не принадлежат множеству В. Разность множеств A и B обозначают как A \ B. Операция, при помощи которой находится разность множеств, называется вычитанием.

Если В  А, то разность A \ B называется дополнением множества B до множества A. Если множество B является подмножеством универсального множества U, то дополнение B до U обозначается , то есть= U \ B.

Упражнения :

    Рассмотрим три множества N ={0,2,4,5,6,7}, M ={1,3,5,7,9} и P ={1,3,9,11}. Найти

    1. A = N M

      B = N M

      C = N P

    Ответьте, какими из операций над заданными множествами следует воспользоваться для получения множеств, описанных ниже.

    1. Дано: А – множество всех студентов факультета, В – множество студентов, имеющих академические задолженности. Определить С – множество успевающих студентов факультета.

      Дано: А – множество всех отличников факультета, В – множество студентов, не имеющих академических задолженностей, С – множество успевающих студентов, имеющих хотя бы одну тройку. Определить D – множество студентов факультета, успевающих без троек.

      Дано: U – множество всех студентов учебной группы, А - множество студентов этой группы, получивших зачет по физкультуре, В – множество студентов той же группы, успешно сдавших зачет по истории Отечества. Определить С – множество студентов той же учебной группы, преуспевших в обеих дисциплинах, D – множество студентов той же группы, «заваливших» хотя бы один из зачетов.

  1. Свойства объединения и пересечения множеств

Из определений объединения и пересечения множеств вытекают свойства этих операций, представленные в виде равенств, справедливых для любых множеств A , B и С .

    A B = B A - коммутативность объединения;

    A B = B A - коммутативность пересечения;

    A (B С ) = (A B ) С - ассоциативность объединения;

    A (B С ) = (A B ) С - ассоциативность пересечения;

    A (B С ) = (A B ) (A С) - дистрибутивность пересечения относительно объединения;

    A (B С ) = (A B ) (A С) - дистрибутивность объединения относительно пересечения;

Законы поглощения:

    A A = A

    A A = A

    A Ø = A

    A Ø = Ø

    A U = U

    A U = A

Следует заметить, что разность не обладает свойствами коммутативности и ассоциативности, то есть A \ B B \ A и A \ (B \ С ) (A \ B ) \ С . В этом легко убедиться, построив диаграммы Эйлера - Венна.

1 Пересечение множеств

Пересечением множеств А и В называют множество, в которое входят те и только те элементы, которые одновременно принадлежат множествам А и В. Обозначение: А ∩ В.

Так любой элемент х из множества А ∩ В обладает свойством

«х € А и х € В», то данное определение пересечения двух множеств можно записать в таком виде: А ∩ В = {х | х€А ^ х€В}.

Если множества А и В не имеют общих элементов, то эти множества не пересекаются. А ∩ В = Ǿ.

Если же множества имеет хотя бы один общий элемент, то говорят, что множества А и В пересекаются или что пересечение множеств Аи В не пусто.

Операция множеств обладает рядом свойств:

1. Пересечение множеств коммутативно: для любых множеств А и В имеем А∩В = В ∩ А

2. Пересечение множеств ассоциативно: для любых множеств А,В,С имеем

(А∩В)∩С=А∩(В∩С). Это позволяет записывать выражение А∩В∩С без скобок и находить пересечение любого числа множеств.

Сравнивая области заштрихованные дважды на рис, приходим к выводу, что множества (А∩В)∩С и А∩(В∩С) равны.

2. Объединение множеств.

Объединением двух множеств А и В называется множество, состоящее из элементов, которые принадлежат хотя бы одному из этих множеств. Обозначение:A U B.

Пример: А = {m, n, p, k, l} и В = {p, r, s, n} является множество A U B ={m, n, p, k, l, r, s}

На рисунке множество A U B изображено заштрихованной областью.

По определению в объединение множеств Аи В могут входить элементы из А, не принадлежащие множеству В, элементы из В, не принадлежащие А, и элементы, принадлежащие множествам А и В одновременно.

Так как любой элемент х из множества A U B обладает свойством «х€А или х€В», то определение объединения двух множеств можно записать так:

A U B = {х | х € А v x € B}.

Операция объединения множеств обладает такими свойствами:

1. Для любых множеств А и В имеем А U В = В U А (коммутативность).

2. Для любых множеств А,В,С имеем (А U В) U С=А U (В U С). (ассоциативность) Это свойство позволяет писать выражение (А U В) U С без скобок и говорить про объединение любого числа множеств.

В частности, для любого множества А имеем:

Связь между операциями пересечения и объединения множеств отражают свойства дистрибутивности.

4. Для любых множеств А, В, С справедливы равенства:

Свойства дистрибутивности иллюстрируются на диаграммах Эйлера –Венна. на рис приведены диаграммы соответствующие левой и правой части соотношения 4б). На первой диаграмме вертикальной штриховкой отмечено множество А, горизонтальной – множество В∩С. Вся заштрихованная область представляет собой множество AU(B∩C). На второй диаграмме вертикальной штриховкой отмечено множество AUB, горизонтальной – множество AUC. Область заштрихованная дважды, изображает множество (АUB)∩(AUC).

Рассматривая полученные области, приходим к выводу, что множества AU(B∩C) и (АUB)∩(AUC) равны.

Решение некоторых математических задач предполагает нахождение пересечения и объединения числовых множеств. В статье ниже рассмотрим эти действия подробно, в том числе, на конкретных примерах. Полученный навык будет применим для решения неравенств с одной переменной и систем неравенств.

Простейшие случаи

Когда мы говорим о простейших случаях в рассматриваемой теме, то имеем в виду нахождение пересечения и объединения числовых множеств, представляющих из себя набор отдельных чисел. В подобных случаях будет достаточно использования определения пересечения и объединения множеств.

Определение 1

Объединение двух множеств – это множество, в котором каждый элемент является элементом одного из исходных множеств.

Пересечение множеств – это множество, которое состоит из всех общих элементов исходных множеств.

Из указанных определений логически следуют следующие правила:

Чтобы составить объединение двух числовых множеств, имеющих конечное количество элементов, необходимо записать все элементы одного множества и дописать к ним недостающие элементы из второго множества;

Чтобы составить пересечение двух числовых множеств, необходимо элементы первого множества один за другим проверить на принадлежность второму множеству. Те из них, которые окажутся принадлежащими обоим множествам и будут составлять пересечение.

Полученное согласно первому правилу множество будет включать в себя все элементы, принадлежащие хотя бы одному из исходных множеств, т.е. станет объединением этих множеств по определению.

Множество, полученное согласно второму правилу, будет включать в себя все общие элементы исходных множеств, т.е. станет пересечением исходных множеств.

Рассмотрим применение полученных правил на практических примерах.

Пример 1

Исходные данные: числовые множества А = { 3 , 5 , 7 , 12 } и В = { 2 , 5 , 8 , 11 , 12 , 13 } . Необходимо найти объединение и пересечение исходных множеств.

Решение

  1. Определим объединение исходных множеств. Запишем все элементы, к примеру, множества А: 3 , 5 , 7 , 12 . Добавим к ним недостающие элементы множества В: 2 , 8 , 11 и 13 . В конечном итоге имеем числовое множество: { 3 , 5 , 7 , 12 , 2 , 8 , 11 , 13 } . Упорядочим элементы полученного множества и получим искомое объединение: А ∪ B = { 2 , 3 , 5 , 7 , 8 , 11 , 12 , 13 } .
  2. Определим пересечение исходных множеств. Согласно правилу, переберем один за другим все элементы первого множества A и проверим, входят ли они во множество B . Рассмотрим первый элемент - число 3: он не принадлежит множеству B , а значит не будет являться элементом искомого пересечения. Проверим второй элемент множества A , т.е. число 5: оно принадлежит множеству B , а значит станет первым элементом искомого пересечения. Третий элемент множества A – число 7 . Оно не является элементом множества B , а, следовательно, не является элементом пересечения. Рассмотрим последний элемент множества A: число 1 . Оно также принадлежит и множеству B , и соответственно станет одним из элементов пересечения. Таким образом, пересечение исходных множеств – множество, состоящее из двух элементов: 5 и 12 , т.е. А ∩ В = { 5 , 12 } .

Ответ: объединение исходных множеств – А ∪ B = { 2 , 3 , 5 , 7 , 8 , 11 , 12 , 13 } ; пересечение исходных множеств - А ∩ В = { 5 , 12 } .

Все вышесказанное относится к работе с двумя множествами. Что же касается нахождения пересечения и объединения трех и более множеств, то решение этой задачи возможно свести к последовательному нахождению пересечения и объединения двух множеств. Например, чтобы определить пересечение трех множеств A , В и С, возможно сначала определить пересечение A и B , а затем найти пересечение полученного результата с множеством C . На примере это выглядит так: пусть будут заданы числовые множества: А = { 3 , 9 , 4 , 3 , 5 , 21 } , В = { 2 , 7 , 9 , 21 } и С = { 7 , 9 , 1 , 3 } . Пересечение первых двух множеств составит: А ∩ В = { 9 , 21 } , а пересечение полученного множества с множеством А ∩ В = { 9 , 21 } . В итоге: А ∩ В ∩ С = { 9 } .

Однако на практике, чтобы найти объединение и пересечение трех и более простейших числовых множеств, которые состоят из конечного количества отдельных чисел, удобнее применять правила, аналогичные указанным выше.

Т.е., чтобы найти объединение трех и более множеств указанного типа, необходимо к элементам первого множества добавить недостающие элементы второго множества, затем – третьего и т.д. Для пояснения возьмем числовые множества: А = { 1 , 2 } , В = { 2 , 3 } , С = { 1 , 3 , 4 , 5 } . К элементам первого множества A добавится число 3 из множества B , а затем – недостающие числа 4 и 5 множества C . Таким образом, объединение исходных множеств: А ∪ В ∪ С = { 1 , 2 , 3 , 4 , 5 } .

Что же касается решения задачи на нахождение пересечения трех и более числовых множеств, которые состоят из конечного количества отдельных чисел, необходимо одно за другим перебрать числа первого множества и поэтапно проверять, принадлежит ли рассматриваемое число каждому из оставшихся множеств. Для пояснения рассмотрим числовые множества:

А = { 3 , 1 , 7 , 12 , 5 , 2 } В = { 1 , 0 , 2 , 12 } С = { 7 , 11 , 2 , 1 , 6 } D = { 1 , 7 , 15 , 8 , 2 , 6 } .

Найдем пересечение исходных множеств. Очевидно, что множество B имеет меньше всего элементов, поэтому именно их мы будем проверять, определяя, входят ли они в остальные множества. Число 1 множества B является элементом и прочих множеств, а значит является первым элементом искомого пересечения. Второе число множества B – число 0 – не является элементом множества A , а, следовательно, не станет элементом пересечения. Продолжаем проверку: число 2 множества B является элементом прочих множеств и становится еще одной частью пересечения. Наконец, последний элемент множества B – число 12 – не является элементом множества D и не является элементом пересечения. Таким образом, получаем: A ∩ B ∩ C ∩ D = { 1 , 2 } .

Координатная прямая и числовые промежутки как объединение их частей

Отметим на координатной прямой произвольную точку, например, с координатой - 5 , 4 . Указанная точка разобьет координатную прямую на два числовых промежутка – два открытых луча (-∞, -5,4) и (-5,4, +∞) и собственно точку. Нетрудно увидеть, что в соответствии с определением объединения множеств любое действительное число будет принадлежать объединению (- ∞ , - 5 , 4) ∪ { - 5 , 4 } ∪ (- 5 , 4 , + ∞) . Т.е. множество всех действительных чисел R = (- ∞ ; + ∞) возможно представить в виде полученного выше объединения. И наоборот, полученное объединение будет являться множеством всех действительных чисел.

Отметим, что заданную точку возможно присоединить к любому из открытых лучей, тогда он станет простым числовым лучом (- ∞ , - 5 , 4 ] или [ - 5 , 4 , + ∞) . При этом множество R будет описываться следующими объединениями: (- ∞ , - 5 , 4 ] ∪ (- 5 , 4 , + ∞) или (- ∞ , - 5 , 4) ∪ [ - 5 , 4 , + ∞) . .

Подобные рассуждения действительны не только относительно точки координатной прямой, но и относительно точки на любом числовом промежутке. Т.е., если мы возьмем любую внутреннюю точку любого произвольного промежутка, его возможно будет представить, как объединение его частей, полученных после деления заданной точкой, и самой точки. К примеру, задан полуинтервал (7 , 32 ] и точка 13 , принадлежащая этому числовому промежутку. Тогда заданный полуинтервал можно представить в виде объединения (7 , 13) ∪ { 13 } ∪ (13 , 32 ] и обратно. Мы можем включить число 13 в любой из промежутков и тогда заданное множество (7 , 32 ] можно представить, как (7 , 13 ] ∪ (13 , 32 ] или (7 , 13 ] ∪ (13 , 32 ] . Также мы можем взять в качестве исходных данных не внутреннюю точку заданного полуинтервала, а его конец (точку с координатой 32), тогда заданный полуинтервал можно представить, как объединение интервала (7 , 32) и множества из одного элемента { 32 } . Таким образом: (7 , 32 ] = (7 , 32) ∪ { 32 } .

Еще один вариант: когда берется не одна, а несколько точек на координатной прямой или числовом промежутке. Эти точки разобьют координатную прямую или числовой промежуток на несколько числовых промежутков, а объединение этих промежутков будут составлять исходные множества. К примеру, на координатной прямой заданы точки с координатами - 6 , 0 , 8 , которые разобьют ее на промежутки: (- ∞ , - 6) , (- 6 , 0) , (0 , 8) , (8 , + ∞) . При этом множество всех действительных чисел, олицетворением чего и является координатная прямая, возможно представить в виде объединения полученных промежутков и указанных чисел:

(- ∞ , - 6) ∪ { - 6 } ∪ (- 6 , 0) ∪ { 0 } ∪ (0 , 8) ∪ { 8 } ∪ (8 , + ∞) .

С темой нахождения пересечения и объединения множеств возможно наглядно разобраться, если использовать изображения заданных множеств на координатной прямой (если только речь – не о простейших случаях, рассмотренных в самом начале статьи).

Мы рассмотрим общий подход, который позволяет определить результат пересечения и объединения двух числовых множеств. Опишем подход в виде алгоритма. Рассматривать его шаги будем постепенно, каждый раз приводя очередной этап решения конкретного примера.

Пример 2

Исходные данные: заданы числовые множества А = (7 , + ∞) и В = [ - 3 , + ∞) . Необходимо найти пересечение и объединение данных множеств.

Решение

  1. Изобразим заданные числовые множества на координатных прямых. Их необходимо расположить друг над другом. Для удобства принято считать, что точки начала отсчета заданных множеств совпадают, и остается сохранным расположение точек друг относительно друга: любая точка с большей координатой лежит правее точки с меньшей координатой. При этом, если нам интересно объединение множеств, то координатные прямые объединяют слева квадратной скобкой совокупности; если интересует пересечение, то – фигурной скобкой системы.

В нашем примере для записи пересечения и объединения числовых множеств имеем: и

Изобразим еще одну координатную прямую, расположив ее под уже имеющимися. Она понадобится для отображения искомого пересечения или объединения. На этой координатной прямой отмечают все граничные точки исходных числовых множеств: сначала черточками, а позже, после выяснения характера точек с этими координатами, черточки будет заменены выколотыми или невыколотыми точками. В нашем примере это точки с координатами - 3 и 7 .

и

Точки, которые изображены на нижней координатной прямой в предыдущем шаге алгоритма, дают возможность рассматривать координатную прямую как набор числовых промежутков и точек (об этом мы говорили выше). В нашем примере координатную прямую представим в виде набора пяти числовых множеств: (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) .

Теперь необходимо поочередно проверить принадлежность каждого из записанных множеств искомому пересечению или объединению. Получаемые выводы поэтапно отмечаются на нижней координатной прямой: когда промежуток является частью пересечения или объединения, над ним рисуется штриховка. Когда точка входит в пересечение или объединение, то штрих заменяется на сплошную точку; если точка не является частью пересечения или объединения – ее делают выколотой. В этих действиях нужно придерживаться таких правил:

Промежуток становится частью пересечения, если он одновременно является частью множества A и множества B (или иными словами – если есть штриховка над этим промежутком на обеих координатных прямых, отображающих множества А и B);

Точка становится частью пересечения, если она является одновременно частью каждого из множеств А и В (иными словами – если точка является невыколотой или внутренней точкой какого-либо интервала обоих числовых множеств A и B);

Промежуток становится частью объединения, если он является частью хотя бы одного из множеств A или B (иными словами – если присутствует штриховка над этим промежутком хотя бы на одной из координатных прямых, отображающих множества A и B .

Точка становится частью объединения, если она является частью хотя бы одного из множеств A и B (иными словами – точка является невыколотой или внутренней точкой какого-либо интервала хотя бы одного из множеств A и B).

Кратко резюмируя: пересечением числовых множеств A и B служит пересечение всех числовых промежутков множеств A и B , над которыми одновременно присутствует штриховка, и всех отдельных точек, принадлежащих и множеству А, и множеству В. Объединением числовых множеств A и B служит объединение всех числовых промежутков, над которыми присутствует штриховка хотя бы у одного из множеств A или B , а также всех невыколотых отдельных точек.

  1. Вернемся к примеру, определим пересечение заданных множеств. Для этого поочередно проверим множества: (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) . Начнем с множества (- ∞ , - 3) , наглядно выделив его на чертеже:

Этот промежуток не будет включен в пересечение, потому что не является частью ни множества A , ни множества B (нет штриховки). И так наш чертеж сохраняет свой изначальный вид:

Рассмотрим следующее множество { - 3 } . Число - 3 является частью множества B (невыколотой точкой), но не входит в состав множества A , а потому не станет частью искомого пересечения. Соответственно на нижней координатной прямой точку с координатой - 3 делаем выколотой:

Оцениваем следующее множество (- 3 , 7) .

Оно является частью множества B (над интервалом присутствует штриховка), но не входит в множество A (над интервалом штриховка отсутствует): не будет входить в искомое пересечение, а значит на нижней координатной прямой не появляется никаких новых отметок:

Следующее множество на проверку - { 7 } . Оно является составом множества B (точка с координатой 7 является внутренней точкой промежутка [ - 3 , + ∞)), но не является частью множества A (выколотая точка), таким образом, рассматриваемый промежуток не станет частью искомого пересечения.. Отметим точку с координатой 7 как выколотую:

И, наконец, проверяем оставшийся промежуток (7 , + ∞) .

Промежуток входит в оба множества A и B (над промежутком присутствует штриховка), следовательно, становится частью пересечения. Штрихуем место над рассмотренным промежутком:

В конечном счете на нижней координатной прямой образовалось изображение искомого пересечения заданных множеств. Очевидно, что оно является множеством всех действительных чисел больше числа 7 , т.е.: А ∩ В = (7 , + ∞) .

  1. Следующим шагом определим объединение заданных множеств A и B . Последовательно проверим множества (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) , устанавливая факт включения или невключения их в искомое объединение.

Первое множество (- ∞ , - 3) не является частью ни одного из исходных множеств A и B (над промежутками нет штриховок), следовательно, множество (- ∞ , - 3) не войдет в искомое объединение:

Множество { - 3 } входит в множество B , а значит будет входить в искомое объединение множеств A и B:

Множество (- 3 , 7) является составной частью множества B (над интервалом присутствует штриховка) и становится элементом объединения множеств A и B:

Множество 7 входит в числовое множество B , поэтому войдет и в искомое объединение:

Множество (7 , + ∞) , являясь элементом обоих множеств А и В одновременно, становится еще одной частью искомого объединения:

По итоговому изображению объединения исходных множеств А и В получаем: А ∩ В = [ - 3 , + ∞) .

Имея некий практический опыт применения правил нахождения пересечений и объединений множеств, описанные проверки легко проводятся устно, что позволяет быстро записывать конечный результат. Продемонстрируем на практическом примере, как выглядит его решение без детальных пояснений.

Пример 3

Исходные данные: множества А = (- ∞ , - 15) ∪ { - 5 } ∪ [ 0 , 7) ∪ { 12 } и В = (- 20 , - 10) ∪ { - 5 } ∪ (2 , 3) ∪ { 17 } . Необходимо определить пересечение и объединение заданных множеств.

Решение

Отметим заданные числовые множества на координатных прямых, чтобы иметь возможность получить иллюстрацию искомых пересечения и объединения:

Ответ: А ∩ В = (- 20 , - 15) ∪ { - 5 } ∪ (2 , 3) ; А ∪ В = (- ∞ , - 10) ∪ { - 5 } ∪ [ 0 , 7 ] ∪ { 12 , 17 } .

Также понятно, что при достаточном понимании процесса указанный алгоритм возможно подвергнуть оптимизации. К примеру, в процессе нахождения пересечения можно не тратить время на проверку всех промежутков и множеств, представляющих собой отдельные числа, ограничившись рассмотрением только тех промежутков и чисел, которые составляют множество А или В. Прочие промежутки в любом случае не войдут в пересечение, т.к. не являются частью исходных множеств. Составим иллюстрацию сказанного на практическом примере.

Пример 4

Исходные данные: множества А = { - 2 } ∪ [ 1 , 5 ] и B = [ - 4 , 3 ] .

Необходимо определить пересечение исходных множеств.

Решение

Геометрически изобразим числовые множества А и В:

Граничные точки исходных множеств разобьют числовую прямую на несколько множеств:

(- ∞ , - 4) , { - 4 } , (- 4 , - 2) , { - 2 } , (- 2 , - 1) , { 1 } , (1 , 3) , { 3 } , (3 , 5) , { 5 } , (5 , + ∞) .

Легко заметить, что числовое множество A можно записать, объединив некоторые из перечисленных множеств, а именно: { - 2 } , (1 , 3) , { 3 } и (3 , 5) . Достаточно будет проверить эти множества на их включенность также в множество В для того, чтобы найти искомое пересечение. Те, что войдут в множество В и станут элементами пересечения. Проведем проверку.

Совершенно понятно, что { - 2 } является частью множества B , ведь точка с координатой - 2 – внутренняя точка отрезка [ - 4 , 3) . Интервал (1 , 3) и множество { 3 } также входят в множество В (над интервалом присутствует штриховка, а точка с координатой 3 является для множества В граничной и невыколотой). Множество (3 , 5) не будет элементом пересечения, т.к. не входит в множество В (над ним не присутствует штриховка). Отметим все вышесказанное на чертеже:

В итоге искомым пересечением двух заданных множеств будет объединение множеств, которое мы запишем так: { - 2 } ∪ (1 , 3 ] .

Ответ: А ∩ В = { - 2 } ∪ (1 , 3 ] .

В заключении статьи обговорим еще, как решить задачу о нахождении пересечения и объединения нескольких множеств (более 2). Сведем ее, как рекомендовалось ранее, к необходимости определения пересечения и объединения первых двух множеств, затем полученного результата с третьим множеством и так далее. А можно использовать описанный выше алгоритм с единственным только отличием, что проверку вхождения промежутков и множеств, представляющих собой отдельные числа, необходимо проводить не по двум, а всем заданным множествам. Рассмотрим на примере.

Пример 5

Исходные данные: множества А = (- ∞ , 12 ] , В = (- 3 , 25 ] , D = (- ∞ , 25) ꓴ { 40 } . Необходимо определить пересечение и объединение заданных множеств.

Решение

Отображаем заданные числовые множества на координатных прямых и ставим с левой от них стороны фигурную скобку, обозначая пересечение, а также квадратную, обозначая объединение. Ниже отобразим координатные прямые с отмеченными штрихами граничными точками числовых множеств:

Таким образом, координатная прямая представлена следующими множествами: (- ∞ , - 3) , { - 3 } , (- 3 , 12) , { 12 } , (12 , 25) , { 25 } , (25 , 40) , { 40 } , (40 , + ∞) .

Начинаем искать пересечения, поочередно проверяя записанные множества на принадлежность каждому из исходных. Во все три заданных множества входит интервал (- 3 , 12) и множество { - 12 } : они и станут элементами искомого пересечения. Таким образом, получим: A ∩ B ∩ D = (- 3 , 12 ] .

Объединение заданных множеств составят множества: (- ∞ , - 3) - элемент множества А; { - 3 } – элемент множества А; (- 3 , 12) – элемент множества А; { 12 } – элемент множества А; (12 , 25) – элемент множества В; { 25 } – элемент множества В и { 40 } – элемент множества D . Таким образом, получим: A ∪ B ∪ D = (- ∞ , 25 ] ∪ { 40 } .

Ответ: A ∩ B ∩ D = (- 3 , 12 ] ; A ∪ B ∪ D = (- ∞ , 25 ] ∪ { 40 } .

Отметим также, что искомое пересечение числовых множеств часто является пустым множеством. Происходит это в тех случаях, когда в заданные множества не включены элементы, одновременно принадлежащие им всем.

Пример 6

Исходные данные: А = [ - 7 , 7 ] ; В = { - 15 } ∪ [ - 12 , 0) ∪ { 5 } ; D = [ - 15 , - 10 ] ∪ [ 10 , + ∞) ; Е = (0 , 27) . Определить пересечение заданных множеств.

Решение

Отобразим исходные множества на координатных прямых и штрихами граничные точки этих множеств на дополнительной прямой.

Отмеченные точки разобьют числовую прямую на множества: (- ∞ , - 15) , { - 15 } , (- 15 , - 12) , { - 12 } , (- 12 , - 10) , { - 10 } , (- 10 , - 7) , { - 7 } , (- 7 , 0) , { 0 } , (0 , 5) , { 5 } , (5 , 7) , { 7 } , (7 , 10) , { 10 } , (10 , 27) , { 27 } , (27 , + ∞) .

Ни одно из них не является одновременно элементом всех исходных множеств, следовательно, пересечение заданных множеств есть пустое множество.

Ответ: A ∩ B ∩ D ∩ Е = Ø .

Множества удобно изображать в виде кругов, которые называют кругами Эйлера.

На рисунке множество пересечения множеств X и Y закрашено в оранжевый цвет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пересечением двух множеств называют множество, состоящее из всех общих элементов этих множеств.

Пример :
Возьмем числа 12 и 18. Найдем их делители, обозначив все множество этих делителей соответственно буквами А и B:
А = {1, 2, 3, 4, 6, 12},
B = {1, 2, 3, 6, 9, 18}.

Мы видим, что у чисел 12 и 18 есть общие делители: 1, 2, 3, 6. Обозначим их буквой C:
C = {1, 2, 3, 6).

Множество C и является пересечением множеств А и B. Пишут это так:
А ∩ B = C.

Если два множества не имеют общих элементов, то пересечением этих множеств является пустое множество .
Пустое множество обозначают знаком Ø, а используют такую запись:

X ∩ Y = Ø.

Объединение двух множеств – это множество, состоящее из всех элементов этих множеств.

Для примера вернемся к числам 12 и 18 и множеству их элементов A и B. Выпишем сначала элементы множества А, затем добавим к ним те элементы множества B, которых нет во множестве А. Мы получим множество элементов, которым обладают А и B в совокупности. Обозначим его буквой D:

D = {1, 2, 3, 4, 6, 12, 9, 18).

Множество D и является объединением множеств A и B. Пишется это так:

D = A UB.