3. Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) - NaOH , Ba (OH ) 2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) - HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот - Zn (OH ) 2 , Al (OH ) 3 и т.п.

3.1. Классификация, получение и свойства оснований

Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .

По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН - гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca (OH ) 2 , гидроксид хрома (II ) - Cr (OH ) 2 , гидроксид хрома (III ) - Cr (OH ) 3 .

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:

Однокислотные основания - KOH , NaOH ;

Двухкислотные основания - Fe (OH ) 2 , Ba (OH ) 2 ;

Трехкислотные основания - Al (OH ) 3 , Fe (OH ) 3 .

Получение оснований

1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4 ,

K 2 SO 4 + Ba(OH) 2 = 2KOH + BaCO 3 ↓ .

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,

AlCl 3 + 3KOH = Al(OH) 3 + 3KCl,

Al(OH) 3 + KOH = K.

В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:

AlCl 3 + 3NH 4 OH = Al(OH) 3 ↓ + 3NH 4 Cl.

Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNO 3 + 2KOH = Ag 2 O ↓ + H 2 O + 2KNO 3 .

2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .

(суммарная реакция электролиза)

Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2 Li + 2 H 2 O = 2 LiOH + H 2 ,

SrO + H 2 O = Sr (OH ) 2 .

Химические свойства оснований

1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:

2 Fe (OH ) 3 = Fe 2 O 3 + 3 H 2 O ,

Ca (OH ) 2 = CaO + H 2 O .

2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO 3 = NaNO 3 + H 2 O ,

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O.

3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:

2KOH + CO 2 = K 2 CO 3 + H 2 O,

2NaOH + Al 2 O 3 = 2NaAlO 2 + H 2 O.

4. Основания могут вступать в реакцию с кислыми солями:

2NaHSO 3 + 2KOH = Na 2 SO 3 + K 2 SO 3 +2H 2 O,

Ca(HCO 3) 2 + Ba(OH) 2 = BaCO 3 ↓ + CaCO 3 + 2H 2 O.

Cu(OH) 2 + 2NaHSO 4 = CuSO 4 + Na 2 SO 4 +2H 2 O.

5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):

2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),

6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O,

3KOH + 4P + 3H 2 O = PH 3 + 3KH 2 PO 2 ,

2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 .

6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ,

Zn + 2KOH + 2H 2 O = K 2 + H 2 .

Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус - синяя, фенолфталеин - фиолетовая).

М.В. Андрюxoва, Л.Н. Бopoдина


Основания представляют собой сложные соединения, включающие два основных структурных компонента:

  1. Гидроксогруппа (одна или несколько). Отсюда, кстати и второе название этих веществ - «гидроксиды».
  2. Атом металла или ион аммония (NH4+).

Название оснований происходит из объединения наименований обоих его компонентов: например, гидроксид кальция, гидроксид меди, гидроксид серебра и т. д.

Единственным исключением из общего правила образования оснований следует считать когда гидроксогруппа присоединяется не к металлу, а к катиону аммония (NH4+). Это вещество образуется в том случае, когда происходит растворение в воде аммиака.

Если говорить о свойствах оснований, то сразу следует отметить, что валентность гидроксогруппы равна единице, соответственно, количество этих групп в молекуле будет напрямую зависеть от того, какой валентностью обладают вступающие в реакцию металлы. Примерами в данном случае могут служить формулы таких веществ, как NaOH, Al(OH)3, Ca(OH)2.

Химические свойства оснований проявляются в их реакциях с кислотами, солями, другими основаниями, а также в их действии на индикаторы. В частности, щелочи можно определить, если воздействовать их раствором на определенный индикатор. В этом случае он заметно поменяет свою окраску: например, из белой станет синей, а фенолфталеин - малиновым.

Химические свойства оснований, проявляясь в их взаимодействии с кислотами, приводят к знаменитым реакциям нейтрализации. Суть такой реакции в том, что атомы металла, присоединяясь к кислотному остатку, образуют соль, а гидроксогруппа и ион водорода, соединяясь, превращаются в воду. Реакцией нейтрализации эта реакция называется потому, что после нее не остается ни щелочи, ни кислоты.

Характерные химические свойства оснований проявляются и в их реакции с солями. При этом стоит отметить, что с растворимыми солями в реакцию вступают только щелочи. Особенности строения этих веществ приводят к тому, что в результате реакции образуется новая соль и новое, чаще всего нерастворимое, основание.

Наконец, химические свойства оснований прекрасно проявляют себя во время термического воздействия на них - нагревания. Здесь, осуществляя те или иные опыты, стоит иметь в виду, что практически все основания, за исключением щелочей, при нагревании ведут себя крайне неустойчиво. Подавляющее их большинство почти мгновенно распадается на соответствующий оксид и воду. А если взять основания таких металлов, как серебро и ртуть, то в нормальных условиях они не могут быть получены, так как начинают распадаться уже при комнатной температуре.

Гидроксиды щелочных металлов – при обычных усло­виях представляют собой твердые белые кристаллические вещества, гигроско­пичные, мылкие на ощупь, очень хорошо растворимы в воде (их растворение – экзотермический процесс), легкоплавки. Гидроксиды щелочноземельных металлов Са(ОН) 2 , Sr(OH) 2 , Ва(ОН) 2) – белые порошкообразные вещества, гораздо менее растворимы в воде по сравнению с гидроксидами щелочных металлов. Нерастворимые в воде основания обычно образу­ются в виде гелеобразных осадков, разлагающихся при хра­нении. Например, Сu(ОН) 2 – синий студенистый осадок.

3.1.4 Химические свойства оснований.

Свойства оснований обусловлены наличием ионов ОН – . В свойствах щелочей и нерастворимых в воде оснований имеются отличия, однако общим свойством является реак­ция взаимодействия с кислотами. Химические свойства оснований представ­лены в таблице 6.

Таблица 6 – Химические свойства оснований

Щелочи

Нерастворимые основания

Все основания реагируют с кислотами (реакция нейтрализации )

2NaOH + H 2 SО 4 = Na 2 SО 4 + 2H 2 О

Сr(ОН) 2 + 2НС1 = СrС1 2 + 2Н 2 O

Основания реагируют с кислотными оксидами с образованием соли и воды:

6КОН + Р 2 O 5 = 2К 3 РO 4 + 3Н 2 O

Щелочи реагируют с растворами солей , если один из продуктов реакции выпадает в осадок (т. е. если образу­ется нерастворимое соединение):

CuSO 4 + 2KOH = Cu(OH) 2 + K 2 SO 4

Na 2 SO 4 + Ba(OH) 2 = 2NaOH + BaSO 4 

Нерастворимые в воде основания и амфотерные гидроксиды разлагаются при на­гревании на соответствующий оксид и воду:

Мn(ОН) 2  МnО + Н 2 O

Сu(ОН) 2  СuО + Н 2 O

Щелочи можно обнаружить индикатором. В щелочной сре­де: лакмус – синий, фенолфталеин – малиновый, мети­ловый оранжевый – желтый

3.1.5 Важнейшие основания.

NaOH – едкий натр, каустическая сода. Легкоплавкие (t пл = 320 °С) белые гигроскопичные кристаллы, хорошо растворимы в воде. Раствор мылкий на ощупь и является опасной едкой жидкостью. NaOH – один из важней­ших продуктов химической промышленности. В больших количествах требуется для очистки нефтепро­дуктов, широко применяется в мыловаренной, бумажной, текстильной и других отраслях промышленности, а также для производства искусственного волокна.

КОН – едкое кали. Белые гигроскопичные кристаллы, хорошо растворимы в воде. Раствор мылкий на ощупь и является опасной едкой жидкостью. СвойстваКОН аналогичны свойствам NaOH, но применяется гидроксид калия гораздо реже ввиду его более высокой стоимости.

Са(ОН) 2 – гашеная известь. Белые кристаллы, мало ра­створимы в воде. Раствор называется «известковой водой», суспензия – «известковым молоком». Известковая вода применяется для распознавания углекислого газа, она мут­неет при пропускании СO 2 . Гашеная известь широко используется в строительном деле в качестве основы для изготовления вяжущих веществ.

1. Основание + кислота соль + вода

КОН + HCl
KCl + H 2 O.

2. Основание + кислотный оксид
соль + вода

2KOH + SO 2
K 2 SO 3 + H 2 O.

3. Щелочь + амфотерный оксид/гидроксид
соль + вода

2NaOH (тв) + Al 2 O 3
2NaAlO 2 + H 2 O;

NaOH (тв) + Al(OH) 3
NaAlO 2 + 2H 2 O.


Реакция обмена между основанием и солью протекает только в растворе (и основание, и соль должны быть растворимы) и только в том случае, если хотя бы один из продуктов – осадок или слабый электролит (NH 4 OH, H 2 O)

Ba(OH) 2 + Na 2 SO 4
BaSO 4 + 2NaOH;

Ba(OH) 2 + NH 4 Cl
BaCl 2 + NH 4 OH.


Термостойки только основания щелочных металлов за исключением LiOH

Ca(OH) 2
CaO + H 2 O;

NaOH ;

NH 4 OH
NH 3 + H 2 O.


2NaOH (тв) + Zn
Na 2 ZnO 2 + H 2 .

КИСЛОТЫ

Кислотами с позиции ТЭД называются сложные вещества, диссоциирующие в растворах с образованием иона водорода Н + .

Классификация кислот

1. По числу атомов водорода, способных к отщеплению в водном растворе, кислоты делят на одноосновные (HF, HNO 2), двухосновные (H 2 CO 3 , H 2 SO 4), трехосновные (H 3 PO 4).

2. По составу кислоты делят на бескислородные (HCl, H 2 S) и кислородсодержащие (HClO 4, HNO 3).

3. По способности кислот диссоциировать в водных растворах их делят на слабые и сильные . Молекулы сильных кислот в водных растворах распадаются на ионы полностью и их диссоциация необратима.

Например, HCl
H + + Cl - ;

H 2 SO 4
H + + HSO.

Слабые кислоты диссоциируют обратимо, т.е. их молекулы в водных растворах распадаются на ионы частично, а многоосновные - ступенчато.

СН 3 СООН
СН 3 СОО - + Н + ;

1) H 2 S
HS - + H + , 2) HS -
H + + S 2- .

Часть молекулы кислоты без одного или нескольких ионов водорода Н + называется кислотным остатком . Заряд кислотного остатка всегда отрицательный и определяется числом ионов Н + , отнятых от молекулы кислоты. Например, ортофосфорная кислота H 3 PO 4 может образовать три кислотных остатка: H 2 PO- дигидрофосфат-ион, HPO- гидрофосфат-ион, PO- фосфат-ион.

Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например, CN - - циан) окончание - водородная: HCl – хлороводородная кислота (соляная кислота), H 2 S – сероводородная кислота, HCN – циановодородная кислота (синильная кислота).

Названия кислородсодержащих кислот также образуются от русского названия кислотообразующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисления, оканчивается на «…ная» или «…овая», например, H 2 SO 4 – серная кислота, H 3 AsO 4 – мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: «…ная» (HClO 4 – хлорная кислота), «…оватая» (HClO 3 – хлорноватая кислота), «…истая» (HClO 2 – хлористая кислота), «…оватистая» (HClO- хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающей низшей степени окисления элемента, получает окончание «…истая» (HNO 3 – азотная кислота, HNO 2 – азотистая кислота).

Одному и тому же кислотному оксиду (например, Р 2 О 5) могут соответствовать несколько кислот, содержащих по одному атому данного элемента в молекуле (например, HPO 3 и H 3 PO 4). В подобных случаях к названию кислоты, содержащей наименьшее число атомов кислорода в молекуле, добавляется приставка «мета…», а к названию кислоты, содержащей в молекуле наибольшее число атомов кислорода – приставка «орто…» (HPO 3 – метафосфорная кислота, H 3 PO 4 – ортофосфорная кислота).

Если же молекула кислоты содержит несколько атомов кислотообразующего элемента, то к ее названию добавляется числительная приставка, например, Н 4 Р 2 О 7 – дву фосфорная кислота, Н 2 В 4 О 7 – четырех борная кислота.

Н 2 SO 5 H 2 S 2 O 8

S H – O – S –O – O – S – O - H

H - O - O O O O

Пероксосерная кислота Пероксодвусерная кислота

Химические свойства кислот


HF + KOH
KF + H 2 O.


H 2 SO 4 + CuO
CuSO 4 + H 2 O.


2HCl + BeO
BeCl 2 + H 2 O.


Кислоты взаимодействуют с растворами солей, если при этом образуется нерастворимая в кислотах соль или более слабая (летучая) по сравнению с исходной кислота

H 2 SO 4 + BaCl 2
BaSO 4 +2HCl;

2HNO 3 + Na 2 CO 3
2NaNO 3 + H 2 O + CO 2 .


Н 2 СО 3
Н 2 О + СО 2 .


H 2 SO 4(разб) + Fe
FeSO 4 + H 2 ;

HCl + Cu .

На рисунке 2 показано взаимодействие кислот с металлами.

КИСЛОТА - ОКИСЛИТЕЛЬ

Металл в ряду напряжения после Н 2

+
реакция не идет

Металл в ряду напряжения до Н 2

+
соль металла + Н 2

в min степени

H 2 SO 4 концентриро-

Au, Pt, Ir, Rh, Ta

окисления (с.о.)

+
реакция не идет

/Mq/Zn

от условий

Сульфат металла в max с.о.

+
+ +

Металл (остальные)

+
+ +

HNO 3 концентриро-

Au, Pt, Ir, Rh, Ta

+
реакция не идет

Металл щелочной/ щелочноземельный

Нитрат металла в max с.о.

Металл (остальные; Al,Cr, Fe, Co, Ni при нагревании)

ТN +


+

HNO 3 разбавленная

Au, Pt, Ir, Rh, Ta

+
реакция не идет

Металл щелочной/ щелочноземельный

NH 3 (NH 4 NO 3)

Нитратметал

ла в max с.о.

+
+

Металл (остальные в ярду напряжений до Н 2)

NO/N 2 O/N 2 /NH 3 (NH 4 NO 3)

от условий

+

Металл (остальные в ряду напряжений после Н 2)

Рис.2. ВЗАИМОДЕЙСТВИЕ КИСЛОТ С МЕТАЛЛАМИ

СОЛИ

Соли – это сложные вещества, диссоциирующие в растворах с образованием положителльно заряженных ионов (катионов – основных остатков), за исключением ионов водорода, и отрицательно заряженных ионов (анионов – кислотных остатков), отличных от гидрокисид – ионов.

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.