​ (англ.)

Ватиканский манускрипт (XI, Предложения, 31-33 )

Содержание [ | ]

Изложение в «Началах» ведётся строго дедуктивно . Каждая книга начинается с определений. В первой книге за определениями идут аксиомы и постулаты. Затем следуют предложения, которые делятся на задачи (в которых нужно что-то построить) и теоремы (в которых нужно что-то доказать). Определения, аксиомы, постулаты и предложения пронумерованы, например, ссылка «I, Определения, 2 » - второе определение первой книги. Всего в 13 книгах «Начал» 130 определений, 5 постулатов, 5 (в части изданий - 9) аксиом, 16 лемм и 465 теорем (включая задачи на построение) .

Первая книга [ | ]

Первая книга начинается определениями, из которых первые семь (I, Определения, 1-7 ) гласят:

  1. Точка есть то, что не имеет частей. (Σημεῖόν ἐστιν, οὗ μέρος οὐθέν - букв. «Точка есть то, часть чего ничто»)
  2. Линия - длина без ширины.
  3. Края же линии - точки.
  4. Прямая линия есть та, которая равно лежит на всех своих точках. (Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ" ἑαυτῆς σημείοις κεῖται )
  5. Поверхность есть то, что имеет только длину и ширину.
  6. Края же поверхности - линии.
  7. Плоская поверхность есть та, которая равно лежит на всех своих линиях.

Постулаты Евклида

За определениями Евклид приводит постулаты (I, Постулаты, 1-5 ):

  1. От всякой точки до всякой точки можно провести прямую.
  2. Ограниченную прямую можно непрерывно продолжать по прямой.
  3. Из всякого центра всяким радиусом может быть описан круг.
  4. Все прямые углы равны между собой.
  5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Наиболее интересен в аксиоматике Евклида последний, знаменитый пятый постулат . Среди других, интуитивно очевидных постулатов, он нарочито чужероден, его громоздкая формулировка закономерно вызывает некоторое чувство протеста и желание отыскать для него доказательство. Такие доказательства уже в древности пытались построить Птолемей и Прокл ; а в Новое время из этих попыток развилась неевклидова геометрия . Следует отметить, что первые 28 теорем I книги относятся к абсолютной геометрии , то есть не опираются на V постулат.

За постулатами следуют аксиомы (I, Аксиомы, 1-9 ), которые имеют характер общих утверждений, относящихся в равной мере как к числам, так и к непрерывным величинам:

В скобки взяты аксиомы, принадлежность которых Евклиду Гейберг, автор классической реконструкции текста «Начал», счёл сомнительной. Постулаты 4-5 (I, Постулаты, 4-5 ) в ряде списков выступают как аксиомы (I, Аксиомы, 10-11 ).

За аксиомами следуют три теоремы, представляющие собой задачи на построение, давно вызывающие споры. Так, вторая из них (I, Предложения, 2 ) предлагается «от данной точки отложить прямую, равную данной прямой». Нетривиальность этой задачи состоит в том, что Евклид не переносит отрезок на прямую соответствующим раствором циркуля, полагая такую операцию недозволенной, и использует третий постулат (I, Постулаты, 3 ) в неожиданно узком смысле.

При доказательстве четвёртой теоремы (I, Предложения, 4 ), выражающей признак равенства треугольников, Евклид использует метод наложения, никак не описанный в постулатах и аксиомах. Все комментаторы отмечали эту лакуну, Гильберт не нашел ничего лучшего, как сделать признак равенства треугольников по трём сторонам (I, Утверждения, 8 ) аксиомой III-5 в своей системе. С другой стороны, четвёртый постулат (I, Постулаты, 4 ) теперь принято доказывать, как это сделал впервые Христиан Вольф , у Гильберта это утверждение выводится из аксиом конгруэнтности .

Затем рассматриваются различные случаи равенства и неравенства треугольников; теоремы о параллельных прямых и параллелограммах; так называемые «местные» теоремы о равенстве площадей треугольников и параллелограммов на одном основании и под одной высотой. Заканчивается I книга теоремой Пифагора .

Книги II-XIII [ | ]

II книга - теоремы так называемой «геометрической алгебры».

III книга - предложения об окружностях , их касательных и хордах , центральных и вписанных углах .

V книга - общая теория отношений, разработанная Евдоксом Книдским .

X книга - классификация несоизмеримых величин. Это самая объёмная из книг «Начал».

XI книга - начала стереометрии: теоремы о взаимном расположении прямых и плоскостей; теоремы о телесных углах , объём параллелепипеда и призмы , теоремы о равенстве и подобии параллелепипедов.

В целом содержание «Начал» покрывает значительную часть античной теоретической математики. Однако некоторая часть известного древнегреческим математикам материала осталась вне этого труда - например, конические сечения (Евклид посвятил им отдельный труд, который не сохранился), длина окружности , теория приближённых вычислений .

Взаимозависимости книг [ | ]

Номер книги Зависимость от других книг
1 Самостоятельна
2 Опирается на книгу 1
3 Опирается на книгу 1 и предложения 5, 6 книги 2
4 Опирается на книги 1, 3 и на предложение 11 книги 2
5 Самостоятельна
6 Опирается на книги 1, 5 и на предложения 27 и 31 книги 3
7 Самостоятельна
8 Опирается на определения из книг 5, 7
9 Опирается на книги 7, 8 и на предложения 3, 4 книги 2
10 Опирается на книги 5, 6; предложения 44, 47 из книги 1
предложение 31 из книги 3
предложения 4, 11, 26 из книги 7
предложения 1, 24, 26 из книги 9
11 Опирается на книги 1, 5, 6, предложение 31 из книги 3 и предложение 1 из книги 4
12 Опирается на книги 1, 3, 5, 6, 11, предложения 6, 7 из книги 4 и предложение 1 из книги 10
13 Опирается на книги 1, 3, 4, 5, 6, 10, 11 и на предложение 4 из книги 2

Критика [ | ]

Для своего времени и вплоть до (примерно) XIX века «Начала» считались образцом логического изложения математической теории. Структура трудов Декарта , Ньютона и даже Спинозы строилась по образцу «Начал». Однако уже в античные времена были критически отмечены некоторые недостатки евклидовского труда - например, Архимед обосновал необходимость добавить «аксиому Архимеда » (которую сформулировал ещё Евдокс , живший до Евклида). Со временем число признанных недостатков постепенно увеличивалось. Современные взгляды на обоснование, содержание и методы как геометрии, так и арифметики существенно отличаются от античных.

Прежде всего, следует отметить, что сейчас прямая понимается как линия бесконечной длины. Античные учёные полностью избегали понятия актуальной бесконечности , у Евклида всюду используются только конечные отрезки прямой . Видимо, по этой причине постулат параллельности Евклида сформулирован довольно громоздко - зато он имеет локальный характер, то есть описывает событие на ограниченном участке плоскости, в то время как, например, аксиома Прокла («через точку вне прямой проходит только одна прямая, параллельная данной») утверждает факт параллельности, который требует рассмотрения всей бесконечной прямой . Ещё одной архаичной особенностью «Начал» является ограничение только двумя видами кривых - прямыми и окружностями, которые греки считали единственно совершенными , а также чрезмерно узкое понятие числа, которое не включало иррациональных чисел и поэтому вынудило античных математиков без особой нужды ввести параллельное с арифметикой исчисление «геометрических величин» («геометрическая алгебра», книга II «Начал») .

Многие комментаторы Евклида отмечали, что данные им определения геометрических понятий бессодержательны и создают не более чем наглядный образ - например, «линия есть длина без ширины». Фактически подобные «определения» нигде далее в тексте не используются, ни одна теорема на них не опирается . Излишним оказался, как уже говорилось выше, и IV постулат Евклида о равенстве всех прямых углов , его можно доказать как теорему .

Далее, по замыслу все доказательства теорем должны вытекать из явно сформулированных аксиом. На самом деле многие факты у Евклида опираются на подразумеваемую или наглядную очевидность. Прежде всего это касается понятия движения , которое неявно используется во многих местах - например, при наложении треугольников для доказательства признаков их равенства. Уже Прокл отметил этот факт как существенный методический пробел. Аксиом движения Евклид не дал - возможно, чтобы не смешивать высокую геометрию с «низкой» механикой. Современные авторы аксиоматики предусматривают специальную группу «аксиом конгруэнтности » .

Уже в доказательстве самого первого предложения («на любом отрезке можно построить равносторонний треугольник») Евклид подразумевает, что две окружности радиуса R , чьи центры находятся на расстоянии R , пересекаются в двух точках. Ни из каких аксиом это не следует ; для логической полноты следовало бы добавить аксиому непрерывности . Аналогичные упущения имеют место для пересечения прямой и окружности , в употреблении неопределяемого понятия «находиться между» (для точек) и в ряде иных мест. Аксиоматика Евклида не позволяет, например, доказать, что не существует прямой, проходящей через все три стороны треугольника.

Одним из важнейших открытий XIX века стало обнаружение и исследований непротиворечивых неевклидовых геометрий ; оно показало, что преимущественное использование на практике евклидовой геометрии не означает, что эта геометрия «абсолютно истинна».

Манускрипты и издания [ | ]

Греческий текст «Начал» [ | ]

При раскопках античных городов найдено несколько папирусов, содержащих небольшие фрагменты «Начал» Евклида. Самый известный был найден в «городе папирусов» Оксиринхе в - и содержит формулировку одного из утверждений второй книги с рисунком (II, Предложения, 5 ) .

Греческий текст «Начал» Евклида известен по византийским манускриптам, два самых известных из них хранятся Бодлианской библиотеке и Ватиканской апостольской библиотеке (двухтомный Ватиканский манускрипт) .

На их основе, а также с учётом арабских переводов «Начал» (датируемых IX веком и позднее) оригинальный текст был реконструирован датским историком науки Гейбергом в конце XIX века, его методы подробно описаны Хизом ) . Гейберг использовал в своей реконструкции 8 греческих манускриптов, датируемых современными исследователями IX-XI веками. Из этих манускриптов семь в своем заглавии имеют пометку «из издания Теона » или «из лекций Теона» и поэтому называются Теоновскими. Ватиканский манускрипт такой пометки не имеет и считается неподверженным редакции Теона. Теоновские манускрипты разнятся между собой, и общих признаков, отличающих их от ватиканского манускрипта, немного (наиболее существенный - концовка IV книги). На полях манускриптов имеются многочисленные комментарии, взятые частично из комментариев Прокла, которые вписывают «Начала» в контекст греческой культуры, например, сообщается о том, что Пифагор, открыв свою теорему, принёс в жертву быков.

История обретения византийских манускриптов темна. Вероятно, они попали в Европу ещё в XVI веке, но не были опубликованы. В первом издание греческого текста, осуществленном Йоханом Хервагеном (Johann Herwagen) между 1533 и 1558 годами под редакцией Симона Гринера (Simon Gryner, он же Grynaeus, профессор греческого языка в базельском университете), использованы манускрипты, которые, по мнению Гейберга, представляют собой весьма плохие копии XVI века. Лишь в 1808 году Пейрар во время наполеоновских экспроприаций нашёл три манускрипта в Риме и среди них важнейший - двухтомный ватиканский манускрипт.

Латинский текст «Начал» [ | ]

В Европе «Начала» Евклида на латинском языке были хорошо известны и в Средние века , и в эпоху Возрождения , однако далеко не в привычном теперь виде. Средневековые латинские трактаты, содержащие фрагменты «Начал» Евклида, каталогизированы мюнхенским учёным Фолькертсом , разделившим манускрипты на следующие группы:

Печатные издания «Начал» Евклида каталогизированы Томасом-Стэнфордом . Первое печатное издание «Начал» было осуществлено Эрхардом Ратдольтом в Венеции в 1482 году и воспроизводило «Начала» в обработке Кампано. Следующее издание не копировало первое, было осуществлено Бартоломео Дзамберти в 1505 году . Из предисловия известно, что Дзамберти переводил греческий манускрипт, передающий «Начала» в обработке Теона, однако, Гейбергу не удалось его идентифицировать.

В XVI веке считалось, что Евклиду принадлежат лишь формулировки теорем, доказательства же были придуманы позже; были распространены издания «Начал» без доказательств и издания, сравнивающие доказательства Кампана и Дзамберти . Этот взгляд имел вполне твёрдую основу: в начале XVI века была издана геометрия Боэция , которая тоже являлась переводом «Начал» Евклида, но доказательств в этом издании не содержалось. Считалось также, что использование в доказательствах буквенных обозначений подразумевает знакомство с буквенной алгеброй. Это мнение было отвергнуто в XVII веке.

Русские переводы [ | ]

Первое издание «Начал» на русском языке издано в 1739 году; книга вышла в Петербурге под названием «Евклидовы элементы из двенадцати нефтоновых книг выбранныя и в осьмь книг через профессора мафематики Андрея Фархварсона сокращенныя, с латинского на российский язык хирургусом Иваном Сатаровым преложенныя» . Перевод выполнил Иван Сатаров под руководством шотландского математика Генри Фарварсона , служившего в это время при российском Морском корпусе . Имя Ньютона («Нефтона») в названии упомянуто то ли по недоразумению, то ли в рекламных целях, к содержанию книги он никакого отношения не имеет. Перевод был сделан с сокращённого и модернизированного французского издания «Начал» Андре Таке , куда переводчиками были добавлены ряд числовых примеров и критические комментарии .

Немного позднее вышли ещё 2 перевода, также сокращённые до 8 книг:

  • (1769) Перевод Н. Г. Курганова , преподавателя Морского кадетского корпуса: «Евклидовы Елементы Геометрии, то есть первыя основания науки о измерении протяжения»;
  • (1784) Перевод Прохора Суворова и Василия Никитина «Евклидовых стихий осьмь книг, а именно: первая, вторая, третья, четвёртая, пятая, шестая, одиннадцатая и двенадцатая; к сим прилагаются книги тринадцатая и четырнадцатая. Переведены с греческого и поправлены. В Санкт-Петербурге, в типографии Морского шляхетного Кадетского Корпуса» (переизданы в 1789 году).

Практически полностью (кроме X книги) «Начала» на русском языке вышли в переводе Фомы Петрушевского : книги 1-6 и 11-13 в 1819 году, книги 7-9 в 1835 году . В 1880 году вышел перевод Ващенко-Захарченко . Ещё один сокращённый перевод был издан в Кременчуге (1877 год) под названием «Восемь книг геометрии Эвклида»; перевод под руководством А. А. Соковича (1840-1886), директора местного реального училища, выполнили два воспитанника этого училища .

Последнее по времени полное академическое издание было опубликовано в 1949-1951 годах, перевод с греческого и комментарии - Дмитрия Мордухай-Болтовско́го .

О знаменитом древнегреческом математике Евклиде нам известно достоверно лишь то, что жил он в IV-III веках до н.э. и провел большую часть жизни в Александрии. Совсем немного сведений дают о нём авторы, такие как Архимед, Прокл и Папп Александрийский. Обширную и детализированную биографию Евклида написали также арабские авторы. Одна из арабских рукописей XII века утверждает, что Евклид, известный как «Геометр», был сыном некоего Наукрата, родился в Тире и проживал в Сирии. Но в исторической науке эта биография учёного считается полностью вымышленной. Напротив, упоминание о Евклиде Проклом считается достоверным. В своих «Комментариях к первой книге «Начал» Евклида» он указывает, что учёный жил во времена Птолемея I Сотера, аргументируя это тем, что «Архимед … упоминает об Евклиде и, в частности, рассказывает, что Птолемей спросил его, есть ли более короткий путь изучения геометрии, нежели «Начала»; а тот ответил, что нет царского пути к геометрии». Все выше названные, кроме арабских авторов, упоминают о Евклиде только как об авторе знаменитого сочинения «Начала» - его главного труда, написанного примерно в 300 году до н.э. Известно также, что Евклид был первым математиком Александрийской школы и работал при знаменитой Александрийской библиотеке.

Состоящие из 13 книг на древнегреческом, «Начала» представляют собой первый систематизированный теоретический трактат по математике и геометрии. Они стали своего рода итогом развития всей античной науки, дав огромный толчок последующим исследованиям. С самого появления работы к ней писали комментарии другие учёные, начиная от Прокла и заканчивая арабскими и европейскими авторами Средневековья и Нового времени, среди которых были Галилео Галилей , Рене Декарт , Исаак Ньютон . Некоторые исследователи утверждают, что «Начала» были самой популярной и значимой книгой в Средневековой Европе. Объясняется это тем, что вплоть до XX века изучение «Начал» Евклида было обязательным требованием для студентов всех университетов. Это была самая первая математическая работа, напечатанная после изобретения печатного станка. Первый выпуск в Европе вышел в 1482 году в Венеции.

Начало каждой из 13-ти книг состоит из определений, аксиом и постулатов. Затем идут задачи на построение и теоремы, а после – доказательства этих теорем и решение задач. В своей работе Евклид не ссылается на своих предшественников, а лишь опирается на их результаты. Исследователи установили, что он пользовался работами Гиппократа Хиосского, Евдокс Книдского , Теэтета Афинского и работами разных пифагорейцев.

Первая книга посвящена изучению свойств прямоугольных треугольников и параллелограммов. В ней же рассматривается знаменитая теорема Пифагора , доказательство которой Евклидом стало одним из самых распространенных среди всех доказательств в современной науке. Но самым интересным является 5-ый постулат Евклида, который гласит, что «если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых». Этот постулат впоследствии комментировался и исследовался многими учёными, что привело к появлению неевклидовой геометрии в Новом времени. В неевклидовой геометрии пространство представляется искривленным, в отличие от нулевой кривизны пространства классической евклидовой геометрии.

Вторая, третья и четвертая книги основаны на трудах пифагорейцев и раскрывают задачи и теоремы геометрии окружностей, их касательных и хорд, вписанных и описанных многоугольников, построения правильных многоугольников. В пятой книге рассматривается общая теория отношений или теория пропорций величин, которую разработал Евдокс Книдский, дошедшая до нас только в «Началах». В шестой книге на практике применяется теория отношений для доказательства подобия геометрических фигур. На этом заканчивается первая часть «Начал», в которой рассматривались одноплоскостные фигуры.

Седьмая, восьмая и девятая книги посвящены элементарной теории чисел. В них рассматриваются свойства простых чисел, их делимость, пропорции, геометрическая прогрессия и суммы прогрессий, бесконечность простых чисел и строительство совершенных чисел. Также в седьмой книге Евклид предлагает своей алгоритм нахождения наибольшего общего делителя и наименьшего общего кратного. Самая объемная десятая книга представляет собой попытку классификации несоизмеримых (в современном понимании, иррациональных) величин.

Книги с одиннадцатой по тринадцатую – это теория пространственной геометрии или стереометрии. Одиннадцатая воплощает теории первых шести книг в пространстве – перпендикулярность, параллелизм, объемы параллелепипедов. В двенадцатой рассказывается об исследованиях объемов конусов, пирамид и цилиндров. И, наконец, в тринадцатой книге описываются пять правильных многогранников или платоновых тел, вписанных в сферу, и доказывается, что их не может быть больше.

Считается, что свой математический труд Евклид написал, работая в Александрийской библиотеке. Александрийская библиотека представляла собой не просто огромное собрание разнообразных книг и источников, а была местом, где собирались виднейшие представители наук, вели дискуссии, работали над своими трудами и представляли их на всеобщее обозрение. В разное время в ней работали Эратосфен Киренский, Аристофан, Архимед, Птолемей и многие другие. Неудивительно, что Евклид, находясь в такой благоприятной для развития мысли обстановке смог создать действительно уникальное произведение, по величине и значимости соизмеримое с важнейшими открытиями современного мира.

Кроме «Начал» сохранилось всего 4 произведения Евклида: «Явления» (о применении сферической геометрии в астрономии), «Данные» (о построении фигур), «О делении» (применительно к геометрическим фигурам) и «Оптика» (о распространении света). Сохранились косвенные данные о других сочинениях учёного. К тому же традиционно Евклиду приписывают авторство ещё двух произведений – теория зеркал «Катоптрика» и трактат по теории музыки «Деление канона», но установить их авторство не представляется возможным.

Подводя итог, можно говорить о том, что Евклид и его «Начала» имеют действительно огромное значение для науки. Систематизировав и обобщив прошлые достижения математиков, сделав свои открытия, Евклид создал фундаментальный труд, который стал важной частью современной математики и геометрии. И хотя нам практически ничего не известно о том, каким человеком был Евклид, и как проходила его научная деятельность, но результат этой деятельности, несомненно, вызывает восхищение и уважение. Евклид стал своего рода границей в науке, собрав воедино научные достижения прошлого и дав сильный задел для развития исследований будущего. В честь него названы космический летательный аппарат для изучения геометрии темной материи, город в США, алгоритм для получения традиционного музыкального ритма и многие математические открытия более позднего времени.

Все люди от природы стремятся к знанию. (Аристотель. Метафизика)

Начала Евклида. Книга 1

ОПРЕДЕЛЕНИЯ

Для греков определить какой-нибудь объект — значило отграничить его от других.

1. Точка есть то, что не имеет частей.

2. Линия — длина без ширины.

3. Концы линии — точки.

5. Поверхность есть то, что имеет только длину и ширину.

6. Концы поверхности — линии.

7. Плоская поверхность есть та, которая равно расположена по отношению к прямым на ней.

8. Плоский угол есть наклонение друг к другу двух линий в плоскости встречающихся друг с другом, но не расположенных по одной прямой.

9. Когда линии, содержащие угол, прямые, то угол называется прямолинейным.

10. Когда прямая, восстановленная на другой прямой, образует рядом углы, равные между собой, то каждый из равных углов есть прямой, а восставленная прямая называется перпендикуляром к той, на которой она восставлена.

11. Тупой угол—больший прямого.

12. Острый же — меньший прямого.

13. Граница есть то, что является оконечностью чего-либо.

14. Фигура есть то, что содержится внутри какой-нибудь или каких-нибудь границ.

15. Круг есть плоская фигура, содержащаяся внутри одной линии [которая называется окружностью], на которую все из одной точки внутри фигуры падающие на окружность круга прямые равны между собой.

16. Центром круга называется эта точка.

17. Диаметр круга есть какая угодно прямая, проведённая через центр и ограничиваемая с обеих сторон окружностью круга, она же и рассекает круг пополам.

18. Полукруг есть фигура, содержащаяся между диаметром и отсекаемой им <частью> окружности. Центр полукруга — то же самое, что и у круга.

19. Прямолинейные фигуры суть те, которые содержатся между прямыми, трёхсторонние — между тремя, четырёхсторонние же — четырьмя, многосторонние же — которые содержатся между более чем четырьмя прямыми.

20. Из трёхсторонних фигур равносторонний треугольник есть фигура, имеющая три равные стороны, равнобедренный же — имеющая только две равные стороны, разносторонний — имеющая три неравные стороны.

21. Кроме того, из трёхсторонних фигур прямоугольный треугольник есть имеющий прямой угол, тупоугольный же — имеющий тупой угол, а остроугольный — имеющий три острых угла.

22. Из четырёхсторонних фигур квадрат есть та, которая и равносторонняя и прямоугольная, разносторонник — прямоугольная, но не равносторонняя, ромб — равносторонняя, но не прямоугольная, ромбоид (параллелограмм) — имеющая противоположные стороны и углы, равные между собой, но не являющаяся ни равносторонней ни прямоугольной.

Приведем в виде задач несколько предложений из Евклида, надеемся, что размышляя над этими задачами, вы осознаете величие книги Евклида.

Задача 1

На данной ограниченной прямой построить равносторонний треугольник.

Пусть данная ограниченная прямая будет АВ (черт. 1).

Требуется на прямой АВ построить равносторонний треугольник.

Задача 2

От данной точки отложить прямую, равную данной прямой.

Пусть дана точка А и отрезок ВС; требуется от точки А отложить отрезок, равный отрезку ВС.

Посмотрите внимательно на чертеж и вы увидите решение задачи.

Отрезок AL равен отрезку BC, см. (черт. 2).

Задача 3

(Предложение 17 из второй книги Евклида.)

Из данной точки А к данному кругу С с центром Е провести касательную прямую линию.

Посмотрите внимательно на чертеж и вы увидите решение задачи.

Задача 4

(Предложение 15 из четвертой книги Евклида.)

В данный круг вписать шестиугольник равносторонний и равноугольный.

Пусть данный круг будет ABCDEI; требуется вписать в круг ABCDEI шестиугольник равносторонний и равноугольный.

Приведем решение Евклида.

Проведём диаметр AD круга ABCDEI и возьмём центр круга Н, из центра D раствором DH опишем круг EHCG, соединяющие прямые ЕН и СН продолжим до В и I и соединим A3, ВС, CD, DE, EI, IA. Я утверждаю, что ABCDEI шестиугольник равносторонний и равноугольный.

Действительно, поскольку точка Н есть центр круга ABCDEI, то НЕ равна HD. Далее, поскольку точка D центр круга EHCG, то DE равна DH.

Но, как доказано, НЕ равна HD; и значит, НЕ равна ED; значит, треугольник EHD равносторонний; и значит, три его угла EHD, HDE, DEH равны между собой, поскольку ведь в равнобедренных треугольниках углы при основании равны между собой (предложение 5 книги I), и три угла треугольника <вместе> равны двум прямым (предложение 32 книги I).

Значит, угол EHD — треть двух прямых. Подобным же образом будет доказано, что и угол DHC третья часть двух прямых. И поскольку прямая СН, восставленная на ЕВ, образует смежные углы, равные двум прямым (предложение 13 книги I), то значит, и оставшийся угол СНВ треть двух прямых; значит, углы EHD, DHC, СИВ равны между собой, так что и их углы через вершину ВНА, AHI, IHE (предложение 15 книги I) равны [углам EHD, DHC, СНВ.

Значит, шесть углов EHD, DHC, СНВ, ВНА, AHI, IHE равны между собой. Равные углы опираются на равные обводы (предложение 26 книги III); значит, шесть обводов АВ, ВС, CD, DE, EI, IА равны между собой.

Равные же обводы стягиваются равными прямыми (предложение 29 книги III); значит, шесть этих прямых равны между собой; значит, шестиугольник ABCDEI равносторонний.

Я утверждаю, что и равноугольный.

Действительно, поскольку обвод IA равен обводу ED, прибавим общий обвод ABCD; значит, вся IABCD равна всей EDCBA; и на обвод IABCD опёрся угол IED, на обвод же EDCBA угол АI1Е, значит, угол AIE равен DEI (предложение 27 книги III).

Подобным же образом будет доказано, что и остальные углы шестиугольника ABCDEI поодиночке равны каждому из углов AIE, IED; значит, шестиугольник ABCDEI равноугольный.

Доказано же, что он и равносторонний и вписывается в круг ABCDEI.

Итак, в данный круг вписывается шестиугольник равносторонний и равноугольный, что и требовалось сделать.

Замечание. Термин радиус был неизвестен грекам, слово «radius — луч> введено позднее.

Задача 5

(Предложение 16 из четвертой книги Евклида.)

В данный круг вписать пятнадцатиугольник равносторонний и равноугольный (иными словами, правильный).

Пусть данный круг будет ABCD; требуется в круг ABCD вписать пятнадцатиугольник равносторонний и равноугольный (см чертеж).

Впишем в круг ABCD сторону АС равностороннего треугольника, в него вписанного (предложение 2), и сторону АВ равностороннего пятиугольника; значит, каких равных долей будет в круге ABCD пятнадцать, таких в обводе АВС, являющемся третью круга, будет пять, в обводе АВ, являющемся пятой частью круга, будет три.

Значит, в остающемся обводе ВС равных долей будет две.

Рассечём ВС пополам в Е (предложение 30 книги III); значит, каждый из обводов BE и ЕС будет пятнадцатой частью круга ABCD.

Значит, если, соединив BE и ЕС, будем вставлять в круг ABCD одну за другой равные им прямые (предложение 1), то получим вписанный в круг пятнадцатиугольник равносторонний и равноугольный, что и требовалось сделать.

Подобным же образом, как для пятиугольника, если провести через деления по кругу касательные к кругу, то опишется около круга пятнадцатиугольник равносторонний и равноугольный (предложение 12).

Ещё же на основании доказательств, подобных тем, что для пятиугольника, мы впишем в данный пятнадцатиугольник и опишем около него круг (предложения 13 и 14), что и требовалось сделать (7, 8, 9, 10).

Трудно переоценить значение книги Евклида «Начала». В качестве учебника при школьном преподавании математики (особенно геометрии) эту книгу использовали вплоть до XX в. Идеи, высказанные в «Началах», на протяжении более чем двух тысячелетий оказывали стимулирующее воздействие на новые математические исследования. Классическая механика, лежащая в основе естествознания XVII–XIX вв., описывает мир как находящийся в абсолютном пространстве, устроенном по законам геометрии Евклида. Осуществленная в «Началах» попытка логического выведения целостной теории из ограниченного числа первоначальных положений вызвала многочисленные подражания: в их числе – основополагающая для классической механики книга И. Ньютона «Математические начала натуральной философии», а также философский трактат Б. Спинозы «Этика, излагаемая геометрическим методом».

«Начала» подводят итог предшествующему развитию греческой математики, объединяя в себе теории, содержавшиеся в не дошедших до нас трактатах Гиппократа Хиосского, Теэтета, Евдокса и др. Последующие математики ссылались на положения «Начал» как на нечто окончательно установленное. В то же время некоторые теории, разработанные ранее, в эту книгу не вошли: по-видимому, автор стремился дать в ней именно «начала», «элементы», на основе которых могут быть развиты все разделы современной ему математики. Хотя основное место в греческой математике, и в «Началах» в том числе, занимает геометрия, эта книга также содержит много важных сведений из греческой арифметики.

Греческое название книги – «Стойхейя» – исходно обозначало алфавит, а также элементы, в частности, те, из которых состоит мироздание; греки насчитывали четыре элемента – землю, воду, огонь и воздух (рус. «стихия» также происходит от греч. «стойхейя»). Философ-неоплатоник V в. н. э. Прокл в комментариях к «Началам» утверждает, что структура книги отображает устройство космоса: она начинается с самых простых понятий – точки и прямой – чтобы в конце концов придти к учению о правильных многогранниках, которые, согласно философии Платона, лежат в основе структуры мира (четыре элемента имеют формы четырех из пяти правильных многогранников, а весь мир в целом – форму пятого, додекаэдра).

Если математические тексты Древнего Востока представляют собой лишь сборники предписаний для решения тех или иных задач, то греческая математика очень рано пришла к осознанию важности доказательств, обоснований одних положений с помощью других, уже установленных ранее. Появился идеал научной системы, в которой, во-первых, используемые термины имели бы четкие определения, а во-вторых, совокупность утверждений логически строго выводилась бы из немногих первоначальных аксиом. Этот идеал со всей ясностью сформулирован в логических трактатах Аристотеля. Первые попытки аксиоматического изложения математики были осуществлены еще до Евклида, но именно его «Начала», по-видимому, стали наиболее совершенным произведением такого рода в античности, полностью затмившим достижения предшественников.

«Начала» состоят из тринадцати книг. Каждая книга начинается с определений используемых терминов; кроме того, в начале первой книги сформулированы аксиомы и постулаты. Далее идут «предложения», доказываемые на основе определений входящих в них терминов, а также на основе аксиом, постулатов и доказанных ранее предложений. Значительную часть предложений составляют задачи на построение циркулем и линейкой. В этих случаях приводятся способ построения и доказательство того, что построенная фигура удовлетворяет условию задачи.

В I книге приводятся аксиомы и постулаты, а затем излагаются основные свойства треугольников, параллелограммов, трапеций. Венчает книгу теорема Пифагора.
Во II книге излагаются основы геометрической алгебры.

III книга посвящена свойствам круга, его касательных и хорд.
В IV книге строятся правильные треугольник, четырехугольник, пятиугольник, десятиугольник. Изящное построение правильного пятнадцатиугольника, которым заканчивается книга, возможно, принадлежит самому Евклиду.
Книга V содержит общую теорию отношений величин.
В VI книге Евклид излагает учение о подобии и применяет его к решению геометрических задач, эквивалентных квадратным уравнениям.
Книги VII–IX посвящены арифметике – теории целых чисел и их отношений (т. е., фактически, рациональных чисел). Здесь рассматриваются свойства операций с такими числами и проблемы делимости, вводится алгоритм Евклида для поиска наибольшего общего делителя двух чисел, доказывается, что простых чисел бесконечно много.
Книга X, считающаяся одной из самых сложных, излагает классификацию квадратичных иррациональностей.
Книги XI–XIII посвящены стереометрии. Книга XI содержит основные факты о прямых и плоскостях в трехмерном пространстве, а также об объемах параллелепипедов и призм.
В книге XII с помощью довольно тонкой техники (т. н. метода исчерпывания) доказывается, что площади кругов пропорциональны квадратам их диаметров, а объемы шаров – кубам их диаметров.
В книге XIII излагается учение о правильных многогранниках.
Впоследствии к тексту Евклида начали присоединять еще книги XIV–XV, также посвященные правильным многогранникам. Книгу XIV написал математик Гипсикл (II в. до н. э.), книга XV составлена в школе Исидора Милетского (VI в. н. э.).

Определения

Аристотель справедливо отмечал, что нельзя определить все термины: определяя одни термины на основе других, мы в конце концов придем к первичным, неопределяемым терминам. В современных аксиоматических изложениях геометрии в качестве неопределяемых терминов обычно рассматриваются точка, прямая, плоскость и некоторые другие. Евклид, однако, стремился определить и эти термины тоже, например:

  • точка – это то, что не имеет частей;
  • линия – это длина без ширины;
  • прямая – это линия, которая равно расположена по отношению к точкам на ней;
  • поверхность – это то, что имеет только длину и ширину;
  • плоская поверхность есть та, которая равно расположена по отношению к прямым на ней;
  • граница есть то, что является оконечностью чего-либо.

Рис. 1. Основные геометрические объекты

Историки математики расходятся в мнениях, что именно имел в виду Евклид, давая эти определения. В любом случае такие определения имеют целью скорее описание определяемых объектов, которое должно отсылать к интуитивно ясному образу точки, прямой и т. д. Ввиду их расплывчатости такие определения не используются в доказательствах.

Определения, используемые в доказательствах – это, например, такие:

  • полукруг – это фигура, содержащаяся между диаметром и отсекаемой им частью окружности;
  • равносторонний треугольник – треугольник, имеющий три равные стороны;
  • параллельные суть прямые, которые находятся в одной плоскости и, будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются;
  • говорят, что прямая касается круга, если она встречает круг, но при продолжении не пересекает круга.

В идеальном случае все термины, встречающиеся в определениях, должны быть определены ранее либо принадлежать к узкому кругу неопределяемых терминов. В действительности Евклид определяет такие термины, как «круг», «окружность», «диаметр», «прямой угол», «треугольник», но не определяет понятий «содержащаяся между», «отсекаемая», «встречается», «пересекает» и т. д. Значения всех этих слов, по-видимому, должны быть ясны интуитивно, из обычного словоупотребления.

Многие современные математики, в частности, последователи так называемой школы формалистов (Д. Гильберт и др.), считают, что математическая теория должна строиться без каких-либо интуитивных образов. Любое математическое предложение должно логически выводиться из определений входящих в него понятий и из свойств неопределяемых объектов, каковые свойства в явной форме задаются аксиомами. Таким образом, «неопределяемые объекты» определяются всей совокупностью аксиом, и никакие другие «интуитивно ясные» свойства этих объектов не должны использоваться. При этом конкретные зрительные представления о «точке» как о чем-то очень маленьком, о «прямой» как о чем-то узком и длинном и т. д. не являются обязательным для построения геометрии. Например, под точкой могла бы пониматься пара чисел (x , y ), а под прямой – совокупность таких пар, удовлетворяющих уравнению ax + by + c = 0 . Широко известна фраза Гильберта: «Следует добиться того, чтобы с равным успехом можно было говорить не о точках, прямых и плоскостях, а о столах, стульях и пивных кружках».

Древнегреческий мыслитель Евклид стал первым математиком Александрийской школы и автором одного из наиболее древних теоретических математических трактатов. О биографии этого ученого известно намного меньше, чем о его работах. Так, в известном труде «Начала» Евклид изложил стереометрию, планиметрию, аспекты теории чисел, создал базу для последующего развития математики.

Биография Евклида предположительно началась в 325 году до нашей эры (это примерная дата, точный год рождения неизвестен) в Александрии. Некоторые исследователи предполагают, что будущий математик появился на свет в Тире, а большую часть взрослой жизни провел в Дамаске. Вероятно, Евклид происходил из богатой семьи, так как он учился в афинской школе (на то время такое образование было доступно только состоятельным гражданам).

Ученым удалось установить, что автор «Начал» был моложе известных последователей Платона, живших и творивших в период с 427 по 347 века до нашей эры, однако старше , родившегося в 287 году и скончавшегося в 212 году до нашей эры. Евклид разбирался в философской концепции Платона и разделял ее основные положения.

Приведенная выше информация о личности и жизненном пути Евклида почерпнута исследователями из комментариев Прокла, написанных им к первой книге «Начала». Также известны высказывания Стобея и Паппа о личности древнегреческого мыслителя. Стобей якобы рассказывал, что в ответ на вопрос ученика о выгоде от науки Евклид приказал рабу выдать ему несколько монет. Папп же отмечал, что ученый умел быть любезным и мягким с любым человеком, который мог хоть в какой-то степени быть полезным для развития математических наук.


Сохранившиеся данные о Евклиде настолько малочисленны и сомнительны, что бытовала версия о присвоении псевдонима «Евклид» целым коллективам ученых из древней Александрии. Евклида Александрийского путают с греческим философом Евклидом из Мегар, учеником , жившим в 400 столетии до нашей эры. В средние века Евклида из Мегар даже считали автором «Начал».

Математика

Немалую часть свободного времени Евклид проводил в Александрийской библиотеке – храме знаний, основанном Птолемеем. В стенах этого учреждения древнегреческий ученый занялся объединением арифметических законов, геометрических принципов и теории иррациональных чисел в геометрию. Результаты своих трудов Евклид описал в книге «Начала» - сочинении, принесшем большой вклад в развитие математики.


Книга Евклида "Начала"

Книга состоит из пятнадцати томов:

  • В книге I автор рассказывает о свойствах параллелограммов и треугольников, завершая изложение применением теоремы Пифагора при расчете параметров прямоугольных треугольников.
  • Книга под номером II описывает принципы и закономерности геометрической алгебры и восходит к багажу знаний, накопленных пифагорейцами.
  • В книгах III и IV Евклид рассматривает геометрию окружностей, описанных и вписанных многоугольников. В ходе создания этих томов автор мог обратиться к использованию работ Гиппократа Хиосского.
  • В V книге древнегреческий математик рассмотрел общую теорию пропорций, разработанную Евдоксом Книдским.
  • В материалах VI книги автор прилагает общую теорию пропорций Евдокса Книдского к теории подобных фигур.
  • Книги под номерами VII-IX описывают теорию чисел. При написании этих томов математик вновь обратился к материалам, созданным и собранным пифагорейцами – представителями учения, в котором центральную роль занимает число. В этих произведениях автор говорит о геометрических прогрессиях и пропорциях, доказывает бесконечность множества простых чисел, изучает четные совершенные числа, вводит понятие НОД (наибольшего общего делителя). Алгоритм нахождения такого делителя в настоящее время называется алгоритмом Евклида. Есть предположение, что VIII книгу написал не сам Евклид, а Архит Тарентский.

Знаменитый труд Евклида "Начала"
  • Том под номером X – это наиболее сложный и объемный труд в составе «Начал», который содержит в себе классификацию иррациональностей. Авторство этой книги также доподлинно неизвестно: ее мог написать как сам Евклид, так и Теэтет Афинский.
  • На страницах XI книги математик рассказывает об основах стереометрии.
  • Книга XII содержит доказательства теорем об объемах конусов и пирамид, отношениях площадей кругов. Для построения этих доказательств используется метод исчерпывания. Большинство исследователей сходятся в том, что эту книгу также написал не Евклид. Вероятным автором является Евдокс Книдский.

  • Материалы XIII книги содержат информацию о построении пяти правильных многогранников («платоновых тел»). Некоторую часть приведенных в томе построений мог разработать Теэтет Афинский.
  • Книги XIV и XV, по общепризнанному мнению, также принадлежат другим авторам. Так, предпоследний том «Начал» написал Гипсикл (также живший в Александрии, но позже Евклида), а последний – Исидор Милетский (строивший храм святой Софии в Константинополе в начале шестого века до нашей эры).

До появления «Начал» Евклида труды с таким же названием, суть которых заключалась в последовательном изложении ключевых фактов теоретической арифметики и геометрии, были составлены Леонтом, Гиппократом Хиосским, Февдием. Все они практически исчезли из обихода после появления работы Евклида.

На протяжении двух тысяч лет пятнадцать томов «Начал» выступали в роли базового учебного пособия по геометрии. Работа переведена на арабский язык, затем – на английский. «Начала» перепечатывались сотни раз, и указанные в них базовых математических выкладок остаются актуальными по сей день.


Книга Евклида "Начала"

Значительная часть материалов, которые автор включил в труд – не собственные открытия, а известные ранее теории. Суть работы Евклида заключалась в переработке материала, его систематизации и сведении разрозненных данных воедино. Некоторые книги Евклид начинал списком определений, в первой книге имеется также перечень аксиом и постулатов.

Постулаты Евклида делятся на две группы: общие понятия, включающие в себя общепризнанные научные утверждения, и геометрические аксиомы. Так, в первой группе встречаются такие утверждения:

«Если две величины порознь равны одной и той же третьей, то они равны между собой».
«Целое больше суммы частей».

Во второй группе находятся, например, следующие утверждения:

«От всякой точки до всякой точки можно провести прямую».
«Все прямые углы равны между собой».

«Начала» - не единственная книга, написанная Евклидом. Также он написал ряд работ по катоптрике (новой отрасли оптики, в немалой степени утверждавшей математическую функцию зеркал). Несколько работ ученый посвятил изучению конических сечений. Математик также разрабатывал предположения и гипотезы, касающиеся траектории движения тел и законов механики. Он стал автором ключевых инструментов, которыми оперирует геометрия – так называемых «евклидовых построений». Многие работы этого древнегреческого мыслителя не дошли до наших дней.

Философия

В древние времена философия была тесно сплетена со многими другими отраслями научных знаний. Так, геометрия, астрономия, арифметика и музыка считались математическими науками, понимание которых необходимо для качественного изучения философии. Евклид развивал учение Платона о четырех элементах, которым приводятся в соответствие четыре правильных многогранника:

  • стихию огня олицетворяет тетраэдр;
  • воздушной стихии соответствует октаэдр;
  • стихия земли ассоциируется с кубом;
  • водная стихия связывается с икосаэдром.

В этом контексте «Начала» можно рассматривать как своеобразное учение о построении «платоновых тел», то есть пяти правильных многогранников. Учение содержит все необходимые предпосылки, доказательства и связки. Доказательство возможности построения таких тел завершается утверждением того факта, что никаких других правильных тел, за исключением данных пяти, не существует.

Практически каждая теорема Евклида в «Началах» соответствует также показателям учения о доказательстве . Так, автор последовательно выводит следствия из причин, формируя цепочку логических доказательств. При этом он доказывает даже утверждения общего характера, что также соответствует учению Аристотеля.

Личная жизнь

До нас дошла лишь некоторая информация о работе Евклида в науке, о его личной жизни же неизвестно практически ничего. Существует легенда, что царь Птолемей, решивший изучить геометрию, был раздосадован ее сложностью. Тогда он обратился к Евклиду и попросил его указать на более легкий путь к знаниям, на что мыслитель ответил: «К геометрии нет царской дороги». Выражение впоследствии стало крылатым.


Есть доказательства того, что при Александрийской библиотеке этот древнегреческий ученый основал частную математическую школу. В ней учились такие же энтузиасты науки, как и сам Евклид. Даже на закате своей жизни Евклид помогал ученикам в написании работ, создании собственных теорий и разработке соответствующих доказательств.

Точных данных о внешности ученого нет. Его портреты и скульптуры – это плод воображения их создателей, придуманный образ, передававшийся из поколения в поколение.

Смерть

Предположительно, Евклид скончался в 260-тых годах до нашей эры. Точные причины смерти не известны. Наследие ученого пережило его на две тысячи лет и вдохновляло многих великих людей спустя столетия после его кончины.

Существует мнение, что политический деятель любил цитировать высказывания Евклида в своих речах и имел при себе несколько томов «Начал».


Ученые последующих лет базировали труды на работах Евклида. Так, русский математик Николай Лобачевский использовал материалы древнегреческого мыслителя для разработки гиперболической геометрии, или геометрии Лобачевского. Формат математики, который создал Евклид, ныне известен как «евклидова геометрия». Ученый также создал прибор для определения высоты тона струны и изучал интервальные соотношения, поспособствовав созданию клавишных музыкальных инструментов.

Библиография

  • «Начала»
  • «Данные»
  • «О делении»
  • «Явления»
  • «Оптика»
  • «Поризмы»
  • «Конические сечения»
  • «Поверхностные места»
  • «Псевдария»
  • «Катоптрика»
  • «Деление канона»