Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: изучение новой темы.

Цель урока:

  • раскрыть сущность мутационной изменчивости, проблемы биологической безопасности продуктов питания и показать роль мутаций в природе и жизни человека;

Задачи урока:

  • Образовательные : на основе знаний учащихся определить особенности мутационной изменчивости, формировать умения по выявлению мутагенных факторов в окружающей среде, углубить знания о сущности процессов, происходящих при мутационной изменчивости.
  • Развивающие : развивать умение сравнивать, анализировать, делать выводы.
  • Воспитательные : воспитывать бережное отношение к своему здоровью и здоровью будущих поколений; понимание необходимости исследования своей родословной с целью предотвращения заболеваний в случае существования предрасположенности к ним.

Оборудование: мультимедийный проектор или интерактивная доска с подготовленными схемами, компьютерная презентация “Мутационная изменчивость. Проблемы биобезопасности”; муляжи полиплоидных плодов.

Цели урока (для учащихся):

  • Узнать о видах наследственной изменчивости, причинах возникновения мутаций их материальной основе.
  • Определить значение мутаций для эволюции, селекции и медицины.
  • Понять, как можно избежать возникновения мутаций.

Методы обучения: репродуктивные (рассказ, эвристическая беседа), проблемные задания, технология развития критического мышления, метод сравнения, становления связи, анализа, синтеза и классификации, здоровьесберегающие технологии.

Ход урока

I. Организационный момент

Учитель объявляет тему урока.

План урока:

  1. Понятие “Мутация”.
  2. Основные положения мутационной теории.
  3. Классификация мутаций.
  4. Факторы возникновения мутаций – мутагены.
  5. Проблемы биобезопасности.
  6. Значение мутаций.

II. Актуализация опорных знаний учащихся

Давайте вспомним, какое свойство живых организмов дает возможность приобретать им новые свойства и признаки? (Изменчивость).

Какие формы изменчивости вам известны? (Ненаследственная, или модификационная, наследственная).

Чем отличаются эти формы изменчивости? (Модификационная изменчивость не передается из поколения в поколение, она не затрагивает генотип организма, мутационная изменчивость является наследственной и затрагивает генотип организма).

III. Активизация познавательного интереса

Когда мы проходим мимо экспонатов Кунсткамеры, сердце замирает от вида мутантов с лишними или недостающими частями тела (двухголовый ягнёнок, сиамские близнецы, сиреномелия). Уроды человеческие и животные собирались по указу Петра со всех концов России, поскольку “во всех государствах они ценились как диковинки”. Мутанты вызывают у народа смесь интереса и брезгливости: голубые лобстеры, мыши с ушами человека на спинах, мухи с ногами вместо антенн, двуглавые змеи….

IV. Постановка проблемного вопроса

За время своего развития человечество накопило величайшее достояние – ГЕНОФОНД, определяющий состояние вида HOMO SAPIENS, в котором заложено все, что, есть в нас животного и человеческого. Но наш генофонд в целом и генотип конкретного человека – хрупкая система. Химизация сельского хозяйства, современная косметика, отходы промышленного производства, генно-модифицированные объекты, лекарственные препараты – причины генетических изменений организма - мутаций.

Каковы последствия мутаций?

Не подвергает ли человечество себя серьезному риску непредвиденных генетических изменений?

V. Изучение нового материала

Сегодня на уроке мы подробно рассмотрим одну из форм наследственной изменчивости, а именно - мутационную изменчивость.

Мутационная изменчивость основывается на возникновении мутаций. Мутации (от лат. “mutation – изменение, перемена) – внезапно возникающие стойкие изменения генотипа, передающиеся по наследству. Термин “мутация” был введен голландским биологом Гуго де Фризом в 1901 г. Проводя опыты с растением ослинник (энотера), он случайно обнаружил экземпляры, отличающиеся рядом признаков от остальных (большой рост, гладкие, узкие длинные листья, красные жилки листьев и широкая красная полоса на чашечке цветка…). Причем при семенном размножении растения из поколения в поколение стойко сохраняли эти признаки. В результате обобщения своих наблюдений, Де Фриз создал мутационную теорию. Дальнейшие исследования показали, что подобные отклонения характерны для всех живых организмов: растений, животных, микроорганизмов. На основе этих исследований де Фризом была создана мутационная теория. Процесс возникновения мутаций называют мутагенез , организмы, у которых произошли мутации, – мутантами , а факторы среды, вызывающие появление мутаций, мутагенами . Мутации генов возникают у всех классов и типов животных, высших и низших растений, многоклеточных и одноклеточных организмов, у бактерий и вирусов. Мутационная изменчивость как процесс качественных скачкообразных изменений является общим свойством всех органических форм.

Основные положения мутационной теории

1. Мутации возникают внезапно, скачкообразно.

2. Мутации наследуются, то есть передаются из поколения в поколение.

3. Мутации не направлены: мутировать может ген в любом локусе, вызывая изменения как незначительных, так и жизненно важных признаков.

4. Сходные мутации могут возникать повторно.

5. Мутации по характеру проявления могут быть доминантными и рецессивными.

6. Мутации носят индивидуальный характер.

Классификация мутаций

I. По характеру изменения генома

Цитоплазматические мутации - результат изменения ДНК клеточных органоидов – пластид, митохондрий. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.

Генные мутации

Наиболее часто встречающиеся мутации – генные, их ещё называют точечными – изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Генные мутации выражаются в выпадении, добавлении или перестановке нуклеотидов в гене. Эффекты генных мутаций разнообразны. Большая часть из них в фенотипе не проявляется, так как они рецессивные. Это позволяет им длительное время сохраняться у особей в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

Однако известны случаи, когда замена даже одного азотистого основания в нуклеотиде влияет на фенотип . Примером нарушения, вызванного такой мутацией, служит серповидно-клеточная анемия. При этом заболевании эритроциты под микроскопом имеют характерную серпообразную форму и обладают пониженной стойкостью и пониженной кислород-транспортирующей способностью, поэтому у больных с серповидноклеточной анемией повышено разрушение эритроцитов в селезенке, укорочен срок их жизни, повышен гемолиз и часто имеются признаки хронической гипоксии (кислородной недостаточности). Развивающаяся анемия вызывает физическую слабость, нарушение деятельности сердца, почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации - изменения структуры хромосом.

Самостоятельная работа с учебником.

Задание: Изучив материал параграф 47 на с. 167-168 “Хромосомные мутации” и рис. 66 на с. 168, заполнить таблицу “Виды хромосомных мутаций”:

Геномные мутации приводят к изменению числа хромосом. Это может происходить в процессе мейоза из-за нерасхождения хромосом.

При кратном увеличении набора хромосом образуются полиплоиды. Они называются: 3n – триплоид, 4n – тетраплоид, 5n – пентаплоид, 6n – гексаплоид и т.д.

Большая часть сельскохозяйственных растений являются полиплоидами, они обладают высокой урожайностью, лучшей приспособленностью к неблагоприятным условиям, имеют крупные плоды, запасающие органы, цветки, листья. Академик П. М. Жуковский сказал: “Человечество питается и одевается преимущественно продуктами полиплоидии”. Полиплоидия у животных встречается очень редко. Как вы думаете, почему?

(Полиплоидные животные нежизнеспособны, поэтому полиплоидия в селекции животных не используется).

Единственное полиплоидное животное, которое использовалось человеком, которое использовалось человеком, это тутовый шелкопряд.

Геномные мутации, при которых кратно уменьшается количество хромосом, дают мутантов, которые называются гаплоидами.

Если в результате мутации появляется или исчезает одна хромосома, такие мутанты называют анэуплоидами (2n+1, 2n-1, 2n+2, 2n – 2…).

У человека анэуплоидия приводит к наследственным болезням. Например, когда в хромосомном наборе оказывается одна лишняя хромосома и в диплоидном наборе их будет 47, вместо 46, то это вызовет геномную мутацию, которую называют синдром Дауна (трисомия – 21). Клинически была описана в 1866 г. Английским педиатром Л. Дауном. По его имени и названа эта болезнь - синдром (или болезнь) Дауна. Болезнь Дауна проявляется в значительном снижении жизнеспособности, недостаточном умственном развитии. Дети - Дауны обучаемы, но значительно отстают в развитии от своих сверстников и требуют к себе более повышенного внимания. Кроме того, у них короткое коренастое туловище, наблюдается снижение сопротивляемости болезням, врожденные сердечные аномалии и т.д.Одна из наиболее распространенных хромосомных болезней, встречается в среднем с частотой 1 на 700 новорожденных. У мальчиков и девочек болезнь встречается одинаково часто. Дети с синдромом Дауна чаще рождаются у пожилых родителей. Если возраст матери 35 - 46 лет, то вероятность рождения больного ребенка возрастает до 4,1 %, с возрастом матери риск увеличивается. Возможность возникновения повторного случая заболевания в семье с трисомией 21 составляет 1 - 2 %.

II. По месту возникновения:

По исходу для организма какие могут быть мутации?

Летальные, полулетальные, нейтральные.

Летальные – не совместимые с жизнью;

- полулетальные – снижающие жизнеспособность.

- нейтральные – повышают приспособленность и жизнеспособность организмов. Они являются материалом для эволюционного процесса, используются человеком для выведения новых сортов растений, пород животных.

Факторы возникновения мутаций:

Учитель: Давайте рассмотрим факторы, которые вызывают мутации – мутагены.

Распределите понятия по данным факторам: радиоактивное излучение, ГМО, соли тяжелых металлов, температура, лекарства, вирусы, аналоги азотистых оснований, бактерии, пищевые консерванты, рентгеновские лучи, кофеин, формальдегид, стрессы.

С какой группой мутагенов мы встречаемся чаще всего?

В повседневной жизни мы сталкиваемся с продуктами питания, производители которых используют ГМО. Порой, балуем себя шоколадками, варим супы быстрого приготовления, заходим перекусить в рестораны быстрого питания и никогда не задумываемся, к каким последствиям это может привести в дальнейшем.

Что такое ГМО?

Расшифровывается ГМО - генно-модифицированные организмы, это живые организмы, созданные при помощи генной инженерии. Данные технологии очень широко применяются в сельском хозяйстве, потому что растения, выращенные при помощи генной инженерии, устойчивы к вредителям и имеют повышенную урожайность.

Генетически модифицированные организмы - это организмы в генетический код которых при помощи генной инженерии внедрены чужеродные гены. Например, в ген картофеля добавляют ген скорпиона - его не едят никакие насекомые! Или в помидоры внедрили ген полярной камбалы - они перестали бояться морозов.

Проблемы биобезопасности

Вопросы использования и контроля за ГМО затрагивают права граждан на получение своевременной, полной и достоверной информации о состоянии окружающей среды, рисках и угрозах для здоровья, а широкомасштабное неконтролируемое распространение на пищевом рынке России ГМ продуктов питания может негативно отразиться на здоровье населения и будущем нации.

Население России необходимо шире информировать о вреде генетически модифицированных (ГМ) продуктов . Чем больше вы будете говорить об этой проблеме, тем лучше для граждан и сельхозпроизводителей ”, – считает Владимир Путин . "Надо использовать европейский опыт, где работа в этом направлении сводится к тому, чтобы как можно больше улучшить информирование населения о вреде таких продуктов ", – подчеркнул он.

Генный инженер, создавая ГМО, нарушает один из основных запретов эволюции – запрет на обмен генетической информацией между далеко отстоящими видами (например, между растениями и человеком, между растением и рыбой или медузой). Опасность ГМО состоит в нарушении стабильности генома или встроенного в него чужеродного фрагмента ДНК, в проявлении возможных аллергических или токсических эффектов чужеродного белка, в изменении “работы” генетического аппарата и клеточного метаболизма с непредсказуемыми биологическими последствиями. Одним из основных недостатков современных генных технологий является наличие во встроенном фрагменте ДНК помимо так называемого “целевого гена”, изменяющего то или иное свойство организма, “технологического мусора”, в том числе генов устойчивости к антибиотикам и вирусных промоторов, которые небезопасны для природы и человека.

Значение мутаций

Мутации часто вредны, так как меняют приспособительные признаки организмов, вызывают врожденные заболевания человека и животных, часто несовместимые с жизнью (около 2 тыс. генетических дефектов, в соматических клетках – рак). Однако именно мутации создают резерв наследственной изменчивости и играют важную роль в эволюции.

Итак, мы закончили рассмотрение материала по теме “Мутационная изменчивость”. Вы узнали о сущности мутационной изменчивости и значениях мутаций. А теперь закрепим полученные знания, решив 2 задачи. Я предлагаю вам условия, а вы должны дать развернутый ответ.

VI. Закрепление изученного материала

Ответьте на вопросы:

1. У одного котенка возникла мутация в хромосомах половых клеток, а у другого - в аутосомах. Как повлияют эти мутации на каждый организм? В каком случае мутация проявится у котенка фенотипически?

2. Особенности строения и жизнедеятельности любого организма определяют белки, входящие в состав клетки. Почему же считают, что формирование признаков организма происходит под воздействием генов? В чем проявляется связь между генами, белками и признаками организма?

VII. Подведение итогов урока

Учитель: Урок подходит к концу, подведем итоги.

Ответьте пожалуйста мне на вопрос, который мы поставили в начале урока:

Можем ли мы снизить вероятность появления мутаций?

(Ответы учащихся)

Безусловно, ДА! Один из самых действенных методов - это знания. Необходимо знать свои особенности, знать – что может вызвать генетические нарушения еще не родившегося ребенка… Вероятность трагедии можно снизить. ЗДОРОВЫЙ ОБРАЗ ЖИЗНИ и ПРАВИЛЬНОЕ ПИТАНИЕ - пути снижения этого риска.

Продукты питания, в которых ГМО в принципе не может быть

ГМО не может быть практически в большинстве овощей и фруктов: сливы, персики, дыни… Соки, вода, молоко и молочные продукты из натурального молока. Несомненно, не может быть ГМО в минеральной воде.

Не может быть ГМО в?надкушенном? картофеле, который имеет разные размеры и неправильную форму. Не будет ГМО в яблоках с червячком. Гречка не поддается генной инженерии.

Продукты питания, в которых могут содержаться ГМО

ГМО может содержаться в таких продуктах питания, в состав которых входят в основном соя, кукуруза, рапс. Это наши всеми любимые колбаски, сосиски, сардельки, пельмени… Растительное масла, маргарин, майонез, хлебобулочные изделия. Конфетки, шоколад, мороженное, детское питание… Около 30% рынка чая и кофе содержит ГМО. Внимательно читайте, что написано на кетчупах, сгущенке.

Призываю вас, прежде чем покупать вышеперечисленные продукты, задать себе следующий вопрос: “Что такое ГМО?” Содержатся генно-модифицированные организмы в том наборе, которые Вы несете в дом и которыми кормите своих близких. Может быть, иногда можно отказаться от определенных продуктов питания? Колбаску заменить натуральным мясом, например.

Оценка деятельности учащихся на уроке:

За проверку домашнего задания

За устную работу на уроке

За ответы на вопросы по новой теме

VIII. Рефлексия

Учащимся дается индивидуальная карточка, в которой нужно подчеркнуть фразы, характеризующие работу ученика на уроке по трем направлениям.

Домашнее задание по программе В. В. Пасечника: параграфы 47, 48 ответить на вопросы в конце параграфа, выучить мутационную теорию наизусть, ответить письменно на вопрос: Что имеют общего и чем отличаются комбинативная и мутационная изменчивость?

Список используемых источников.

  1. Гаврилова А. Ю. Биология. 10 класс: поурочные планы по учебнику Д. К. Беляева, П. М, Бородина, Н. Н. Воронцова II ч. / - Волгоград: Учитель, 2006 – 125 с.
  2. Лысенко И. В. Биология. 10 класс: поурочные планы по учебнику А. А. Каменского, Е. А. Криксунова, В. В. Пасечника / - Волгоград: Учитель, 2009. – 217 с.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Мутационная теория, или, правильнее, теория мутаций, составляет одну из основ генетики. Она зародилась вскоре после переоткрытия законов Г. Менделя в трудах Г. Де Фриза (1901 -1903). Еще раньше к представлениям о скачкообразном изменении наследственных свойств пришел русский ботаник С. И. Коржинский (1899) в своем труде «Гетерогенезис и эволюция». Так что справедливо говорить о мутационной теории Коржинского - Де Фриза. Гораздо обстоятельнее мутационная теория изложена в трудах Г. Де Фриза, посвятившего большую часть жизни изучению проблемы мутационной изменчивости растений.

На первых порах мутационная теория всецело сосредоточилась на фенотипическом проявлении наследственных изменений, практически не занимаясь механизмом их возникновения. В соответствии с определением Г. Де Фриза мутация представляет собой явление скачкообразного, прерывистого изменения наследственного признака. Как будет показано в дальнейшем, само определение понятия «мутация» вызывает трудности. До сих пор, несмотря на многочисленные попытки, не существует краткого определения мутации, лучшего, чем дал Г. Де Фриз, хотя и оно не свободно от недостатков.

Мутации (от лат. mutatio - изменение, перемена) внезапно возникающие естественные (спонтанные) или вызываемые искусственно (индуцированные) стойкие изменения наследственных структур живой материи, ответственных за хранение и передачу генетической информации. Способность давать М. - мутировать - универсальное свойство всех форм жизни от вирусов и микроорганизмов до высших растений, животных и человека; оно лежит в основе наследственной изменчивости (См. Изменчивость) в живой природе. М., возникающие в половых клетках или спорах (генеративные М.), передаются по наследству; М., возникающие в клетках, не участвующих в половом размножении (Соматические мутации), приводят к генетическому мозаицизму: часть организма состоит из мутантных клеток, другая - из немутантных. В этих случаях М. могут наследоваться только при вегетативном размножении с участием мутантных соматических частей организма (почек, черенков, клубней и т. п.).

Внезапное возникновение наследственных изменений отмечалось многими учёными 18 и 19 вв., было хорошо известно Ч. Дарвину, но углублённое изучение М. началось лишь с зарождением на пороге 20 в. экспериментальной генетики. Термин «М.» ввёл в генетику в 1901 Х. Де Фриз.

Типы мутаций . По характеру изменения генетического аппарата М. делят на геномные, хромосомные и генные, или точковые. Геномные М. заключаются в изменении числа хромосом в клетках организма. К ним относятся: Полиплоидия - увеличение числа наборов хромосом, когда вместо обычных для диплоидных организмов 2 наборов хромосом их может быть 3, 4 и т. д.; Гаплоидия - вместо 2 наборов хромосом имеется лишь один; Анеуплоидия - одна или несколько пар гомологических хромосом отсутствуют (нуллисомия) или представлены не парой, а лишь одной хромосомой (моносомия) либо, напротив, 3 или более гомологичными партнёрами (трисомия, тетрасомия и т. д.). К хромосомным М., или хромосомным перестройкам (См. Хромосомные перестройки), относятся: инверсии - участок хромосомы перевёрнут на 180°, так что содержащиеся в нём гены расположены в обратном порядке по сравнению с нормальным; транслокации - обмен участками двух или более негомологичных хромосом; делеции - выпадение значительного участка хромосомы; нехватки (малые делеции) - выпадение небольшого участка хромосомы; дупликации - удвоение участка хромосомы; фрагментации - разрыв хромосомы на 2 части или более. Генные М. представляют собой стойкие изменения химического строения отдельных Генов и, как правило, не отражаются на наблюдаемой в микроскоп морфологии хромосом. Известны также М. генов, локализованных не только в хромосомах, но и в некоторых самовоспроизводящихся органеллах цитоплазмы (например, в митохондриях, пластидах; см. Наследственность цитоплазматическая).

Мутационная теория или теория мутаций - раздел генетики, закладывающий основы генетической изменчивости и эволюции.

Возникновение

Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после законов Менделя в начале XX века. Можно считать, что она почти одновременно зародилась в умах голландца Хуго де Фриза (1903) и отечественного ученого-ботаника С. И. Коржинского (1899). Однако приоритет в первенстве и в большем совпадении изначальных положений принадлежит российскому ученому . Признание основного эволюционного значения за дискретной изменчивостью и отрицание роли естественного отбора в теориях Коржинского и Де Фриза было связано с неразрешимостью в то время противоречия в эволюционном учении Ч. Дарвина между важной ролью мелких уклонений и их «поглощением» при скрещиваниях (см. кошмар Дженкина и История эволюционного учения#Кризис дарвинизма).

Основные положения

Основные положения мутационной теории Коржинского - Де Фриза можно свести к следующим пунктам :

  1. Мутации внезапны, как дискретные изменения признаков.
  2. Новые формы устойчивы.
  3. В отличие от ненаследственных изменений, мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они являют собой качественные скачки изменений.
  4. Мутации проявляются по-разному и могут быть как полезными, так и вредными.
  5. Вероятность обнаружения мутаций зависит от числа исследуемых особей.
  6. Сходные мутации могут возникать неоднократно.

Исследования Х. Де Фриза проводились на различных видах Ослинника (Oenothera ), которые в ходе эксперимента не выщепляли мутации, а показывали сложную комбинативную изменчивость, поскольку эти формы являлись сложными гетерозиготами по транслокациям.

Строгое доказательство возникновения мутаций принадлежит В. Иогансену на основе экспериментов на самоопыляющихся линиях фасоли и ячменя - были исследованы массы семян, мутационное изменение этого признака и обнаружил В. Иогансен (1908-1913 гг.). Примечательно то, что, даже имея мутационный характер, масса семян распределялась относительно некоторых средних значений, тем самым ставя под сомнение третий пункт мутационной теории.

МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ

В основе этой изменчивости лежат мутации. Основная причина возникновения новых признаков и свойств у живых организмов – это проявление мутаций. Мутации – это изменения генотипа, происходящие под влиянием факторов внешней или внутренней среды. Мутации имеют принципиальные отличия от модификаций (табл. 3).

Таблица 3

Сравнение модификаций и мутаций

Впервые термин «мутация » был предложен в 1901 г. голландским ученым Гуго де Фризом , описавшим самопроизвольные мутации у растений и создавший мутационную теорию.

1. Мутации возникают внезапно, без всяких переходов. Чаще бывают рецессивными, реже – доминантными.

2. Вызываются внешними и внутренними факторами.

3. Мутации стойко передаются из поколения в поколение, наследственны.

4. Это качественные изменения, которые, как правило, не образуют непрерывного ряда вокруг средней величины признака.

5. Мутировать может любая часть организма, т.е. мутации возникают в разных направлениях, они не направленны. Мутации могут быть вредными, полезными и нейтральными.

6. Успех в выявлении мутаций зависит от числа проанализированных особей.

7. Одни и те же мутации могут возникать повторно.

8. Мутации являются и элементарным эволюционным материалом, и ненаправляющим элементарным эволюционным фактором.

9. Мутационный процесс – источник резерва наследственной изменчивости популяций.

Мутации появляются редко, но приводят к внезапным скачкообразным изменениям признаков, которые передаются из поколения в поколение. Мутационный процесс идет постоянно, с накоплением мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций. Мутации – это крупнейший биологический фактор, обусловливающий огромную наследственную изменчивость организмов, что дает материал для эволюции.

Мутациями называются внезапные, стойкие, ненаправленные, скачкообразные изменения хромосом или единиц наследственности – генов, влекущие за собой изменения наследственных признаков. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов. Сходство между комбинативной и мутационной изменчивостью заключается в том, что в обоих случаях потомство получает набор генов каждого из родителей.

Мутационная изменчивость является одним из главных факторов эволюционного процесса. В результате мутаций могут возникать полезные признаки, которые под действием естественного отбора дадут начало новым видам и подвидам. Подавляющее число мутаций неблагоприятно или даже смертельно для организма, так как они разрушают отрегулированный на протяжении миллионов лет естественным отбором целостный генотип.



Способностью к мутированию обладают все живые организмы. У каждой конкретной мутации есть какая-то причина, хотя в большинстве случаев она неизвестна. Однако общее количество мутаций можно резко увеличить, используя различные способы воздействия на организм.

Факторы, вызывающие мутации, получили название мутагенных факторов (рис. 17).

Рис. 17. Классификация мутагенных факторов.

Во-первых, сильнейшим мутагенным действием обладает ионизирующее излучение. Радиация увеличивает число мутаций в сотни раз. Во-вторых, мутации вызывают вещества, которые действуют, например, на ДНК, разрывая цепочку нуклеотидов. Есть вещества, действующие и на другие молекулы, но также дающие мутации. Например, колхицин, приводящий к одному из видов мутаций – полиплоидии. В-третьих, к мутациям приводят и различные физические воздействия, например, повышение температуры окружающей среды.

Классификации мутаций

Мутации можно объединять в группы – классифицировать по характеру проявления, по месту или по уровню их возникновения.

Классификация 1 . Мутации по механизму возникновения (рис. 18).

Причинами мутаций могут быть как естественные нарушения в метаболизме клеток (спонтанные мутации ), так и действие различных факторов внешней среды (индуцированные мутации ). Мутации в естественных условиях случаются редко – одна мутация определенного гена на 1 000 – 100 000 клеток.

Рис. 18. Мутации по механизму возникновения.

Классификация 2 . Мутации по характеру проявления (рис. 19).

Рис. 19. Мутации по характеру проявления.

Мутации чаще рецессивные , так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

Классификация 3 . Мутации по месту возникновения (рис. 20).

Рис. 20. Мутации по месту возникновения.

Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными . Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и затрагивают лишь часть тела (глаза разного цвета), не передаются потомству при половом размножении. Но при бесполом размножении (вегетативном), если организм развивается из соматической клетки или группы клеток, имеющих изменившийся – мутировавший – ген, мутации могут передаваться потомству. Такие мутации называют соматическими .

Классификация 4 . Мутации по адаптивному значению (рис. 21).

Рис. 21. Мутации по адаптивному значению.

Мутации бывают полезные, вредные и нейтральные. Полезные мутации – мутации, которые приводят к повышенной устойчивости организма (устойчивость тараканов к ядохимикатам), в конечном итоге, повышают приспособленность особей. Понятие «приспособленность» подразумевает жизнеспособность, плодовитость (фертильность) и конкурентоспособность особей. Вредные мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными , а несовместимые с жизнью – летальными . Вредные мутации: глухота, дальтонизм. Нейтральные мутации никак не отражаются на жизнеспособности организма (цвет глаз, группа крови).

Классификация 5 . Мутации по месту локализации в клетке (рис. 22).

Рис. 22. Мутации по месту локализации в клетке.

Мутации делятся на ядерные и внеядерные (или митохондриальные).

Классификация 6 . Мутации по характеру изменения фенотипа (рис. 23).

Рис. 23. Мутации по характеру изменения фенотипа.

Мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

Классификация 7 . Мутации по характеру изменения гена (рис. 24).

Рис. 24. Мутации по характеру изменения гена.

Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

Классификация 8 . Мутации по уровню их возникновения или характеру изменений в генотипе (рис. 25).

Рис. 25. Мутации по характеру изменений в генотипе.

Генные мутации (точковые ) представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка (синонимичная замена ). Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию (несинонимичная замена ). Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются; муковисцидоз, гемохроматоз, адреногенитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера, дальтонизм, гемофилия, серповидноклеточная анемия (рис. 26) и ряд других заболеваний.

Рис. 26. Механизм возникновения серповидноклеточной анемии.

Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенс-мутация (от англ. “mis” – ложный, неправильный + лат. “sensus” – смысл) – замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде (рис. 27);

Рис. 27. Мисенс и нонсенс мутации.

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенс-мутация (от лат. “non” – нет + “sensus” – смысл) – замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции (рис. 27);

3) в нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. “frame” – рамка + “shift” – сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи;

4) в замене нуклеотидов (рис. 28): транзиции – мутация, обусловленная заменой одного пуринового основания на другое или пиримидинового на другое пиримидиновое; трансверсия (от лат. “transversus” – повернутый в сторону, отведенный) – мутация, обусловленная заменой пуринового основания (аденин, тимин) на пиримидиновое (гуанин, цитозин) и наоборот. В отличие от транзиций, трансверсии иногда называют сложными или перекрестными заменами, т. к. происходит изменение ориентации пурин – пиримидин в мутантном сайте двуцепочечной молекулы нуклеиновой кислоты.

Рис. 28. Типы замен нуклеотидов.

Известны и другие типы генных мутаций.

По типу молекулярных изменений выделяют :

1) делеции (от лат. “deletio” – уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

2) дупликации (от лат. “duplicatio” – удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

3) инверсии (от лат. “inversio” – перевертывание), т. е. поворот на 180° сегмента ДНК размерами от двух нуклеотидов до фрагмента, включающего несколько генов;

4) инсерции (от лат. “insertion” – прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию .

Принципиальным и отличительным для генной мутации является то, что она приводит к изменению генетической информации и может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0, имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства наследственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными , или моногенными болезнями , т.е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Таким образом, генные мутации приводят к появлению новых признаков.

Рис. 29. Виды хромосомных мутаций.

Хромосомные мутации (хромосомные аберрации) – это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению генотипа. Причиной этого может быть разрыв хромосомы на фрагменты и восстановление её в новых сочетаниях.

Несмотря на то, что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные (рис. 29).

Внутрихромосомные мутации – аберрации в пределах одной хромосомы. К ним относятся:

- делеции (от лат. “deletio” – уничтожение) – утрата одного из участков хромосомы, внутреннего или терминального (рис. 30).

Рис. 30. Схематическое изображение делеции.

А – нормальная хромосома, Б – делетированная хромосома.

Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, делеция в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром Лежена или синдром "кошачьего крика", поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье (рис. 31);

Рис. 31. А – дети с синдромом Лежена в возрасте 8 месяцев, 2, 4 и 8 лет соответственно; Б – хромосомный набор больного с синдромом Лежена: групповая (от А до G) и индивидуальная идентификация хромосом (стрелкой указан дефект короткого плеча хромосомы 5-й пары, вторая хромосома не изменена).

- дупликации (от лат. “duplcatio” – удвоение) – удвоение (или умножение) какого-либо участка хромосомы (рис. 32). Например, дупликация по одному из коротких плеч 9-й хромосомы обусловливает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития.

Рис. 32. Схематическое изображение дупликации. А – нормальная хромосома, Б – дуплицированная хромосома.

- инверсии (от лат. “inversio” – перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов (рис. 33);

Рис. 33. Схематическое изображение инверсии.

А – нормальная хромосома, Б – инвертированная хромосома.

Межхромосомные мутации , или мутации перестройки – обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. “trans” – за, через + “locus” – место) (рис. 34).

Рис. 34. Схематическое изображение транслокации хромосом.

А – нормальные хромосомы, Б – транслоцированные хромосомы.

Выделяют несколько разновидностей транслокаций. Это:

- реципрокная транслокация , когда две хромосомы обмениваются своими фрагментами;

- нереципрокная транслокация , когда фрагмент одной хромосомы транспортируется на другую. Возможно присоединение фрагмента к своей же хромосоме, но в новом месте – транспозиция (рис. 35);

Рис. 35. Реципрокная и нереципрокная транслокация.

- "центрическое" слияние (робертсоновская транслокация ) – соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч (рис. 36). При таких мутациях не только появляются хромосомы с новой морфологией, но и изменяется их количество в кариотипе.

При поперечном разрыве хроматид через центромеры "сестринские" хроматиды становятся "зеркальными" плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами .

Рис. 36. Робертсоновская транслокация.

Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Описанные структурные изменения хромосом, как правило, сопровождаются изменением генетической программы, получаемой клетками нового поколения после деления материнской клетки, так как

1) изменяется количественное соотношение генов (при делециях и дупликациях),

2) меняется характер их функционирования в связи с изменением взаимного расположения в хромосоме (при инверсии и транспозиции) или с переходом в другую группу сцепления (при транслокации).

Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клеток организма, но особенно серьезные последствия имеют хромосомные перестройки, происходящие в предшественниках гамет.

Значение хромосомных аберраций . Однако, несмотря на неблагоприятные, как правило, последствия хромосомных мутаций, иногда они оказываются совместимыми с жизнью клетки и организма и обеспечивают возможность эволюции структуры хромосом, лежащей в основе биологической эволюции.

Так, небольшие по размеру делеции могут сохраняться в гетерозиготном состоянии в ряду поколений. Менее вредными, чем делеции, являются дупликации, хотя большой объем материала в увеличенной дозе (более 10% генома) приводит к гибели организма.

Нередко жизнеспособными оказываются робертсоновские транслокации, часто не связанные с изменением объема наследственного материала. Этим можно объяснить варьирование числа хромосом в клетках организмов близкородственных видов. Например, у разных видов дрозофилы количество хромосом в гаплоидном наборе колеблется от 3 до 6, что объясняется процессами слияния и разделения хромосом.

Возможно, существенным моментом в появлении вида Homo sapiens были структурные изменения хромосом у его обезьяноподобного предка. Установлено, что два плеча крупной второй хромосомы человека соответствуют двум разным хромосомам современных человекообразных обезьян (12-й и 13-й – шимпанзе, 13-й и-14-й – гориллы и орангутана). Вероятно, эта человеческая хромосома образовалась в результате центрического слияния по типу робертсоновской транслокации двух обезьяньих хромосом (рис 37).

К существенному варьированию морфологии хромосом, лежащему в основе их эволюции, приводят транслокации, транспозиции и инверсии. Анализ хромосом человека показал, что его 4, 5, 12 и 17-я хромосомы отличаются от соответствующих хромосом шимпанзе перицентрическими инверсиями.

Рис. 37. Плечи 2-ой пары хромосом человека

соответствуют 12 и 13 хромосомам шимпанзе.

Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.

Геномные мутации приводят к изменению числа хромосом. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия – изменение числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1 → трисомия (увеличение), 2n ─ 1→ моносомия (уменьшение)).

Полиплоидия – увеличение числа наборов хромосом, кратное гаплоидному (2n + n).

Рис. 38. Полиплоиды капусты.

Частным случаем геномных мутаций является полиплоидия , т. е. кратное увеличение числа хромосом в клетках в результате нарушения их расхождения в митозе или мейозе. Соматические клетки таких организмов содержат 3n, 4n, 8n и т. п. хромосом в зависимости от того, сколько хромосом было в гаметах, образовавших этот организм. Полиплоидия часто встречается у бактерий и растений, но очень редко – у животных. Полиплоидны три четверти всех культивируемых человеком злаков. Если гаплоидный набор хромосом (n) для пшеницы равен 7, то основной сорт, разводимый в наших условиях, – мягкая пшеница – имеет по 42 хромосомы, т. е. 6n.

Полиплоидами являются окультуренная свекла, гречиха, капуста (рис. 38) и т. п. Как правило, растения-полиплоиды имеют повышенные жизнеспособность, размеры, плодовитость и т. п.

В настоящее время разработаны специальные методы получения полиплоидов. Например, растительный яд из безвременника осеннего – колхицин – способен разрушать веретено деления (рис. 39) при образовании гамет, в результате чего получаются гаметы, содержащие по 2n хромосом. При слиянии таких гамет в зиготе окажется 4n хромосом.

Рис. 39. Формирование веретена деления во время деления клетки.

Геномные мутации в животном и растительном мире многообразны, но у человека обнаружены только 3 типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия. При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречаются только моносомия-Х.

У человека полиплоидия, а также большинство анеуплоидий являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

§ трисомия – наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, XXY, XYY);

§ моносомия – наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, – моносомия по X-хромосоме – приводит к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин "нерасхождение" означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму , при котором имеется одна эуплоидная (нopмальная) клеточная линия, а другая – моносомная.

Нерасхождение хромосом наиболее часто наблюдается во время мейоза (рис. 40). Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т.е. в клетке присутствуют три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией . Если моносомная зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Рис. 40. Схема нерасхождения хромосом в гаметогенезе и результаты

оплодотворения.

Летальный или дизморфогенетический эффект хромосомных аномалий обнаруживается на всех стадиях внутриутробного онтогенеза (имплантация, эмбриогенез, органогенез, рост и развитие плода). Суммарный вклад хромосомных аномалий во внутриутробную гибель (после имплантации) у человека составляет 45 %. При этом, чем раньше прерывается беременность, тем вероятнее, что это обусловлено аномалиями развития эмбриона, вызванными хромосомным дисбалансом. У 2-4–недельных абортусов (эмбрион и его оболочки) хромосомные аномалии обнаруживают в 60-70 % случаев. В 1 триместре беременности хромосомные аномалии встречаются у 50 % абортусов. У плодов-выкидышей 2 триместра такие аномалии находят в 25-30 % случаев, а у плодов, погибших после 20 недели беременности, в 7 % случаев.

Наиболее тяжелые формы по дисбалансу хромосомного набора встречаются у ранних абортусов. Это полиплоидии (25 %), полные трисомии по аутосомам (50 %). Трисомии по некоторым аутосомам (1; 5; 6; 11; 19) встречаются крайне редко даже у элиминированных эмбрионов и плодов, что свидетельствует о большой морфогенетической значимости этих аутосом. Данные аномалии прерывают развитие в доимплантационном периоде или нарушают гаметогенез.

Высокая морфогенетическая значимость аутосом еще более отчетливо выражена при полных аутосомных моносомиях. Последние редко обнаруживаются даже в материале ранних спонтанных абортов из-за раннего летального эффекта такого дисбаланса.

Мутационная теория

Мутационная теория или теория мутаций - раздел генетики, закладывающий основы генетической изменчивости и эволюции.

Возникновение

Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после переоткрытия Т. Морганом законов Менделя в начале 20 столетия. Можно считать, что она почти одновременно зародилась в умах голландца Де Фриза (1903) и отечественного ученого-ботаника С. И. Коржинского (1899). Однако приоритет в первенстве и в большем совпадении изначальных положений принадлежит российскому ученому . Признание основного эволюционного значения за дискретной изменчивостью и отрицание роли естественного отбора в теориях Коржинского и Де Фриза было связано с неразрешимостью в то время противоречия в эволюционном учении Ч. Дарвина между важной ролью мелких уклонений и их «поглощением» при скрещиваниях (см. кошмар Дженкина).

Основные положения

Основные положения мутационной теории Коржинского - Де Фриза можно свести к следующим пунктам :

  1. Мутации внезапны, как дискретные изменения признаков
  2. Новые формы устойчивы
  3. В отличие от ненаследственных изменений, мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они являют собой качественные скачки изменений
  4. Мутации проявляются по-разному и могут быть как полезными, так и вредными
  5. Вероятность обнаружения мутаций зависит от числа исследуемых особей
  6. Сходные мутации могут возникать неоднократно

Исследования Х. Де Фриза проводились на различных видах Oenothera , которые в ходе эксперимента не выщепляли мутации, а показывали сложную комбинативную изменчивость, поскольку эти формы являлись сложными гетерозиготами по транслокациям.

Строгое доказательство возникновения мутаций принадлежит В. Иоганнсену на основе экспериментов на самоопыляющихся линиях фасоли и ячменя - были исследованы массы семян, мутационное изменение этого признака и обнаружил В. Иоганнсен (1908-1913 гг). Примечательно то, что даже имея мутационный характер, масса семян распределялась относительно некоторых средних значений, тем самым ставя под сомнение третий пункт мутационной теории.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Мутационная теория" в других словарях:

    Утверждает, что из двух категорий изменчивости непрерывной и прерывистой (дискретной), только дискретная изменчивость передаётся по наследству. Разработана голл. ботаником X. Де Фризом в 1901 1903. Осн. положения М. т.: мутация возникает внезапно … Биологический энциклопедический словарь

    Мутационная теория - * мутацыйная тэорыя * mutation theory теория, основанная на признании наследуемости только дискретных (мутационных) изменений в геноме организма. М. т. была разработана была Г. де Фризом в 1901 1903 гг. Ряд ее положений (создание видов в… … Генетика. Энциклопедический словарь

    Возникла в результате открытия мутаций наследственных изменений признаков и свойств организмов. Согласно мутационной теории (российский ученый С. И. Коржинский, 1899, нидерландский Х. Де Фриз, 1901 1903), резкие, внезапные мутации решающий фактор … Большой Энциклопедический словарь

    Возникла в результате открытия мутаций наследственных изменений признаков и свойств организмов. Согласно мутационной теории (российский учёный С. И. Коржинский, 1899, нидерландский X. Де Фриз, 1901 03), резкие, внезапные мутации решающий… … Энциклопедический словарь

    Mutation theory мутационная теория. Tеория, основанная на признании наследуемости только дискретных (мутационных) изменений организма, разработана Х. Де Фризом в 1901 03; ряд положений М.т. (создание видов в результате мутаций без отбора и др.),… … Молекулярная биология и генетика. Толковый словарь.

    мутационная теория - ПАТОЛОГИЯ ЭМБРИОГЕНЕЗА МУТАЦИОННАЯ ТЕОРИЯ. ОСНОВНЫЕ ПОЛОЖЕНИЯ МУТАЦИОННОЙ ТЕОРИИ – 1. Мутации возникают внезапно, скачкообразно, без всяких переходов и не образуют непрерывных рядов. 2. Мутации передаются по наследству. 3. Они ненаправленны, т.е … Общая эмбриология: Терминологический словарь

    Теория изменчивости и эволюции, созданная в начале 20 в. Х. Де Фризом. Согласно М. т., из двух категорий изменчивости непрерывной и прерывистой (дискретной), только последняя наследственна; для её обозначения Де Фриз ввёл термин Мутации.… … Большая советская энциклопедия

    Теория происхождения видов, выдвинутая в нач. 20 в. Х. де Фризом, согласно которой новые виды возникают из старых скачкообразно, посредством крупных наследственных изменений мутаций. Новый словарь иностранных слов. by EdwART, 2009 … Словарь иностранных слов русского языка

    Возникла в результате открытия мутаций наследств. изменений признаков и свойств организмов. Согласно М.т. (X. Де Фриз, 1901 03), резкие, внезапные мутации решающий фактор эволюции, сразу ведущий к возникновению новых видов; естеств. отбору… … Естествознание. Энциклопедический словарь

    Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии. Мутационная теория канцерогенеза учение, согласно которому причиной возникновения злокачественных оп … Википедия

Книги

  • Введение в изучение зоологии и сравнительной анатомии , Мензбир М.А.. Вниманию читателей предлагается книга выдающегося отечественного зоолога, академика АН СССР М. А. Мензбира (1855-1935), содержащая вводный курс зоологии и сравнительнойанатомии.…