Я.Б. Зельдович, ВОЗМОЖНО ЛИ ОБРАЗОВАНИЕ ВСЕЛЕННОЙ ИЗ НИЧЕГО?


Якова Борисовича Зельдовича нет нужды представлять читателям "Природы". Автор фундаментальных работ в области физической химии, теор ии элементарных частиц, ядерной физики, астрофизики и космологии, он, кроме того, был еще и блестящим популяризатором, ярко, живо и образно рассказывающим в своих популярных книгах и статьях о наиболее "горячих" проблемах современной науки. В последние годы особое внимание он уделял релятиви стской астрофизике и космологии. Именно в это время им написаны для нашего журнала статьи "Черные и белые дыры" (совместно с А.А. Старобинским и И.Д. Новиковым; 1976, № 1); "Современная космология" (1983, № 9); "Почему расширяется Вселенная!" (1984, № 2). Продолжает эту тематику и последняя его статья "Возможно ли образование Вселенной "из ничего?". Послесловие к ней написал академик А.Д. Сахаров.

ВСЕЛЕННАЯ

Размеры окружающей нас Вселенной и, даже более скромно и более точно, размеры исследованной нами части Вселенной, далеко превышают человеческое воображение.

Древним людям трудно было представить себе, что Земля - это шар. Сегодня, когда самолеты без посадки пролетают многие тысячи километров, в век космических полетов, радио и телевидения (и в век межконтинентальных ракет с ядерным зарядом, к сожалению) Земля представляется маленьким хрупким шариком. Не удивляет нас и расстояние до Солнца - 150 млн км, так называемая астрономическая единица. Однако расстояние от Солнечной системы до центра Галактики (около 10 кпк = 3 10 22 см) в два миллиарда раз больше расстояния от Земли до Солнца. В свою очередь, расстояние, на котором еще удается наблюдать яркие галактики, порядка нескольких тысяч мегапарсек - еще почти в миллион раз больше расстояния от Солнца до центра нашей Галактики. Если это наибольшее расстояние уменьшить в 10 15 раз, т. е. примерно до 1 а. е., то Солнечная система уменьшится до масштаба пылинки размером меньше миллиметра...

Так же, как и линейный масштаб, т. е. размер Вселенной, невообразимо велико и количество вещества, с которым мы имеем дело. Масса Земли около 6 10 27 г. Масса Солнца около 2 10 33 г, т. е. в 300 тыс. раз больше. Галактика имеет массу порядка 2 10 11 масс Солнца. В наблюдаемой нами области Вселенной суммарная масса очень грубо, по порядку величины, оценивается как 10 55 г, т. е. порядка 10 22 масс Солнца.

Человек, живо и наглядно ощущающий всю огромность пространства и массы, открывающихся современным телескопам, не может остаться равнодушным. Соответствующие величины потрясают воображение настолько, что ощущаешь головокружение. Первым, естественным следствием этого потрясения является отвращение к теор ии расширяющейся Вселенной. Неужели все великолепие и громадность Вселенной когда-то умещалось в шаре размером в несколько сантиметров? И еще более диким кажется вопрос: неужели все сущее, все наблюдаемое могло образоваться буквально "из ничего"?

В предлагаемой статье я сознательно ограничусь узкой постановкой вопроса. Обсудим только, не противоречит ли это предположение - образование Вселенной "из ничего"- каким-либо твердо установленным общим законам природы. Иногда ведь самый общий "закон сохранения" так и формулируют: "из ничего не может получиться ничего". Такую формулировку я с порога отвергаю - она наивна и ненаучна. Есть закон сохранения энерги и. Есть, например, еще закон сохранения электрического заряда. Мы проверим выполнение этих четко физически сформулированных законов, а также обсудим существование и выполнение других подобных, более или менее твердо установленных физических законов.

Чтобы не превращать эту статью в полный курс космологии, мы не будем исследовать подробно строение Вселенной, закон ее расширения и полный сценарий ее эволюции.

Можно привести такую житейскую аналогию: представьте себе, что к Вам пришел изобретатель с каким-то чудесным двигателем или генератором электрического тока. Разумный шаг эксперта состоит в том, что выясняется вопрос, не принесли ли Вам проект "вечного двигателя" (реrpetuum mobile). Давно уже действует обычай с порога отвергать без детального рассмотрения такие проекты. "Perpetuum mobile" нарушает закон сохранения энерги и, значит, где-то в проекте содержится ошибка. Выяснение конкретной ошибки уже не интересно никому, кроме самого изобретателя.

Подойдем с такой же меркой к вопросу о возникновении Вселенной "из ничего". Противоречит ли это предположение законам физики? Возможно ли это, можно ли будет (если не сейчас, то в будущем) создать непротиворечивую, правильную теор ию этого, поистине самого грандиозного явления?

СОХРАНЕНИЕ ЗАРЯДОВ

Начнем с закона сохранения электрического заряда. Ответ лежит на поверхности, он очевиден: нет никакого запрета на рождение электронейтральной Вселенной, т. е. Вселенной, содержащей равное число положительных и отрицательных зарядов. Есть все основания думать, что именно такова наша Вселенная. В противном случае возникли бы сильные электрические поля, которые нарушили бы ее (Вселенной) однородность и изотропию. Итак, Вселенная, скорее всего, строго нейтральна, а значит, вполне могла родиться "из ничего" (без противоречия закону сохранения электрического заряда).

Обратимся к закону сохранения барионного заряда. Напомним, что во всех известных процессах, происходящих в лаборатории, суммарное число протонов и нейтронов не меняется. В частности, радиоактивность ядер проявляется либо как перегруппировка протонов и нейтронов, либо как превращение протонов в нейтроны и обратно.

Так, при испускании g -лучей (т. е. фотонов) перегруппировка происходит при переходе данного ядра из энергетически возбужденного состояния в основное или в состояние с меньшей энерги ей возбуждения. При a -распаде ядра часть протонов и нейтронов материнского ядра остаются в дочернем ядре, а другие вылетают в виде ядра гелия (два протона и два нейтрона). В b -распаде быстрый электрон (b -частица) и нейтрино рождаются при превращении нейтрона в протон. Есть и обратный процесс испускания позитрона (p = N+e + + n e ) при превращении протона в нейтрон, но такой процесс идет лишь в том случае, если протон находится в ядре и после превращения нейтрон занимает более низкое энергетическое состояние.

Свободный протон легче свободного нейтрона, поэтому свободный нейтрон b -радиоактивен; свободный протон стабилен, нестабильным он бывает только внутри некоторых ядер.

Итак, к концу 40-х годов закон сохранения барионов формулировался просто: сумма числа протонов и нейтронов не меняется. Затем последовало открытие так называемых странных частиц. Сперва они были открыты в космических лучах, а позже очень подробно исследованы в лаборатории на ускорителях. Они нестабильны, образуются из протонов или нейтронов и при распаде снова дают протоны или нейтроны.

Так, например: p + N = D + K+ + N (D - странный гиперон, К - странный мезон). Странными эти частицы были названы потому, что при сравнительно большой вероятности образования за очень короткое время столкновения они имеют довольно большое время жизни, 10 -8 -10 -10 с.

В начале 50-х годов были открыты так называемые барионные резонансы. Рассеяние л-мезонов на протонах и нейтронах зависит от энерги и в соответствии с тем, что эти две частицы сперва сливаются в одну, которая потом снова распадается. Так, например:

После этих открытий закон сохранения барионов усложнился: сохраняется сумма

B = p + N + D + S + ... + D ++ + D + + D 0 + D - + ... = const

или, иными словами, сохраняется общее количество барионов (Здесь D, S , ... - странные барионы; многоточие заменяет перечисление всех странных барионов - от D ++ до D - , самых легких барионных резонансов, а повторное многоточие заменяет перечисление всех резонансов.).

В 1955 г. были, наконец, экспериментально открыты антипротоны. Теор етически существование античастиц - антибарионов - было предсказано вскоре после предсказания и обнаружения антиэлектронов, т. е. позитронов. Однако энерги я, нужная для рождения пары протон-антипротон в 2000 раз больше, чем для пары электрон-позитрон, поэтому между двумя открытиями возник интервал в четверть века. В это время у некоторых ученых нервы не выдерживали и высказывались сомнения относительно существования антибарионов; теперь для этих сомнений нет места!

Итак, в окончательной форме закона сохранения барионного заряда: сохраняется разность числа барионов и антибарионов.

За последние 20 лет показано, что барионы состоят из 3 кварков. Антибарионы состоят из антикварков. Соответственно, барионный заряд и закон его сохранения на языке кварков формулируется так:

3В = S q i - S q" k = const,

где S q i - число кварков i-ro сорта; S q" k - число антикварков k-ro сорта; сумма берется по всем сортам.

Закон сохранения барионного заряда необычайно важен как для Вселенной в целом, так и для непосредственно окружающего нас современного мира. С учетом этого закона данное количество барионов можно использовать для производства энерги и, только переводя их в наинизшее энергетическое состояние, а именно в ядра железа *. Отсюда следует, что энерги ю можно получить, либо превращая уран в ядра середины таблицы Менделеева, либо превращая водород в железо.

* Имеется в виду, что в ядрах железа энерги я связи нуклонов максимальна. (Прим. ред. )

Первый процесс успешно осуществляется на атомных электростанциях. Второй происходит в звездах. В несколько измененной форме (начиная не с начала и не доходя до конца) второй процесс реализуется при слиянии ядер дейтерия и трития с образованием 4 Не и нейтрона и в будущем станет источником термоядерной энерги и на Земле. Но общим для обоих процессов является использование малой доли - менее 1 % - полного запаса энерги и горючего.

Полный запас энерги и, следуя закону эквивалентности Эйнштейна Е = Мс 2 , равен 9 10 13 Дж на 1 г вещества.

Отмена закона сохранения барионного заряда означала бы принципиальную возможность прямого распада протона р = е - + энерги я или р = е + + энерги я.

Итак, протон - свободный или связанный в ядре - мог бы быть нестабильным и распадаться с выделением огромной энерги и, если бы не было закона сохранения барионного заряда. Огромное современное значение этого закона сохранения очевидно.

То же относится и к рождению Вселенной “из ничего”.

Барионный заряд “ничего”, очевидно, равен нулю. Если барионный заряд сохраняется, то вся Вселенная, родившаяся “из ничего”, должна иметь нулевой барионный заряд, т. е. равное количество вещества и антивещества. Так и думали те, кто первыми в начале 60-х годов высказывали идею рождения Вселенной. Они полагали, что рождается Вселенная с равным количеством барионов и антибарионов, т. е. с равным количеством вещества и антивещества. Но если вещество и антивещество в равном количестве равномерно размещены в пространстве (т. е. их плотность одинакова в каждой точке), то при охлаждении они полностью аннигилируют. К тому же нет механизма, который мог бы их разделить; тяготение стягивает вещество и антивещество одинаково.

Рождение Вселенной такой, какой мы ее наблюдаем, возможно лишь в том случае, если закон сохранения барионного заряда может быть нарушен *. Не повторяя увлекательную, но сложную трактовку вопроса, резюмируем посвященные ему статьи.

* О возможном нарушении этого закона и экспериментальном поиске нарушения подробнее см: Зельдович Я. Б., Долгов А.Д. Вещество и антивещество во Вселенной // Природа. 1982. № 8. С. 33-45; Березинский В. С. Объединенные калибровочные теор ии и нестабильный протон // Природа. 1984. № 11. С. 24-38.

Электрический заряд обязан сохраняться постольку, поскольку справедливы уравнения Максвелла, не допускающие несохранения этого заряда. Иными словами, связь электрического заряда с электромагнитным полем автоматически приводит к сохранению электрического заряда.

Однако не существует поля, которое играло бы подобную роль в случае барионного заряда. Убежденность в сохранении барионного заряда основывалась только на эксперименте.

Каждый эксперимент по необходимости имеет ограниченную точность. Абсолютизируя результаты опыта, физики до 60-х годов молчаливо предполагали, что в мире элементарных частиц не должно быть слишком больших количественных различий.

Когда нейтрон распадается, превращаясь в протон (b -распад), среднее время распада около 1000 с. Казалось, что природа (с маленькой буквы, т. е. не тот уважаемый журнал, где будет помещена данная статья) должна выбирать между двумя крайностями: либо сравнительно быстрый распад, по аналогии с (b -распадом нейтрона, либо совсем никакого распада, как в случае абсолютно стабильного электрона. Третий - промежуточный - случай медленного распада до 60-х годов казался неэстетичным и крайне маловероятным.

Вкусы изменились, увеличилась храбрость теор етиков, выступающих в настоящее время под лозунгом: все, что не запрещено, существует, и в частности протон может распадаться.

Однако положение и сейчас остается драматическим: усилиями экспериментаторов нижняя граница времени жизни протона доведена до 10 32 лет, но распад все еще не обнаружен. Экспериментальная ситуация подробно описана В. С. Березинским *.

* См. предыдущую сноску.

В его статье не хватает только одного соображения: сегодня убежденность в несохранении барионного заряда основывается в значительной степени на том, что Вселенная содержит вещество и не содержит антивещества. При этом приходится привлекать еще различие свойств частиц и античастиц, а также нарушение термодинамического равновесия, возникающее вследствие расширения Вселенной. (Впервые это отмечено в работе А. Д. Сахарова в 1967 г. *).

* Сахаров А. Д. Нарушение СР-инвариантности, С-асимметрия и барионная асимметрия Вселенной // Письма в ЖЭТФ. 1967. Т. 5. С. 32-35. (Прим. ред. )

Из оценок в таких теор иях с несохранением барионного заряда получается, что число протонов и нейтронов в миллиард раз меньше числа фотонов или нейтрино. Главное же состоит в том, что сейчас ясно понято различие между электрическим и барионным зарядами. Кроме того, физическая общественность в целом (или, во всяком случае, физики-теор етики) избавились от страха перед большими числами. Если время жизни протона 10 40 лет (что, по-видимому, на очень многие годы останется недоступным для проверки в прямых экспериментах), то понадобится предположение о процессах в горячей Вселенной, идущих при температуре порядка 10 17 ГэВ (10 30 К), столь же недоступной для ускорителей *. Пока не видно, какие косвенные опыты могли бы дать ответ.

* Время жизни протона t р обратно пропорционально четвертой степени массы тяжелого бозона М x 4 в теор ии "Великого объединения". Поэтому если при М x ~ 10 15 ГэВ t р ~10 31-37 лет, то при М x ~ 10 17 ГэВ t р ~10 39-40 лет. (Прим. ред. )

Возникла ситуация, которую высоко ценят астрономы: именно астрономические данные указывают путь физикам, как это было со скоростью света и законом тяготения Ньютона. Существование Вселенной, заполненной веществом, является пока единственным, но очень веским доказательством несохранения барионного заряда!

СОХРАНЕНИЕ ЭНЕРГИ И

Обратимся к закону сохранения энерги и для Вселенной как целого. Напомним, что энерги я покоящейся частицы эквивалентна ее массе, Е = Мс 2 . Сохранение энерги и покоя - это есть и сохранение массы.

Немного истории: Дж. Дальтон и У. Праут обратили внимание на то, что многие атомные веса выражаются целыми числами. Отсюда, естественно, последовала гипотез а, что все ядра сложены из одинаковых единичных кирпичиков. Однако тот факт, что заряд ядра не пропорционален его весу, привел к выводу, что есть две модификации таких кирпичиков - протоны и нейтроны, отличающиеся зарядом при почти одинаковой массе. Здесь мы несколько отклонились от исторической последовательности, опустив мрачный период, когда ядра строили из протонов и электронов. Грубо говоря, электроны (в силу соотношения неопределенности) не влезают, не помещаются в ядре. Первые правильные идеи о существовании нейтронов высказывались в-виде гипотез ы еще в начале 20-х годов, научное доказательство существования нейтронов пришлось на 30-е годы, а в 1945 г. были Хиросима и Нагасаки. В очень кратком изложении мы опустили открытие изотопов и весьма точное определение атомных весов отдельных изотопов.

В итоге, с одной стороны, подтвердилась теор ия единообразного строения ядер из протонов и нейтронов, с другой стороны, первый аргумент в ее пользу - целые атомные веса изотопов - оказался неточным. Такова диалектика развития науки. Но теперь неточность целых весов изотопов приобрела другой, тоже глубокий смысл .

Из того факта, что вес одного атома гелия на 0,6 % меньше веса четырех атомов водорода, астрономы сделали вывод, что водород превращается в гелий в недрах звезд и при этом 0,6 % массы (0,006 с 2 = 5,4 10 18 эрг/г) превращается в энерги ю излучения звезд. Особенно стоит подчеркнуть, что вывод этот был сделан задолго до того, как развитие ядерной физики показало конкретные пути такого превращения".

Этот экскурс в ядерную физику нужен нам был для того, чтобы сказать, что и энерги я тяготения, выделяясь в том или ином виде, также приводит к уменьшению массы целого по сравнению с массой совокупности частей. Масса нейтронной звезды на 10-15 % меньше суммы масс составляющих ее частиц. Именно эта разность масс является источником энерги и взрыва сверхновой, который сопровождает образование нейтронной звезды, даже несмотря на то, что очень большую долю этой энерги и уносят нейтрино.

Наверное, не случайно В. Гейзенберг - один из крупнейших физиков нашего века - озаглавил свою автобиографию "Часть и Целое" (Der Teil und das Ganze). Появление новых свойств у целого при сложении частей - один из глубочайших вопросов науки,

Еще раньше в замечательной книге Л. Д. Ландау и Е. М. Лифшица "Теор ия поля" проводилось точное и строго формальное доказательство того, что масса (а значит, и энерги я) замкнутого мира тождественно равна нулю. Предыдущие рассуждения позволяют понять это утверждение наглядно. Отрицательная гравитационная энерги я взаимодействия частей точно компенсирует положительную энерги ю суммы всех частей, всего вещества. Общая теор ия относительности, связывающая тяготение и геометрию, доказывает, что точная компенсация происходит тогда и именно тогда, когда становится замкнутым пространство, в котором находится вещество.

Итак, общая теор ия относительности устраняет последнее препятствие на пути рождения Вселенной "из ничего". Энерги я "ничего" равна нулю. Но и энерги я замкнутой Вселенной равна нулю. Значит, закон сохранения энерги и не противоречит образованию "из ничего" замкнутой Вселенной (но именно геометрически замкнутой, а не открытой бесконечной Вселенной).

АСТРОФИЗИЧЕСКИЕ ВЫВОДЫ. НУЖНА ЛИ ПУЛЬСИРУЮЩАЯ ВСЕЛЕННАЯ?

Астрофизические следствия замкнутости Вселенной подробно рассмотрены в моей предыдущей статье в "Природе" *.

* Зельдович Я. Б. Современная космология // Природа. 1983. № 9. С. 11-24. (Прим. ред. )

Первое следствие состоит в том, что общая плотность всех видов материи должна быть достаточно велика; таким образом, появляется дополнительный аргумент в пользу каких-то форм "скрытой массы", поскольку плотность обычных хорошо известных форм массы (протонов, ядер, электронов, фотонов) недостаточна.

Второй вывод заключается в том, что наблюдаемое в настоящее время расширение Вселенной должно в будущем смениться сжатием - рано или поздно, притом, вероятно, скорее очень поздно, даже по сравнению с сегодняшним возрастом Вселенной *.

* Отметим, впрочем, вариант, указанный в моей статье в "Природе" (1984. № 2): возможно, космологическая постоянная не равна нулю и имеет такой знак, что заменяет часть массы. Тогда расширение продолжается неограниченно, мир не "замкнут" по оси времени (есть рождение, нет общего коллапса), несмотря на его пространственную замкнутость.

Зависимость радиуса замкнутой Вселенной а от времени] " теор ии циклической эволюции.
В точке А (радиус минимален) происходит переход от сжатия к расширению,
в точке В (радиус максимален) расширение сменяется сжатием.

Идея замкнутого мира, сперва расширяющегося, а потом сжимающегося, наталкивала многих ученых на гипотез у пульсирующей вечной Вселенной. Дело оставалось за малым - в переносном и буквальном смысл е слова: понятно, как происходит остановка и смена расширения сжатием при большом (максимальном) радиусе Вселенной, осталось понять, как происходит переход от сжатия к расширению при малом (минимальном) радиусе. Популярность идеи вечной (в прошлом!) Вселенной возросла, когда было осознано, что при учете поляризации вакуума кривизной пространства (сильным гравитационным полем) или за счет гравитационного поля, источником которого является скалярное поле с неравной нулю массой, действительно существуют формально правильные строгие решения * типа

с минимальным радиусом 1/Н 0 порядка 10 -28 см. Эти решения формально существуют и в классической теор ии. Какие аргументы можно выдвинуть против этих решений?

* Решения такого типа называются инфляционными. (Прим. ред. )

Зависимость радиуса Вселенной а от времени t в теор ии циклической эволюции при учете роста энтропии. Современное состояние Вселенной описывается точкой В, t 0 - необходимое "начало".
Лично мне наиболее существенным возражением представляется сама возможность рождения Вселенной "из ничего". Идея вечной Вселенной казалась неизбежной (можно было спорить только о способе, в частности классическом или квантовом, перехода от сжатия к расширению), до тех пор пока казалось, что энерги я и барионный заряд - вечные, сохраняющиеся и притом не равные нулю величины. От гипноза этих идей мы освободились. Если гипотез а вечной Вселенной не обязательна, то можно обратиться к деталям, касающимся теор ии циклической эволюции.

Еще в 30-е годы был выдвинут серьезный термодинамический аргумент против вечной циклически повторяющейся Вселенной. В ходе каждого цикла энтропия растет *. Это приводит к тому, что амплитуда каждого следующего цикла больше амплитуды предыдущего. Обращая этот аргумент в прошлое, можно сделать вывод, что конечно общее число циклов, начиная с первого цикла с нулевой энтропией. Но в таком случае цель не достигнута - циклически эволюционирующая Вселенная все равно оказывается существующей конечное время, т. е. нуждается в "начале".

* Существует точка зрения, согласно которой при смене расширения сжатием одновременно рост энтропии сменяется ее уменьшением. При этом еще упоминают мист ическое изменение направления "стрелы времени". Влияние общего медленного расширения или сжатия на конкретные процессы, происходящие с частицами или в звездах, представляется совершенно не физическим, никак не обоснованным.

В самое последнее время вместе с В. А. Белинским, Л. П. Грищуком и И. М. Халатниковым мы анализировали расширение и сжатие Вселенной, заполненной массивным когерентным скалярным полем *.

* Белинский В. А., Грищук Л. П., Халатников И. М., Зельдович Я. Б. // ЖЭТФ. 1985. Т. 89. С. 346-355. (Прим. ред. )

Аналогичные расчеты проводились и ранее, но, может быть, с менее четкими выводами. Не вдаваясь в подробности, привожу результаты. В зависимости от того, является ли скалярное поле j почти статичным (mj 2 >>hj " 2 ) или быстроменяющимся и почти безмассовым (mj 2 <j " 2 ), меняется соотношение между давлением и плотностью энерги и (здесь h = 10 -14 Дж с - постоянная Планка, штрих - производная j по времени). В первом случае р = -e , имеет место гравитационное отталкивание, во втором случае, когда давление максимально велико, р = +e - гравитационное притяжение.

В принципе, и при сжатии, и при расширении могут иметь место оба случая. Однако при сжатии устойчивым является второй режим, р = +e - давление поля сопротивляется сжатию. В таком случае классическое решение приводит в сингулярность, радиус Вселенной обращается в нуль, кривая сжатия утыкается в ось абсцисс. Решения с плавным переходом от сжатия к расширению оказываются исключительными, маловероятными. Но дело даже не в детальном исследовании кривых. Более важен анализ тех предположений, которые приходится делать в ходе решения задачи.

Сингулярное сжатие Вселенной при положительном давлении р = + e .
Закон сжатия одинаков для замкнутого, плоского и открытого мира: a ~ (t 0 -t) 1/3
(следует иметь в виду, что t <= t 0 ).

Мы рассматриваем строго однородное скалярное поле и строго однородную и изотропную Вселенную. Однородность означает одинаковость, эквивалентность всех пространственных точек в один и тот же фиксированный момент времени. Изотропия означает эквивалентность всех пространственных направлений.

В задаче о расширении эти предположения разумны: в ходе расширения быстрее всего расширяется область, в которой скалярное поле максимально. При этом классическое скалярное поле становится практически постоянным, а все другие поля (в частности, нарушающее изотропию электромагнитное поле) быстро убывают.

* Подробнее об инфляционной стадии и работах А. Д. Линде см., напр.: Новиков И. Д. Как взорвалась Вселенная // Природа, 1988. № 1. С. 82-91. (Прим. ред.)

Однако в ходе сжатия можно ожидать огромной неустойчивости, нарушения однородности и изотропии. Поэтому вариант прохождения Вселенной некоего минимального радиуса становится еще менее вероятным при учете возмущений. По существу аргумент этот близок к соображениям о возрастании энтропии. Итак, если это и не теор ема, то все же мы имеем достаточно побудительных причин для размышлени й о спонтанном рождении Вселенной, устраняющем идею циклической Вселенной.

О СПОНТАННОМ РОЖДЕНИИ

Знаменитый до революции юморист А. Аверченко начинал свою "Всемирную историю" словами: "История мидян темна и непонятна. Ученые делят ее, тем не менее, на три периода: первый, о котором ровно ничего не известно. Второй, который последовал за первым. И, наконец, третий период, о котором известно столько же, сколько и о первых двух".

Боюсь, что последняя часть моей статьи о ранней истории Вселенной будет похожа на древнюю историю человечества в изложении А. Аверченко. До сих пор мы выясняли только принципиальную возможность рождения Вселенной. Что можно сказать о конкретном механизме этого явления? Придется ограничиться постановкой вопросов.

Прежде всего, словом "ничего", "из ничего" можно придавать разные трактовки. Можно представить себе пустое плоское пространство Минковского - само по себе такое решение уравнений ОТО существует и оно вечное. Рождение можно было бы представить себе наподобие серии картинок (см. рис).

Рождение замкнутой Вселенной (шарик на последней части IV рис.)
из плоского мира Минковского (М на стадии I).
На промежуточных стадиях, вдали от флуктуации,
приводящей к рождению (отщеплению) шарика, метрика остается плоской ("минковской").

Надо только помнить, что в них речь идет об одномерной аналогии. Изображать рождение трехмерного замкнутого пространства (из трехмерного сечения) пространства Минковского я не умею. Время t есть параметр, отличающий одну часть картинки (I-IV) от другой. После отделения замкнутой области остающееся пространство снова плоское. Но ведь оно плоское только в классическом пределе. В действительности в квантовой теор ии метрика пространства тоже флуктуирует подобно тому, как осциллятор имеет определенную среднюю кинетическую и такую же потенциал ьную энерги ю, не равную нулю в нижнем энергетическом состоянии.

Таким образом, на приведенном рисунке речь идет о флуктуации - но о флуктуации настолько большой, что меняется сама топология, пространство раздваивается. Рассчитывать такие флуктуации сегодня мы не умеем. Напомню, что сами свойства вакуума (его среднюю энерги ю, т. е. космологическую постоянную) мы находим только из опыта.

Второй популярный вариант состоит в рассмотрении только одного замкнутого мира (без подстилающего или рождающего его пространства Минковского). Тогда до "начала" не было буквально ничего, никакой метрики, в частности не было и времени.

Спонтанное рождение мира "из ничего". До момента t = 0 метрика (и, в частности, время) не существовала.

Классические уравнения движения не имеют решения нужного типа. Значит, следует искать квантовомеханические решения. Задача подобна задаче об a -распаде ядра урана или радия. По классической ньютоновской механике a -частица не может пройти весь путь от ядра до бесконечности. Квантовомеханическое решение для a -частицы описывает обе области: "подбарьерную", в которой кинетическая энерги я отрицательна (т. е. классическое движение невозможно), и далекую область, в которой существуют оба решения - и классическое, и квантовомеханическое, и они мало отличаются друг от друга.

Подобно теор ии a -распада строится и квантовомеханическая теор ия рождения Вселенной. Естественно, задачу сейчас решают лишь в самом грубом приближении, рассматривая всего две величины - радиус замкнутой Вселенной а(t) и скалярное поле j. В квантовой теор ии вводятся соответствующие импульсы Р a и Р j ; строится волновая функция Y (а, j ). Импульс Р a = М eff = f(a)a" пропорционален скорости расширения, и в классическом пределе можно найти а" = d a/d t, а значит, и время

Заметим также, что квантовая теор ия даже в сегодняшнем неразвитом ее состоянии дает аргумент в пользу замкнутой Вселенной (в отличие от бесконечной плоской или открытой Вселенной). Только для замкнутой Вселенной можно определить некое небесконечное значение эффективной массы М eff . Какой бы формулировкой квантовой механики мы ни пользовались (волновая функция, или "интегрирование по путям", или любой иной), вероятность спонтанного рождения бесконечной Вселенной тождественно равна нулю *.

* А. А. Старобинский и я рассматривали плоскую Вселенную, конечную, как тор, за счет отождествления противоположных стенок куба. Однако при этом теряется точная изотропия пространства: направления по диагоналям куба не эквивалентны направлениям, перпендикулярным сторонам или ребром. Однако формального опровержения такой гипотез ы еще нет.

В целом, однако, интерпретация полученных результатов остается не вполне ясной. Квантовомеханические формулы указывают на возможность рождения Вселенной. Представляют интерес результаты в части сравнения вероятности рождения Вселенной с тем или иным начальным значением скалярного поля (р. По-видимому, более вероятны большие значения (р, обеспечивающие достаточно большую инфляцию"^ на классической фазе. Однако нет интерпретации абсолютного значения волновой функции и вероятности. Есть и более глубокие основания для скепсиса по отношению к конкретным теор иям рождения Вселенной "из ничего".

Дело в том, что развитие фундаментальной физики еще явно не закончено! Более того, именно сейчас оживают все более геометризованные теор ии элементарных частиц. С одной стороны, это. теор ии, объединяющие бозоны и фермионы, объединяющие внутренние переменные частиц и полей с координатами и преобразованиями Лоренца. В перспективе эти теор ии должны дать и прямое доказательство существования скалярных полей, а также определить их свойства. Рано или поздно возникнет и теор ия масс частиц, и физики скажут нам, что такое скрытая масса, которую открыли астрономы. Еще более близкое отношение к вопросу о рождении Вселенной имеют гипотез ы о пространстве-времени высокой размерности. Еще в конце 20-х годов была сформулирована идея, согласно которой есть одна "лишняя" координата Х 4 , свернутая в кольцо длиной l=2p R, где R - радиус кольца *. Схематически ситуация изображена на рисунке. Три пространственных координаты X 1 , Х 2 , Х 3 заменены одной Х вдоль трубки.

* Такое замыкание, ограничивающее интервал изменения координаты Х 4 малой величиной I (Х 4 + I = Х 4 ), математики называют компактификацией. Мы назовем эту координату Х 4 , имея в виду, что время обычно обозначают Х 0 , а пространственные координаты - X 1 , Х 2 , Х 3 ), В итоге пространство - время оказывается пятимерным. Такую теор ию предложили физики Т. Калуца и О. Клейн еще в 20-х годах.

В квантовой теор ии движение вдоль Х 4 или локализация частицы пр координате Х 4 требуют гигантских энерги и. Поэтому во всех опытах вплоть до самых больших энерги й, 10 17 или даже 10 19 ГэВ (сравните с 10 3 ГэВ на ускорителях 80-х годов), нет движения по особой координате Х 4 (или от Х 4 до Х 9 ). Теор етики говорят, что в низкоэнергетическом пределе пространство-время остается эффективно четырехмерным. Если к тому же ограничиваться размерами, малыми по сравнению с астрономическими, то пространство и время описываются старой доброй метрикой Минковского.

Схематичное изображение пространства Капуцы- Клейна. Показано сечение одного заданного значения времени X 0 =const, три пространственные координаты X 1 , Х 2 , Х 3 заменены одной - X. В итоге получилась двумерная поверхность трубки с координатами X, X 4 на поверхности.
И тем не менее, введение в рассмотрение дополнительных измерений - Х 4 в простейшем примере - не проходит бесследно. Можно рассмотреть малые изменения метрики, при которых координатная ось дополнительного измерения Х 4 предполагается не перпендикулярной координатной сетке основных (макроскопических) измерений. Оказывается, что эффективно такое предположение эквивалентно появлению электромагнитного поля в обычном пространстве.

Увеличение числа компактифицированных ("свернутых") переменных с 1 до 6 или 7 (переход к 10-мерному исходному пространству-времени) дает возможность ввести не только электромагнитное поле, но и те поля (W ± , Z°), которые описывают слабое взаимодействие, и поля (глюонные), которые описывают сильное взаимодействие. К тому же, теор ия суперсимметрии, объединяющая бозонные поля (такие, в частности, как электромагнитное) и фермионные поля (такие, как электрон-позитронное), тоже "геометрична", она вводит новые - удивительные, но геометрические переменные. Мечта А. Эйнштейна о геометризации всей физики сегодня представляется гораздо более реальной, чем это казалось всего 5 или 10 лет назад.

Но почему я пишу обо всем этом в космологической статье?

Первая (не самая главная) причина состоит в том, что мы, наконец, присутствуем при рождении теор ий, для которых скалярные поля являются необходимым следствием. О значении скалярных полей уже говорилось - без них не было бы инфляционной Вселенной. Поляризация вакуума как источник энерги и и отрицательного давления для инфляции (раздувания) Вселенной, есть тоже разновидность скалярного поля.

Однако более существен и более специфичен второй аспект влияния теор ий с "лишними" измерениями на космологию. В момент рождения в замкнутом мире пространственные переменные X 1 , Х 2 , Х 3 меняются в очень узких пределах порядка 0 < 2p а(t), где а(t) стремтся к 0 при t, стремящемся к 0. Естественно предположить в таком случае, что в действительности Вселенная рождается симметричной по всем пространственным переменным (размерность Д = 5 или выше). Разделение геометрических переменных на "внутренние", т. е. компактифицированные, Д = 4 переменные и на обычные геометрические три переменные и время происходит лишь позже. Это разделение представляет собой типичное спонтанное (самопроизвольн ое) нарушение симметрии! Первоначально мы имеем, например, 9-мерный "шар", все направления в котором эквивалентны, а позже 6 измерений застывают с а 4 -а 9 (их характерные размеры порядка 10 -33 см) *, а три измерения растут экспоненциально и, в конце концов, становятся больше 5000 Мпк = 10 28 см, т. е. больше всей наблюдаемой области Вселенной. Намерения у нас остались те же, что и раньше,- описать рождение Вселенной "из ничего". Однако конкретная реализация этого намерения становится совсем другой по сравнению с первыми вариантами.

* Размер 10 - 33 см соответствует энерги и 10 19 ГэВ, при которой квантовые свойства гравитации становятся существенными. (Прим. ред.) *


Рождение симметричного мира с координатами X 4 и X 1 , Х 2 , Х 3 при "замораживании" X 4 (в момент t 2 ). Этот рисунок создает у читателя неправильное впечатление о неоднородности пространства (большая кривизна на концах эллипса). Однако нужно помнить, что в многомерной геометрии существуют пространства (так называемые решения Бланки), однородные, но с разной кривизной по разным направлениям. К сожалению, я не умею изображать их на плоскости рисунка.
Итак, дальнейшее продвижение космологии требует коренного развития физики микромира. Не только "Великое объединение" разных взаимодействий, но и предстоящее "Самое великое объединение" микромира и космологии - такова наиболее фундаментальная и амбициозная программа конца XX века.

ПОСЛЕСЛОВИЕ

2 декабря 1987 г. скоропостижно скончался выдающийся советский физик академик Я.Б. Зельдович. Его 56-летняя необыкновенно плодотворная научная деятельность охватывает такие разнородные области, как химическая физика, теор ия элементарных частиц, работы по реактивному, ядерному и термоядерному оружию и - в последние 25 лет - по астрофизике и космологии. Очень велики заслуги Зельдовича как учителя молодых ученых, автора монографий, популярных статей и обзоров.

Об одном из них * особенно уместно здесь вспомнить, так как его тема недавно обсуждалась на страницах журнала **. Речь идет о так называемой "релятиви стской теор ии гравитации" (РТГ), авторы которой пытаются противопоставить ее общей теор ии относительности Эйнштейна (ОТО). Зельдович и Грищук убедительно показали, что фактически речь идет об эквивалентной формулировке уравнений теор ии Эйнштейна, а не о новой теор ии. В РТГ вводится, наряду с искривленным пространством Римана, вспомогательное плоское пространство. Однако неправомерно интерпретировать величины, определенные в терминах этого пространства, в качестве наблюдаемых. Неправильно утверждение авторов РТГ о неоднозначности выводов ОТО. Необоснован и отказ от рассмотрения иных, чем у мира Минковского, топологических структур пространства-времени, в частности от рассмотрения космологической модели замкнутой Вселенной. Именно эта модель представляется наиболее правдоподобной. Она обсуждается в данной статье Зельдовича.

* Зельдович Я. Б., Грищук Л. П. Тяготение, ОТО и альтернативные теор ии // Усп. физ. наук. 1986. Т. 149. Вып. 4. С. 695- 707.

** Логунов А. А. Релятиви стская теор ия гравитации // Природа. 1987. № 1. С. 36-47.

Работы Зельдовича в значительной степени способствовали возникновению нового научного направления, лежащего на стыке теор ии элементарных частиц, астрофизики и космологии. Вся Вселенная при этом выступает в качестве гигантской лаборатории (или полигона) для проверки следствий современных теор ий и гипотез о природе элементарных частиц и пространства, в том числе в той области энерги й и масштабов, которые пока недоступны ускорителям.

Зельдович ставит задачу построения полной космологической теор ии ранней Вселенной, описывающей самую первую, "квантово-гравитационную" стадию расширяющейся Вселенной и отвечающей на вопрос - как возникли качественные и количественные особенности строения Вселенной, проявляющиеся на более поздней стадии, почему Вселенная именно такова, какой мы ее наблюдаем. Полная космологическая теор ия глубочайшим образом связана с построением единой теор ии всех существующих взаимодействий элементарных частиц, т. е. электромагнитных, слабых, сильных и гравитационных взаимодействий; как предполагается, такая теор ия должна включать глубокий пересмотр представлений о структуре пространства на так называемом квантово-гравитационном масштабе (это масштаб порядка 10 -33 см в пространстве и порядка 10 -44 с для возраста Вселенной), для которого необходимо рассматривать квантово-гравитационные эффекты. Пока мы лишь приближаемся к пониманию всех этих самых фундаментальных вопросов о Природе. Есть много идей, много надежд, проделана и делается колоссальная работа, но, вероятно, еще гораздо больший путь впереди, может быть, бесконечный...

Последняя статья Зельдовича, написанная, как всегда, очень живо, ясно и доходчиво, вводит читателя в эту волнующую, головокружительную проблематику.

Аргументация Зельдовича в статье сильна и убедительна. Все же само состояние нашего знания сегодня таково, что некоторые утверждения являются гипотетическими, и не исключено, что в действительности все обстоит иначе. Зельдович неоднократно повторяет это. Позволю себе со своей стороны добавить еще несколько замечаний в том же направлении.

В статье излагаются представления, согласно которым наблюдаемая барионная асимметрия Вселенной (и "скрытая" лептонная асимметрия) возникли на ранней (неравновесной) стадии расширения Вселенной вследствие различия свойств частиц и античастиц и отсутствия в природе точного закона сохранения числа барионов и лептонов. При этом как бы подразумевается, что барионная асимметрия имеет одинаковый знак не только в наблюдаемой нами области Вселенной, а вообще во всей Вселенной. Но на самом деле кажется наиболее правдоподобным, что различие свойств частиц и античастиц само носит вторичный характер и возникает из-за неустойчивости в системе взаимодействующих квантовых полей на ранней стадии эволюции (расширения) Вселенной. Поэтому в разных областях Вселенной, пространственно удаленных друг от друга и, вероятно, очень больших (миллиарды световых лет), различие свойств частиц и античастиц и, соответственно, барионная асимметрия могут иметь разный знак. Предполагается, что в наблюдаемой нами части Вселенной есть только вещество, но где-то "много дальше" лежат антибарионные области (состоящие из антивещества, в частности из антипротонов, антинейтронов и позитронов). В замкнутой Вселенной суммарные объемы барионных и антибарионных областей, вообще говоря, различны, и даже не исключено, что вся Вселенная состоит из одной барионной области. Подчеркнем, что вся эта картина совершенно отлична от предполагавшейся ранее некоторыми авторами в рамках модели с сохранением барионного заряда и пространственным разделением барионов и антибарионов при помощи каких-то неизвестных гипотетических процессов.

Другое замечание относится к гипотез е пульсирующей Вселенной. Безусловно правильно, что в ходе сжатия Вселенной можно ожидать огромной неустойчивости, нарушения однородности и изотропии. Но это само по себе не исключает возможности в будущем бесконечного числа пульсаций (циклов расширения и сжатия Вселенной). При этом не исключено также, что существуют "выравнивающие" механизмы (типа вязкости), и хотя бы в некоторых пульсациях Вселенная будет качественно похожей на. нашу ("не исключено" означает, что мы не можем на теперешнем уровне знаний ни опровергнуть, ни обосновать эти возможности).

Я писал о пульсациях в будущем. Но можно ли представить себе такую модель Вселенной, которая приводит к бесконечной последовательности пульсаций, продолжаемой и в будущее, и в прошлое! Повидимому, существует по крайней мере один вариант. Рассмотрим пространственно-плоскую бесконечную Вселенную. Предположим, что в уравнениях общей теор ии относительности присутствует член с так называемой космологической постоянной. Еще Эйнштейн постул ировал в одной из работ наличие такого члена с положительной космологической постоянной. Мы предполагаем, что космологическая постоянная отрицательна, что эквивалентно "самопритяжению" вакуума и приводит к периодическим пульсациям Вселенной. При этом, так как объем Вселенной, радиус ее кривизны и энтропия бесконечны, происходящий, согласно второму началу термодинамики, рост энтропии не обусловливает каких-либо качественных различий между пульсациями.

Наиболее интересна рассматриваемая в статье Зельдовича модель замкнутой Вселенной. В этом случае энтропия конечна и закон ее возрастания, по-видимому, исключает возможность экстрапол ировать историю Вселенной в бесконечное прошлое. Однако и тут существует "лазейка". Можно предположить, что числовая ось времени представляет собой бесконечную в обе стороны прямую, при этом в одной ее точке энтропия Вселенной равна нулю. Для определенности предположим, что в этот момент Вселенная существует в виде очень маленького замкнутого объема, например трехмерной сферы (представляющей собой трехмерное обобщение известной всем с детства двумерной сферы). Нулевую энтропию имеет, по определению, вакуум.

В современных теор иях поля (об этом пишет Зельдович в своей статье) вакуум может существовать в нескольких состояниях: с равной нулю плотностью энерги и - это "обычный" вакуум, а также с положительной плотностью энерги и и отрицательным давлением - это "ложный" вакуум, обладающий свойством "самоотталкивания". "Ложный" вакуум неустойчив и за некоторое время переходит в "обычный" с образованием различных частиц и полей и соответствующим увеличением энтропии. Пока "ложный" вакуум существует, Вселенная расширяется по экспоненциальному закону, а точнее, в окрестности нулевой точки - по закону гиперболического косинуса. Вся картина качественно симметрична относительно нулевой точки.

Особенно существенно, что энтропия автоматически возрастает при удалении от особой точки в обе стороны. Ведь энтропия, по самому своему определению, положительная величина! Таким образом, мы имеем как бы две невзаимодействующие Вселенные, существующие независимо друг от друга, с обратным ходом времени в одной Вселенной по отношению к другой. В 1967 г. я описал подобную ситуацию, употребив термин "поворот стрелы времени" *. Предполагать "рождение" Вселенной в такой модели, вероятно, нет необходимости, но оно не исключено.

* Сахаров А. Д. // Письма в ЖЭТФ. 1967. Т. 5. С. 32-35.

Все это я пишу не для того, чтобы бросить тень на идею квантового рождения Вселенной в особой точке времени, а чтобы указать на большую неопределенность в нашем понимании ситуации. Эта неопределенность носит глубоко принципиальный даже философский характер. Философски острым является, в частности, вопрос о так называемом антропном принципе, объясняющем особенности нашей Вселенной тем, что только в такой Вселенной могла возникнуть разумная жизнь, в отличие от бесконечного числа других, спонтанно возникающих "мертвых" Вселенных.

В статье Зельдовича показано, что, по крайней мере, нет препятствий к квантовому рождению Вселенной со стороны основных физических законов сохранения. Вселенная при этом должна быть замкнутой (иметь конечный объем).

Академик А. Д. Сахаров

Тайны пространства и времени Комаров Виктор

Вселенная из… «ничего»

Вселенная из… «ничего»

Идея, согласно которой «из ничего не родится ничто», возникла еще в V веке до н. э. в эпоху Парменидов. И оказалась одной из самых устойчивых идей, которая прошла через столетия и сохранялась в естествознании в неизменном виде почти до самого последнего времени! Еще всего какие-нибудь десять лет назад гипотезу о самопроизвольном возникновении в результате чисто физических процессов вещества и энергии из «ничего» большинство естествоиспытателей считало неприемлемой…

В невозможности возникновения «чего-либо» из «ничего» как будто убеждает нас и повседневный житейский опыт.

Мы привыкли к тому, что одни предметы или объекты всегда образуются из других предметов или объектов. И что из этого правила не существует исключений.

С другой стороны, известный современный английский астрофизик П. Девис утверждает, что возникновение «чего-то» из «ничего» не только в принципе возможно, но и реально происходит! Из чего, например, – ставит он вопрос, – возникают мысли, а также идеи? Мысли, без сомнения, существуют реально, рассуждает Девис, а для их возникновения требуется непосредственное участие головного мозга. Однако мозг обеспечивает лишь реализацию мыслей, но не является их причиной. Сам по себе мозг порождает мысли не в большей степени, чем компьютер – вычисления. Мысли могут быть вызваны (порождены) другими мыслями, а также ощущениями или сведениями, то есть информацией, хранящейся в памяти или поступающей извне. Однако эти соображения не раскрывают природу самих мыслей.

Многие творческие люди говорят, что их произведения – результат неожиданного вдохновения. Таким образом, рождение картины, или стихотворения, или музыкального произведения фактически является примером рождения «чего-то» из «ничего». В пользу подобной точки зрения свидетельствуют высказывания ряда известных современных поэтов, писателей и композиторов. Так Андрей Вознесенский утверждает: «Чувствуешь эту связь, словно кто-то диктует тебе». Об этом же говорил и Владимир Солоухин: «Писал стихи – так мне всегда казалось, что под чью-то диктовку». Аналогичные мысли высказывал и выдающийся композитор А. Шнитке: «Музыка мною не пишется, а улавливается… Вроде как я имею дело не со своей работой, а переписываю чужую»…

В принципе можно. Подобной точки зрения придерживаются такие известные современные физики и астрофизики как Алан Гут из Массачусетского технологического института (МТИ) в США, Сидней Коулмен из Гарвардского университета, Алекс Виленкин из университета Тафта. Они считают, что «ничто» – неустойчиво и Вселенная спонтанно «распустилась из «ничего».

Классическая физика рассматривала Вселенную как гигантский часовой механизм. Новая квантовая физика раз рушила эту лапласовскую схему. На атомном уровне материя и ее движение неопределенны и непредсказуемы. Разумеется, и атомный мир не свободен полностью от причинности, но она проявляется здесь неоднозначным образом. Главная особенность «квантового поведения», которая лежит в основе материи, – утрата строгих причинно-следственных связей.

Применима ли, однако, квантовая физика ко Вселенной? И если применима, то в каких пределах? Во всяком случае, ранняя Вселенная была ограничена весьма малыми размерами! Имеющиеся в распоряжении, современной физики и астрофизики данные говорят, что квантовые законы с момента начала расширения – в так называемую эру Планка – до 10 -43 с. играли определенную роль. И действие этих законов следует принимать во внимание вплоть до 10 -32 с. с момента начала инфляции.

Как считают некоторые теоретики, именно между этими двумя «эпохами» существовал момент времени, когда возникла наша Вселенная. По словам С. Ноуммена, именно в этот момент и совершился «квантовый скачок» из «ничего» во «время». Современное «пространство-время» есть не что иное, как реликт той эпохи.

Но откуда взялась энергия, необходимая для инфляционного расширения? Ведь существует закон сохранения энергии, а энергия начальной Вселенной была равна нулю. Но дело в том, что закон сохранения энергии в его обычной форме к инфляционной Вселенной неприменим. Сам процесс инфляционного расширения формирует возрастание энергии вакуума. И лишь квантовый распад ложного вакуума положил предел этому процессу.

Существует притча о мальчике, вытянувшем себя из болота за шнурки собственных ботинок. Самосоздающаяся Вселенная очень напоминает этого мальчика – она вытянула себя за «собственные шнурки». Этот процесс получил название «бутстрэпа». Благодаря своей природе Вселенная возбудила в себе всю энергию, которая была необходима для «создания» и «оживления» материи, а также инициировала породивший ее взрыв. Этому космическому «бутстрэпу» мы и обязаны своим существованием.

Однако остается самый главный вопрос: что существовало и что происходило до инфляции? Иными словами, каким образом пространство и ложный вакуум могли возникнуть «из ничего»? По существу, идея космического «бутстрэпа» близка к теологической концепции сотворения мира из ничего сверхъестественной силой.

Возможно, предшествовавшее инфляции состояние ложного вакуума оказалось предпочтительнее благодаря характерным для него экстремальным условиям. Но Вселенная так или иначе реально возникла, и квантовая физика представляет собой единственную область современной науки, которая позволяет рассматривать события, происходящие без видимых причин.

А откуда взялось само пустое пространство? Если, согласно квантовой теории, «из ничего» могут рождаться частицы, то не может ли аналогичным образом рождаться «из ничего» и пространство? В частности, расширение современной Вселенной есть не что иное, как разбухание пространства. С каждым днем наша Вселенная увеличивается на 10 18 кубических световых лет.

Согласно новой космологии, начальное состояние космоса вообще не играло никакой роли, так как вся информация о нем полностью «стерлась» в ходе инфляции. Наблюдаемая нами Вселенная несет на себе лишь отпечатки тех физических процессов, которые происходили с момента ее начала. Тысячелетиями люди считали, что «из ничего не родится ничто». Сегодня же можно утверждать, что «из ничего произошло все»!

Если бы мы жили в воображаемом мире, в котором те или иные объекты время от времени возникают «ниоткуда», то, видимо, идею возникновения «из ничего» и самой Вселенной мы воспринимали бы как нечто вполне возможное. Но, между прочим, подобный воображаемый мир не так уж сильно отличается от нашего реального мира. Если бы мы обладали способностью воспринимать поведение атомов и других микрообъектов не с помощью специальных приборов, а непосредственно с помощью собственных органов чувств, нам бы довольно часто приходилось наблюдать объекты, которые появляются или исчезают без видимых причин.

Так, например, в очень сильных электрических полях при критическом значении напряженности начинают, как мы уже отмечали, «из ничего» возникать электроны и позитроны. Значение напряженности, близкое к критическому, существует возле ядра атома урана, состоящего из 92 протонов. А если бы существовал химический элемент, в ядре атома которого содержалось 200 протонов, то вблизи такого ядра происходило бы спонтанное рождение электронов и позитронов. Это особый вид радиоактивности, когда распад испытывает пустое пространство – физический вакуум.

Аналогичные процессы происходят вблизи поверхности черных дыр, где гравитация столь сильна, что пространство вокруг буквально кишит непрерывно рождающимися частицами. Это явление, получившее название «излучения черных дыр», было теоретически открыто Стивеном Хокингом.

Таким образом, современная наука рисует картину однородной, самосогласованной и «простой» в больших масштабах Вселенной. Именно эти обстоятельства позволяют говорить о Вселенной, как о едином целом. Природа этих свойств долгое время оставалась загадочной. Но теперь мы знаем, что «инструкции» для создания такого Космоса заключались в законах природы.

Из книги Знаки на пути от Нисаргадатты Махараджа автора Балсекар Рамеш Садашива

Из книги Комментарии к "Тайной Доктрине" автора Блаватская Елена Петровна

Шлока (6) СЕМЬ ПРЕВЫШНИХ ВЛАДЫК И СЕМЬ ИСТИН ПЕРЕСТА. ЛИ СУЩЕСТВОВАТЬ, И ВСЕЛЕННАЯ - НЕОБХОДИМОСТИ СЫН - БЫЛА ПОГРУЖЕНА В ПАРАНИШПАННА (АБСОЛЮТНОЕ СОВЕРШЕНСТВО, ПАРАНИРВАНА ИЛИ ИОНГ.ДУП), ЧТОБЫ БЫТЬ ВЫДОХНУТОЙ ТЕМ, КТО ЕСТЬ И В ТО ЖЕ ВРЕМЯ КОГО НЕТ. НЕ БЫЛО НИЧЕГО Шлока (7)

Из книги Тайны пространства и времени автора Комаров Виктор

Нестационарная Вселенная Было время, когда казалось, что космические объекты, составляющие население нашей Вселенной, почти не изменяются с течением времени, постепенно переходя от одного стационарного состояния к другому стационарному состоянию. Однако с появлением

Из книги Человек против мифов автора Берроуз Данэм

Фрактальная Вселенная До начала 80-х годов XX столетия в астрофизике господствовало представление о расширяющейся однородной и изотропной Вселенной, то есть о такой Вселенной, основные свойства которой приблизительно одинаковы для достаточно больших областей

Из книги Христианство и философия автора Карпунин Валерий Андреевич

Изотропна ли Вселенная? Поскольку пространство и время являются формами существования материи, то их свойства во многом зависят от того, каким образом распределены в них различные материальные объекты. До сравнительно недавнего времени одним из основных положений

Из книги Если ты не осёл, или Как узнать суфия. Суфийские анекдоты автора Константинов С. В.

Из книги Далекое будущее Вселенной [Эсхатология в космической перспективе] автора Эллис Джордж

Бог сотворил мир «из ничего» Библия говорит нам о сотворении Богом мира «из ничего» такими величественными словами: «В начале сотворил Бог небо и землю. Земля же была безвидна и пуста, и тьма над бездною; и дух Божий носился над водою. И сказал Бог: да будет свет. И стал свет.

Из книги Невеста Агнца автора Булгаков Сергей Николаевич

Ничего! К одному дервишу пришли люди и попросили его рассудить спор дровосека и носильщика. Носильщик, крепкий высокий детина, зарабатывал себе на жизнь, перенося для людей тяжести, куда скажут. Увидел он, что дровосек утомился нести вязанку дров, и предложил:- Хочешь,

Из книги Начала и концы автора Шестов Лев Исаакович

6.1. Биофилическая вселенная? Если когда?нибудь нам удастся установить контакт с разумными инопланетянами - как мы преодолеем «культурную пропасть»? Одним из вариантов общей культуры для нас могла бы стать физика и космология. Иная разумная жизнь будет, как и мы, состоять

Из книги Разум и природа автора Бейтсон Грегори

е) «Творение из ничего». Мы видели, какую трудность представляло, - хотя и в разном смысле, но в равной мере, - координировать Божественное и тварное бытие, Бога и мир, для античной философии, патристики и схоластки. Трудность эта заключалась в том, что надо было

Из книги 50 великих книг о мудрости, или Полезные знания для тех, кто экономит время автора Жалевич Андрей

Творчество из ничего (А. П. Чехов) Resigne-toi, mon coeur, dors ton sommeil de brute. Ch.

Из книги Осмысление процессов автора Тевосян Михаил

8. «ИЗ НИЧЕГО НИЧТО НЕ ВОЗНИКНЕТ» Эта цитата из Короля Лира [Цитируется по переводу Бориса Пастернака. - Прим. перев.] в одной фразе обобщает ряд глубоких идей, средневековых и более новых. Среди них:а. Закон сохранения вещества и обратный ему. По этому закону, нельзя

Из книги Еврейская мудрость [Этические, духовные и исторические уроки по трудам великих мудрецов] автора Телушкин Джозеф

2. «Нет ничего нового под луной» Люблю всё старое: старых друзей, старые времена, старые обычаи, старые книги, старые вина. Оливер Голдсмит Креатив, инновации – эти слова стали настоящими лозунгами нашей эпохи. Современные люди ищут новые идеи и решения, но мудрецы

Из книги Квантовый ум [Грань между физикой и психологией] автора Минделл Арнольд

Глава 9 Пространство и время. Вселенная 1 и вселенная 2. Источник жизни 1 и источник жизни 2. Творец. Защитные механизмы вселенной Человек – мера всех вещей Протагор Данную главу нам необходимо начать со слов американского физика австрийского происхождения Фритьофа

Из книги автора

62. «Врач, который ничего не берет, ничего не стоит» Если ссорятся люди, и один человек ударит другого, камнем или кулаком, и тот не умрет, а сляжет в постель, то… ударивший пусть заплатит… и вылечит его. Шмот 21:18-19 (Талмуд комментирует этот отрывок): Отсюда мы знаем, что

Из книги автора

34. Творение из ничего Я надеюсь, что в течение нескольких следующих десятилетий произойдет огромное изменение в нашем мировоззрении, как в материальном, так и в духовном плане. Четырнадцатый Далай

Вопрос о происхождении Вселенной со всеми ее известными и пока неведомыми свойствами испокон веков волнует человека. Но только в XX веке, после обнаружения космологического расширения, вопрос об эволюции Вселенной стал понемногу проясняться. Последние научные данные позволили сделать вывод, что наша Вселенная родилась 15 миллиардов лет назад в результате Большого взрыва. Но что именно взорвалось в тот момент и что, собственно, существовало до Большого взрыва, по-прежнему оставалось загадкой. Созданная в конце XX века инфляционная теория появления нашего мира позволила существенно продвинуться в разрешении этих вопросов, и общая картина первых мгновений Вселенной сегодня уже неплохо прорисована, хотя многие проблемы еще ждут своего часа.

Научный взгляд на сотворение мира

До начала прошлого века было всего два взгляда на происхождение нашей Вселенной. Ученые полагали, что она вечна и неизменна, а богословы говорили, что Мир сотворен и у него будет конец. Двадцатый век, разрушив очень многое из того, что было создано в предыдущие тысячелетия, сумел дать свои ответы на большинство вопросов, занимавших умы ученых прошлого. И быть может, одним из величайших достижений ушедшего века является прояснение вопроса о том, как возникла Вселенная, в которой мы живем, и какие существуют гипотезы по поводу ее будущего.

Простой астрономический факт — расширение нашей Вселенной — привел к полному пересмотру всех космогонических концепций и разработке новой физики — физики возникающих и исчезающих миров. Всего 70 лет назад Эдвин Хаббл обнаружил, что свет от более далеких галактик «краснее» света от более близких. Причем скорость разбегания оказалась пропорциональна расстоянию от Земли (закон расширения Хаббла). Обнаружить это удалось благодаря эффекту Доплера (зависимости длины волны света от скорости источника света). Поскольку более далекие галактики кажутся более «красными», то предположили, что и удаляются они с большей скоростью. Кстати, разбегаются не звезды и даже не отдельные галактики, а скопления галактик. Ближайшие от нас звезды и галактики связаны друг с другом гравитационными силами и образуют устойчивые структуры. Причем в каком направлении ни посмотри, скопления галактик разбегаются от Земли с одинаковой скоростью, и может показаться, что наша Галактика является центром Вселенной, однако это не так. Где бы ни находился наблюдатель, он будет везде видеть все ту же картину — все галактики разбегаются от него.

Но такой разлет вещества обязан иметь начало. Значит, все галактики должны были родиться в одной точке. Расчеты показывают, что произошло это примерно 15 млрд. лет назад. В момент такого взрыва температура была очень большой, и должно было появиться очень много квантов света. Конечно, со временем все остывает, а кванты разлетаются по возникающему пространству, но отзвуки Большого взрыва должны были сохраниться до наших дней.

Первое подтверждение факта взрыва пришло в 1964 году, когда американские радиоастрономы Р. Вильсон и А. Пензиас обнаружили реликтовое электромагнитное излучение с температурой около 3° по шкале Кельвина (–270°С). Именно это открытие, неожиданное для ученых, убедило их в том, что Большой взрыв действительно имел место и поначалу Вселенная была очень горячей.

Теория Большого взрыва позволила объяснить множество проблем, стоявших перед космологией. Но, к сожалению, а может, и к счастью, она же поставила и ряд новых вопросов. В частности: Что было до Большого взрыва? Почему наше пространство имеет нулевую кривизну и верна геометрия Евклида, которую изучают в школе? Если теория Большого взрыва справедлива, то отчего нынешние размеры нашей Вселенной гораздо больше предсказываемого теорией 1 сантиметра? Почему Вселенная на удивление однородна, в то время как при любом взрыве вещество разлетается в разные стороны крайне неравномерно? Что привело к начальному нагреву Вселенной до невообразимой температуры более 10 13 К?

Все это указывало на то, что теория Большого взрыва неполна. Долгое время казалось, что продвинуться далее уже невозможно. Только четверть века назад благодаря работам российских физиков Э. Глинера и А. Старобинского, а также американца А. Гуса было описано новое явление — сверх-быстрое инфляционное расширение Вселенной. Описание этого явления основывается на хорошо изученных разделах теоретической физики — общей теории относительности Эйнштейна и квантовой теории поля. Сегодня считается общепринятым, что именно такой период, получивший название «инфляция», предшествовал Большому взрыву.

Суть инфляции

При попытке дать представление о сущности начального периода жизни Вселенной приходится оперировать такими сверхмалыми и сверхбольшими числами, что наше воображение с трудом их воспринимает. Попробуем воспользоваться некоей аналогией, чтобы понять суть процесса инфляции.

Представим себе покрытый снегом горный склон, в который вкраплены разнородные мелкие предметы — камешки, ветки и кусочки льда. Кто-то, находящийся на вершине этого склона, сделал небольшой снежок и пустил его катиться с горы. Двигаясь вниз, снежок увеличивается в размерах, так как на него налипают новые слои снега со всеми включениями. И чем больше размер снежка, тем быстрее он будет увеличиваться. Очень скоро из маленького снежка он превратится в огромный ком. Если склон заканчивается пропастью, то он полетит в нее со все более увеличивающейся скоростью. Достигнув дна, ком ударится о дно пропасти и его составные части разлетятся во все стороны (кстати, часть кинетической энергии кома при этом пойдет на нагрев окружающей среды и разлетающегося снега). Теперь опишем основные положения теории, используя приведенную аналогию. Прежде всего физикам пришлось ввести гипотетическое поле, которое было названо «инфлатонным» (от слова «инфляция»). Это поле заполняло собой все пространство (в нашем случае — снег на склоне). Благодаря случайным колебаниям оно принимало разные значения в произвольных пространственных областях и в различные моменты времени. Ничего существенного не происходило, пока случайно не образовалась однородная конфигурация этого поля размером более 10 -33 см. Что же касается наблюдаемой нами Вселенной, то она в первые мгновения своей жизни, по-видимому, имела размер 10 -27 см. Предполагается, что на таких масштабах уже справедливы основные законы физики, известные нам сегодня, поэтому можно предсказать дальнейшее поведение системы. Оказывается, что сразу после этого пространственная область, занятая флуктуацией (от лат. fluctuatio — «колебание», случайные отклонения наблюдаемых физических величин от их средних значений), начинает очень быстро увеличиваться в размерах, а инфлатонное поле стремится занять положение, в котором его энергия минимальна (снежный ком покатился). Такое расширение продолжается всего 10 -35 секунды, но этого времени оказывается достаточно для того, чтобы диаметр Вселенной возрос как минимум в 10 27 раз и к окончанию инфляционного периода наша Вселенная приобрела размер примерно 1 см. Инфляция заканчивается, когда инфлатонное поле достигает минимума энергии — дальше падать некуда. При этом накопившаяся кинетическая энергия переходит в энергию рождающихся и разлетающихся частиц, иначе говоря, происходит нагрев Вселенной. Как раз этот момент и называется сегодня Большим взрывом.

Гора, о которой говорилось выше,может иметь очень сложный рельеф—несколько разных минимумов, долины внизу и всякие холмы и кочки. Снежные комья (будущие вселенные) непрерывно рождаются наверху горы за счет флуктуаций поля. Каждый ком может скатиться в любой из минимумов, породив при этом свою вселенную со специфическими параметрами. Причем вселенные могут существенно отличаться друг от друга. Свойства нашей Вселенной удивительнейшим образом приспособлены к тому, чтобы в ней возникла разумная жизнь. Другим вселенным, возможно, повезло меньше.

Еще раз хотелось бы подчеркнуть, что описанный процесс рождения Вселенной «практически из ничего» опирается на строго научные расчеты. Тем не менее у всякого человека, впервые знакомящегося с инфляционным механизмом, описанным выше, возникает немало вопросов.

В ответ на каверзные вопросы

Сегодня наша Вселенная состоит из большого числа звезд, не говоря уж о скрытой массе. И может показаться, что полная энергия и масса Вселенной огромны. И совершенно непонятно, как это все могло поместиться в первоначальном объеме 10 -99 см 3 . Однако во Вселенной существует не только материя, но и гравитационное поле. Известно, что энергия последнего отрицательна и, как оказалось, в нашей Вселенной энергия гравитации в точности компенсирует энергию, заключенную в частицах, планетах, звездах и прочих массивных объектах. Таким образом, закон сохранения энергии прекрасно выполняется, и суммарная энергия и масса нашей Вселенной практически равны нулю. Именно это обстоятельство отчасти объясняет, почему зарождающаяся Вселенная тут же после появления не превратилась в огромную черную дыру. Ее суммарная масса была совершенно микроскопична, и вначале просто нечему было коллапсировать. И только на более поздних стадиях развития появились локальные сгустки материи, способные создавать вблизи себя такие гравитационные поля, из которых не может вырваться даже свет. Соответственно, и частиц, из которых «сделаны» звезды, на начальной стадии развития просто не существовало. Элементарные частицы начали рождаться в тот период развития Вселенной, когда инфлатонное поле достигло минимума потенциальной энергии и начался Большой взрыв.

Область, занятая инфлатонным полем, разрасталась со скоростью, существенно большей скорости света, однако это нисколько не противоречит теории относительности Эйнштейна. Быстрее света не могут двигаться лишь материальные тела, а в данном случае двигалась воображаемая, нематериальная граница той области, где рождалась Вселенная (примером сверхсветового движения является перемещение светового пятна по поверхности Луны при быстром вращении освещающего ее лазера).

Причем окружающая среда совсем не сопротивлялась расширению области пространства, охваченного все более быстро разрастающимся инфлатонным полем, поскольку ее как бы не существует для возникающего Мира. Общая теория относительности утверждает, что физическая картина, которую видит наблюдатель, зависит от того, где он находится и как движется. Так вот, описанная выше картина справедлива для «наблюдателя», находящегося внутри этой области. Причем этот наблюдатель никогда не узнает, что происходит вне той области пространства, где он находится. Другой «наблюдатель», смотрящий на эту область снаружи, никакого расширения вовсе не обнаружит. В лучшем случае он увидит лишь небольшую искорку, которая по его часам исчезнет почти мгновенно. Даже самое изощренное воображение отказывается воспринимать такую картину. И все-таки она, по-видимому, верна. По крайней мере, так считают современные ученые, черпая уверенность в уже открытых законах Природы, правильность которых многократно проверена.

Надо сказать, что это инфлатонное поле и сейчас продолжает существовать и флуктуировать. Но только мы, внутренние наблюдатели, не в состоянии этого увидеть — ведь для нас маленькая область превратилась в колоссальную Вселенную, границ которой не может достигнуть даже свет.

Итак, сразу после окончания инфляции гипотетический внутренний наблюдатель увидел бы Вселенную, заполненную энергией в виде материальных частиц и фотонов. Если всю энергию, которую мог бы измерить внутренний наблюдатель, перевести в массу частиц, то мы получим примерно 10 80 кг. Расстояния между частицами быстро увеличиваются из-за всеобщего расширения. Гравитационные силы притяжения между частицами уменьшают их скорость, поэтому расширение Вселенной после завершения инфляционного периода постепенно замедляется.

Эти опасные античастицы

Сразу после рождения Вселенная продолжала расти и охлаждаться. При этом охлаждение происходило в том числе и благодаря банальному расширению пространства. Электромагнитное излучение характеризуется длиной волны, которую можно связать с температурой — чем больше средняя длина волны излучения, тем меньше температура. Но если пространство расширяется, то будут увеличиваться и расстояние между двумя «горбами» волны, и, следовательно, ее длина. Значит, в расширяющемся пространстве и температура излучения должна уменьшаться. Что и подтверждает крайне низкая температура современного реликтового излучения.

По мере расширения меняется и состав материи, наполняющей наш мир. Кварки объединяются в протоны и нейтроны, и Вселенная оказывается заполненной уже знакомыми нам элементарными частицами — протонами, нейтронами, электронами, нейтрино и фотонами. Присутствуют также и античастицы. Свойства частиц и античастиц практически идентичны. Казалось бы, и количество их должно быть одинаковым сразу после инфляции. Но тогда все частицы и античастицы взаимно уничтожились бы и строительного материала для галактик и нас самих не осталось бы. И здесь нам опять повезло. Природа позаботилась о том, чтобы частиц было немного больше, чем античастиц. Именно благодаря этой небольшой разнице и существует наш мир. А реликтовое излучение — это как раз последствие аннигиляции (то есть взаимоуничтожения) частиц и античастиц. Конечно, на начальном этапе энергия излучения была очень велика, но благодаря расширению пространства и как следствие — охлаждению излучения эта энергия быстро убывала. Сейчас энергия реликтового излучения примерно в десять тысяч раз (10 4 раз) меньше энергии, заключенной в массивных элементарных частицах.

Постепенно температура Вселенной упала до 10 10 К. К этому моменту возраст Вселенной составлял примерно 1 минуту. Только теперь протоны и нейтроны смогли объединяться в ядра дейтерия, трития и гелия. Это происходило благодаря ядерным реакциям, которые люди уже хорошо изучили, взрывая термоядерные бомбы и эксплуатируя атомные реакторы на Земле. Поэтому можно уверенно предсказывать, сколько и каких элементов может появиться в таком ядерном котле. Оказалось, что наблюдаемое сейчас обилие легких элементов хорошо согласуется с расчетами. Это означает, что известные нам физические законы одинаковы во всей наблюдаемой части Вселенной и были таковыми уже в первые секунды после появления нашего мира. Причем около 98% существующего в природе гелия образовалось именно в первые секунды после Большого взрыва.

Зарождение галактик

Сразу после рождения Вселенная проходила инфляционный период развития — все расстояния стремительно увеличивались (с точки зрения внутреннего наблюдателя). Однако плотность энергии в разных точках пространства не может быть в точности одинаковой — какие-то неоднородности всегда присутствуют. Предположим, что в какой-то области энергия немного больше, чем в соседних. Но раз все размеры быстро растут, то и размер этой области тоже должен расти. После окончания инфляционного периода эта разросшаяся область будет иметь чуть больше частиц, чем окружающее ее пространство, да и ее температура будет немного выше.

Поняв неизбежность возникновения таких областей, сторонники инфляционной теории обратились к экспериментаторам: «необходимо обнаружить флуктуации температуры…» — констатировали они. И в 1992 году это пожелание было выполнено. Практически одновременно российский спутник «Реликт-1» и американский «COBE» обнаружили требуемые флуктуации температуры реликтового излучения. Как уже говорилось, современная Вселенная имеет температуру 2,7 К, а найденные учеными отклонения температуры от среднего составляли примерно 0,00003 К. Неудивительно, что такие отклонения трудно было обнаружить раньше. Так инфляционная теория получила еще одно подтверждение.

С открытием колебаний температуры появилась еще одна захватывающая возможность — объяснить принцип формирования галактики. Ведь чтобы гравитационные силы сжимали материю, необходим исходный зародыш — область с повышенной плотностью. Если материя распределена в пространстве равномерно, то гравитация, подобно Буриданову ослу, не знает, в каком направлении ей действовать. Но как раз области с избытком энергии и порождает инфляция. Теперь гравитационные силы знают, на что воздействовать, а именно, на более плотные области, созданные во время инфляционного периода. Под действием гравитации эти изначально чуть-чуть более плотные области будут сжиматься и именно из них в будущем образуются звезды и галактики.

Счастливое настоящее

Современный нам момент эволюции Вселенной крайне удачно приспособлен для жизни, и длиться он будет еще много миллиардов лет. Звезды будут рождаться и умирать, галактики вращаться и сталкиваться, а скопления галактик — улетать все дальше друг от друга. Поэтому времени для самосовершенствования у человечества предостаточно. Правда, само понятие «сейчас» для такой огромной Вселенной, как наша, плохо определено. Так, например, наблюдаемая астрономами жизнь квазаров, удаленных от Земли на 10—14 млрд. световых лет, отстоит от нашего «сейчас» как раз на те самые 10—14 млрд. лет.

Сегодня ученые в состоянии объяснить большинство свойств нашей Вселенной, начиная с момента в 10 -42 секунды и до настоящего времени и даже далее. Они могут также проследить образование галактик и довольно уверенно предсказать будущее Вселенной. Тем не менее ряд «мелких» непонятностей еще остается. Это прежде всего — сущность скрытой массы (темной материи) и темной энергии. Кроме того, существует много моделей, объясняющих, почему наша Вселенная содержит гораздо больше частиц, чем античастиц, и хотелось бы определиться в конце концов с выбором одной правильной модели.

Как учит нас история науки, обычно именно «мелкие недоделки» и открывают дальнейшие пути развития, так что будущим поколениям ученых наверняка будет чем заняться. Кроме того, более глубокие вопросы тоже уже стоят на повестке дня физиков и математиков. Почему наше пространство трехмерно? Почему все константы в природе словно «подогнаны» так, чтобы возникла разумная жизнь? И что же такое гравитация? Ученые уже пытаются ответить и на эти вопросы.

Ну и конечно, оставим место для неожиданностей. Не надо забывать, что такие основополагающие открытия, как расширение Вселенной, наличие реликтовых фотонов и энергия вакуума, были сделаны, можно сказать, случайно и не ожидались ученым сообществом.

Энергия вакуума — происхождение и последствия

Что же ждет нашу Вселенную в дальнейшем? Еще несколько лет назад у теоретиков в этой связи имелись всего две возможности. Если плотность энергии во Вселенной мала, то она будет вечно расширяться и постепенно остывать. Если же плотность энергии больше некоторого критического значения, то стадия расширения сменится стадией сжатия. Вселенная будет сжиматься в размерах и нагреваться. Значит, одним из ключевых параметров, определяющим развитие Вселенной, является средняя плотность энергии. Так вот, астрофизические наблюдения, проводимые до 1998 года, говорили о том, что плотность энергии составляет примерно 30% от критического значения. А инфляционные модели предсказывали, что плотность энергии должна быть равна критической. Апологетов инфляционной теории это не очень смущало. Они отмахивались от оппонентов и говорили, что недостающие 70% «как-нибудь найдутся». И они действительно нашлись. Это большая победа теории инфляции, хотя найденная энергия оказалась такой странной, что вызвала больше вопросов, чем ответов.
Похоже, что искомая темная энергия — это энергия самого вакуума.

В представлении людей, не связанных с физикой, вакуум — «это когда ничего нет» — ни вещества, ни частиц, ни полей. Однако это не совсем так. Стандартное определение вакуума — это состояние, в котором отсутствуют частицы. Поскольку энергия заключена именно в частицах, то, как резонно полагали едва ли не все, включая и ученых, нет частиц — нет и энергии. Значит, энергия вакуума равна нулю. Вся эта благостная картина рухнула в 1998 году, когда астрономические наблюдения показали, что разбегание галактик немножко отклоняется от закона Хаббла. Вызванный этими наблюдениями у космологов шок длился недолго. Очень быстро стали публиковаться статьи с объяснением этого факта. Самым простым и естественным из них оказалась идея о существовании положительной энергии вакуума. Ведь вакуум, в конце концов, означает просто отсутствие частиц, но почему лишь частицы могут обладать энергией? Обнаруженная темная энергия оказалась распределенной в пространстве на удивление однородно. Подобную однородность трудно осуществить, ведь если бы эта энергия была заключена в каких-то неведомых частицах, гравитационное взаимодействие заставляло бы их собраться в грандиозные конгломераты, подобные галактикам. Поэтому энергия, спрятанная в пространстве-вакууме, очень изящно объясняет устроение нашего мира.

Однако возможны и другие, более экзотические, варианты мироустроения. Например, модель Квинтэссенции, элементы которой были предложены советским физиком А.Д. Долговым в 1985 году, предполагает, что мы все еще скатываемся с той самой горки, о которой говорилось в начале нашего повествования. Причем катимся мы уже очень долго, и конца этому процессу не видно. Необычное название, позаимствованное у Аристотеля, обозначает некую «новую сущность», призванную объяснить, почему мир устроен так, а не иначе.

Сегодня вариантов ответа на вопрос о будущем нашей Вселенной стало значительно больше. И они существенно зависят от того, какая теория, объясняющая скрытую энергию, является правильной. Предположим, что верно простейшее объяснение, при котором энергия вакуума положительна и не меняется со временем. В этом случае Вселенная уже никогда не сожмется и нам не грозит перегрев и Большой хлопок. Но за все хорошее приходится платить. В этом случае, как показывают расчеты, мы в будущем никогда не сможем достигнуть всех звезд. Более того, количество галактик, видимых с Земли, будет уменьшаться, и через 10—20 млрд. лет в распоряжении человечества останется всего несколько соседних галактик, включая нашу — Млечный Путь, а также соседнюю Андромеду. Человечество уже не сможет увеличиваться количественно, и тогда придется заняться своей качественной составляющей. В утешение можно сказать, что несколько сотен миллиардов звезд, которые будут нам доступны в столь отдаленном будущем, — это тоже немало.

Впрочем, понадобятся ли нам звезды? 20 миллиардов лет — большой срок. Ведь всего за несколько сот миллионов лет жизнь развилась от трилобитов до современного человека. Так что наши далекие потомки, возможно, будут по внешнему виду и возможностям отличаться от нас еще больше, чем мы от трилобитов. Что же сулит им еще более отдаленное будущее, по прогнозам современных ученых? Ясно, что звезды будут тем или иным способом «умирать», но будут образовываться и новые. Этот процесс тоже не бесконечен — примерно через 10 14 лет, по предположению ученых, во Вселенной останутся только слабосветящиеся объекты — белые и темные карлики, нейтронные звезды и черные дыры. Почти все они также погибнут через 10 37 лет, исчерпав все запасы своей энергии. К этому моменту останутся лишь черные дыры, поглотившие всю остальную материю. Что может разрушить черную дыру? Любые наши попытки сделать это лишь увеличивают ее массу. Но «ничто не вечно под Луной». Оказывается, черные дыры медленно, но излучают частицы. Значит, их масса постепенно уменьшается. Все черные дыры тоже должны исчезнуть примерно через 10 100 лет. После этого останутся лишь элементарные частицы, расстояние между которыми будет намного превосходить размеры современной Вселенной (примерно в 10 90 раз) — ведь все это время Вселенная расширялась! Ну и, конечно, останется энергия вакуума, которая будет абсолютно доминировать во Вселенной.

Кстати, свойства такого пространства впервые изучил В. де Ситтер еще в 1922 году. Так что нашим потомкам предстоит либо изменить физические законы Вселенной, либо перебраться в другие вселенные. Сейчас это кажется невероятным, но хочется верить в могущество человечества, как бы оно, человечество, ни выглядело в столь отдаленном будущем. Потому что времени у него предостаточно. Кстати, возможно, что уже и сейчас мы, сами того не ведая, создаем новые вселенные. Для того чтобы в очень маленькой области возникла новая вселенная, необходимо инициировать инфляционный процесс, который возможен только при высоких плотностях энергий. А ведь экспериментаторы уже давно создают такие области, сталкивая частицы на ускорителях… И хотя эти энергии еще очень далеки от инфляционных, вероятность создания вселенной на ускорителе уже не равна нулю. К сожалению, мы являемся тем самым «удаленным наблюдателем», для которого время жизни этой «рукотворной» вселенной слишком мало, и внедриться в нее и посмотреть, что там происходит, мы не можем...

Возможные сценарии развития нашего мира
1. Пульсирующая модель Вселенной, при которой вслед за периодом расширения наступает период сжатия и все заканчивается Большим хлопком
2. Вселенная со строго подогнанной средней плотностью, в точности равной критической. В этом случае наш мир Евклидов, и его расширение все время замедляется
3. Равномерно расширяющаяся по инерции Вселенная. Именно в пользу такой открытой модели мира до последнего времени свидетельствовали данные о подсчете средней плотности нашей Вселенной
4. Мир, расширяющийся со все нарастающей скоростью. Новейшие экспериментальные данные и теоретические изыскания говорят о том, что Вселенная разлетается все быстрее, и несмотря на евклидовость нашего мира, большая часть галактик в будущем будет нам недоступна. И виновата в столь странном устроении мира та самая темная энергия, которую сегодня связали с некоей внутренней энергией вакуума, заполняющего все пространство

Сергей Рубин, доктор физико-математических наук

Вернемся в 1982 год, когда инфляция еще оставалась совсем свежей темой, полной неисследованных идей и требующих напряженной работы задач, - в общем, золотой жилой для молодого честолюбивого космолога. Самым интригующим и, пожалуй, наименее связанным с современным состоянием Вселенной был вопрос о том, как инфляция могла начаться. Инфляционная вселенная быстро "забывает" свои начальные условия, и состояние, с которого она стартовала, слабо влияет на то, что происходит потом. Так что, если вы хотите проверить инфляцию наблюдениями, не стоит тратить время на вопрос о ее начале. Но загадка начала все равно остается, и ее нельзя избежать. Она притягивает к себе как магнит.

Из ничего не творится ничто...
Лукреций, "О природе вещей" (пер. Ф.А. Петровского)

Инфляция в конце туннеля

На первый взгляд проблема кажется довольно простой. Мы знаем, что небольшой области пространства, заполненной ложным вакуумом, достаточно, чтобы запустить инфляцию. Поэтому все, что нужно придумать, - это как такая область могла появиться из некоего предшествующего состояния Вселенной.

В те годы доминировало представление, основанное на фридмановской модели, в которой Вселенная расширялась из сингулярного состояния с бесконечной кривизной и бесконечной плотностью материи. Если предположить, что Вселенная заполнена высокоэнергичным ложным вакуумом, любое вещество, которое в ней изначально присутствовало, становится разреженным, что приводит к доминированию энергии вакуума. С этого момента его отталкивающая гравитация берет верх, и начинается инфляция.

Все это хорошо, но с чего бы Вселенной начинать расширяться? Одним из достижений теории инфляции было объяснение расширения Вселенной. Однако, похоже, нам нужно получить расширение еще до того, как начнется инфляция. Притягивающая гравитация вещества первоначально намного сильнее гравитационного отталкивания вакуума, так что, если не постулировать мощную первоначальную вспышку расширения, Вселенная просто сколлапсировала бы, и инфляция никогда бы не началась.

Я некоторое время размышлял над этими аргументами, но логика была очень простой, и никакого выхода не просматривалось. И тогда я неожиданно понял, что вместо коллапса Вселенная может совершить нечто намного более интересное и драматичное...

Рассмотрим замкнутую сферическую вселенную, заполненную ложным вакуумом и содержащую некоторое количество обычной материи. Предположим также, что в некоторый момент она находится в покое, не расширяясь и не сжимаясь. Если ее радиус мал, вещество сжато до высокой плотности, и вселенная сколлапсирует в точку. Если радиус велик, доминирует энергия вакуума, и начнется инфляция. Малые и большие радиусы разделяет барьер, который нельзя пересечь, не придав вселенной высокой скорости расширения.

И вот неожиданно до меня дошло, что коллапс маленькой вселенной был неизбежным только в классической физике. В квантовой теории вселенная может туннелировать под энергетическим барьером и появиться по другую сторону - как это происходит с ядерными частицами в гамовской теории радиоактивного распада.

Это выглядело изящным решением проблемы. Вселенная возникает чрезвычайно маленькой и с очень высокой вероятностью вновь коллапсирует в сингулярность. Но есть крошечный шанс, что вместо этого она туннелирует сквозь барьер, приобретет больший радиус и начнет инфляционно расширяться (рис. 17.1). Таким образом, в этой грандиозной картине мира будет масса вселенных-неудачниц, живущих лишь неуловимое мгновение, но будут и те, что сумеют сделаться большими.
Почувствовав, что достиг прогресса, я стал торопиться. Существуют ли для размера первичной вселенной какие-то ограничения снизу? Что случится, если мы позволим ей становиться все меньше и меньше? К моему удивлению, выяснилось, что даже при начальных размерах, стремящихся к нулю, шансы на туннелирование не исчезают. Я также заметил, что вычисления значительно упрощаются, если позволить начальному радиусу вселенной обратиться в нуль. Это была по-настоящему безумная идея: я получил математическое описание вселенной, туннелирующей из нулевого размера - из ничего! - в состояние с конечным радиусом и начинающей инфляционно расширяться. Похоже, никакого исходного состояния вселенной вовсе не требовалось!

Туннелирование из ничего

Идея вселенной, материализующейся из ничего, повергает в недоумение. Что в точности означает "ничто"? Если это "ничто" способно туннелировать в нечто, что может вызвать первичный акт туннелирования? И что происходит с законом сохранения энергии? Но чем дольше я думал над этим, тем более важной казалась мне эта идея.

Начальное состояние, предшествующее туннелированию, - это вселенная с нулевым радиусом, то есть попросту отсутствие вселенной. В этом очень странном состоянии нет материи, нет пространства. Нет также и времени. Время имеет смысл, только если во вселенной что-то происходит. Мы измеряем время, используя периодические процессы, такие как вращение Земли вокруг своей оси или вокруг Солнца. Невозможно определить время в отсутствие пространства и материи.
И вместе с тем состояние "ничто" нельзя определить как абсолютное небытие. Туннелирование описывается законами квантовой механики, а значит, "ничто" должно подчиняться этим законам. Законы физики должны существовать, несмотря на отсутствие вселенной.

В результате акта туннелирования из ниоткуда рождается вселенная конечных размеров и немедленно начинает инфляционно расширяться. Радиус новорожденной вселенной определяется плотностью энергии вакуума: чем выше плотность, тем меньше радиус. Для вакуума Великого объединения это одна стотриллионная сантиметра. Вследствие инфляции эта крошечная вселенная растете ошеломительной скоростью и за малую долю секунды намного превосходит размер наблюдаемой сегодня области.

Если до возникновения вселенной ничего не было, тогда что же вызвало туннелирование? Как это ни удивительно, ответ состоит в том, что никакой причины для этого не требовалось. В классической физике причинность диктует, что случится в каждый следующий момент времени, однако в квантовой механике поведение физического объекта по сути непредсказуемо, и некоторые квантовые процессы совершенно беспричинны. Возьмем, к примеру, радиоактивный атом. У него есть некоторая вероятность распада, остающаяся неизменной от минуты к минуте. В конце концов он распадется, но нет никакой причины, которая заставила бы его распасться в какой-то определенный момент. Зарождение вселенной также является квантовым процессом и не требует причины.

Большинство наших представлений неразрывно связаны с пространством и временем, и непросто создать мысленную картину вселенной, возникающей из ничего. Невозможно представить себя сидящим посреди "ничего" и ожидающим материализации вселенной, поскольку нет ни пространства, чтобы в нем сидеть, ни времени.

В некоторых недавно предложенных моделях, основанных на теории струн, наше пространство представляет собой трехмерную мембрану (брану), плавающую в многомерном пространстве. В таких моделях можно представить многомерного наблюдателя, следящего за маленькими пузырьками вселенных - "мирами на бране", - появляющимися то здесь, то там, как пузырьки пара в кипящем чайнике. Мы живем на одном из таких пузырьков, который является расширяющейся трехмерной сферической браной. Для нас эта брана - единственное существующее пространство. Мы не можем оторваться от нее и не замечаем дополнительных измерений. Если проследить историю нашей пузырьковой вселенной назад в прошлое, мы достигнем момента зарождения. За ним наше пространство и время исчезают.

От этой картины всего один маленький шаг до той, что я первоначально предложил. Просто уберите многомерное пространство. С нашей внутренней точки зрения ничего не изменится. Мы живем в замкнутом трехмерном пространстве, но это пространство не простирается повсюду. Если мы двинемся назад во времени, то обнаружим, что наша Вселенная имеет начало. И за ним нет пространства-времени.

Элегантное математическое описание квантового туннелирования можно получить, используя так называемое евклидово время. Это не то время, которое измеряется по часам. Оно выражается при помощи мнимых чисел, таких как квадратный корень из -1, и вводится лишь для удобства вычислений. Превращение времени в евклидово странным образом влияет на пространство-время: различие между временем и тремя пространственными измерениями полностью исчезает, так что вместо пространства-времени получается четырехмерное пространство. Если бы мы могли жить в евклидовом времени, то измеряли бы его линейкой в точности так, как мы измеряем длину. Это может показаться довольно странным, однако описание, сделанное в евклидовом времени, очень полезно: оно обеспечивает удобный способ определения вероятности туннелирования и начального состояния вселенной в момент, когда она обретает существование.

Графически рождение вселенной можно изобразить пространственно-временной диаграммой на рисунке 17.2. Темная полусфера в нижней части отвечает квантовому туннелированию (в этой части пространства-времени время евклидово).
Светлая верхняя часть - это пространство-время инфляционной вселенной. Граница между этими двумя областями пространства-времени - это вселенная в момент зарождения.

Замечательная особенность этого пространства-времени заключается в отсутствии сингулярностей. Фридмановское пространство-время имеет в начале сингулярную точку с бесконечной кривизной, где перестает работать математика эйнштейновских уравнений. Этой точке соответствует острый угол внизу левой схемы на рисунке 17.1. Напротив, в сферической евклидовой области нет таких точек; она повсюду имеет одинаковую конечную кривизну. Это было первое математически последовательное описание того, как могла родиться Вселенная.

Пространственно-временная диаграмма на рисунке 17.2, напоминающая по форме бадминтонный волан, теперь стала логотипом Института космологии в Тафтсе.

Я описал все это в короткой статье, озаглавленной "Создание вселенных из ничего"". Перед отправкой ее в журнал я на один день заехал в Принстонский университет, чтобы обсудить эти идеи с Малкольмом Перри (Malcolm Perry), крупным специалистом в области квантовой теории гравитации. После часа, проведенного у доски, Малкольм сказал: "Да, пожалуй, это не столь безумно... И как я сам до этого не додумался?" Может ли физик сделать лучший комплимент коллеге!

Вселенная как квантовая флуктуация

Mоя модель вселенной, туннелирующей из ничего, не возникла на пустом месте - у меня были предшественники. Первое предположение такого рода восходит к Эдварду Трайону (Edward Tryon) из Хантеровского колледжа при Университете Нью-Йорка. Он выдвинул идею, что Вселенная возникла из вакуума благодаря квантовой флуктуации.

Эта мысль впервые пришла к нему в 1970 году во время физического семинара. Трайон сказал, что она поразила его подобно вспышке света - как будто перед ним раскрылась некая глубочайшая истина. Когда докладчик сделал паузу, чтобы собраться с мыслями, Трайон выпалил: "Может быть, Вселенная - это вакуумная флуктуация!" Аудитория разразилась хохотом.

Как уже говорилось раньше, вакуум вовсе не мертвый и статичный; это арена бешеной деятельности. В субатомных масштабах электрическое, магнитное и другие поля постоянно флуктуируют из-за непредсказуемых квантовых толчков. Геометрия пространства-времени также флуктуирует, неистово взбивая пространственно-временную пену на планковском масштабе расстояний. Вдобавок пространство полно так называемых виртуальных частиц, которые спонтанно появляются то здесь, то там и немедленно исчезают. Виртуальные частицы существуют очень недолго, поскольку живут за счет заемной энергии. Энергетические кредиты приходится отдавать, и, согласно принципу неопределенности Гейзенберга, чем больше энергии заимствуется у вакуума, тем быстрее ее надо вернуть. Виртуальные электроны и позитроны обычно появляются и исчезают примерно за одну триллионную долю наносекунды. Более тяжелые частицы живут и того меньше, поскольку для их материализации требуется больше энергии. И вот Трайон предполагает, что вся наша Вселенная с ее колоссальным количеством материи является лишь огромной квантовой флуктуацией, которая почему-то не может исчезнуть вот уже более десяти миллиардов лет. Все подумали, что это просто очень смешная шутка.

Трайон, однако, не шутил. Он был настолько подавлен реакцией коллег, что забыл о своей идее и выбросил из памяти весь этот инцидент. Но мысль продолжала вариться в глубине его сознания и вновь появилась на поверхности три года спустя. В тот раз Трайон решил ее опубликовать. Его статья вышла в 1973 году в британском научном журнале Nature под заголовком "Является ли Вселенная вакуумной флуктуацией?"

Предположение Трайона основывалось на хорошо известном математическом факте: энергия замкнутой вселенной всегда равна нулю. Энергия материи положительна, гравитационная энергия - отрицательна, и оказывается, что в замкнутой вселенной их вклады в точности сокращаются. Так что, если замкнутая вселенная возникнет как квантовая флуктуация, вакууму ничего не понадобится отдавать, а время жизни флуктуации может быть сколь угодно большим.

Создание замкнутой вселенной из вакуума проиллюстрировано на рисунке 17.3. Область плоского пространства начинает вспучиваться, пока не приобретает форму шара. В тот же самый момент в этой области рождается колоссальное количество частиц. Наконец шар отделяется, и - вуаля! - мы получили замкнутую вселенную, которая совершенно не связана с исходным пространством". Трайон предположил, что наша Вселенная могла возникнуть именно таким образом, и подчеркнул, что подобное творение не требует причины. "На вопрос, почему это случилось, - писал он, - я отвечу скромным предположением, что наша Вселенная - из числа тех вещей, что время от времени случаются".

Главная проблема с трайоновской идеей состоит в том, что она не объясняет, почему Вселенная такая большая. Крошечные замкнутые вселенные постоянно отделяются от любой крупной области пространства, но вся эта деятельность протекает в планковском масштабе размеров в форме пространственно-временной пены. Образование большой замкнутой вселенной в принципе возможно, но вероятность того, что это случится, гораздо ниже, чем вероятность для обезьяны случайно напечатать полный текст шекспировского "Гамлета".

В своей статье Трайон доказывал, что, даже если большинство вселенных чрезвычайно малы, наблюдатели могут появиться только в больших вселенных, а значит, мы не должны удивляться, что живем в одной из них. Но этого недостаточно, чтобы справиться с данным затруднением, поскольку наша Вселенная гораздо больше, чем нужно для развития жизни.

Более глубокая проблема трайоновского сценария состоит в том, что он в действительности не объясняет происхождение Вселенной. Квантовая флуктуация вакуума предполагает наличие вакуума в некоем исходно существующем пространстве. А мы теперь знаем, что понятия "вакуум" и "ничто" очень сильно различаются. Вакуум, или пустое пространство, обладает энергией и натяжением, он может сгибаться и искривляться, а значит, это, безусловно, нечто". Как писал Алан Гут, "в данном контексте предположение о том, что Вселенная была создана из пустого пространства, не более фундаментально, чем предположение, что она была выдута из куска резины. Это может оказаться правдой, но люди все равно будут спрашивать, откуда появился этот кусок резины.

В картине квантового туннелирования из ничего нет ни одной из этих проблем. Сразу после туннелирования Вселенная имеет крошечные размеры, но она заполнена ложным вакуумом и немедленно начинает инфляционно расширяться. За долю секунды она раздувается до гигантских размеров.
До туннелирования пространства и времени не существует, так что вопрос о том, что было раньше, не имеет смысла. Ничто - состояние без материи, без пространства и без времени - по-видимому, единственное, что удовлетворяет требованиям к начальной точке творения.

Через несколько лет после публикации моей статьи о туннели-ровании из ничего я узнал, что упустил в ней важную ссылку. Обычно такие вещи всплывают гораздо быстрее в электронных письмах от авторов, которых забыли упомянуть. Но этот автор не написал мне, и на то была уважительная причина: он умер более 1500 лет назад. Его звали Блаженным Августином, и он был епископом Гиппо, одного из крупнейших городов Северной Африки.

Августина чрезвычайно интересовал вопрос, что делал Бог до творения, - поиски ответа он красноречиво описал в своей "Исповеди". "Если Он ничем не был занят... и ни над чем не трудился, почему на всё время и впредь не остался Он в состоянии покоя, в каком всё время пребывал и раньше?" Августин полагал, что для ответа на этот вопрос он сначала должен понять, что такое время: "Что же такое время? Если никто меня об этом не спрашивает, я знаю, что такое время; если бы я захотел объяснить спрашивающему - нет, не знаю". Четкий анализ привел его к пониманию, что время может быть определено только через движение, а значит, не может существовать прежде Вселенной. Окончательный вывод Августина: "Мир был создан не во времени, но вместе со временем. Не было времени до мира". А потому бессмысленно спрашивать, что тогда делал Бог. "Если не было времени, то не было "тогда". Это очень близко к тому, что я обосновывал в своем сценарии туннелирования из ничего.
Об идеях Августина мне стало известно случайно, из беседы с моей коллегой по Тафтсу Кэтрин Маккарти (Kathryn McCarthy). Я прочел "Исповедь" и сослался на святого Августина в моей следующей статье.

Множество миров

Вселенная, возникающая в результате квантового туннелирования, не будет идеально сферической. Она может иметь множество различных форм и быть заполнена разными типами ложного вакуума. Как обычно, в квантовой теории нельзя сказать, какие из этих возможностей реализовались, а можно только подсчитать их вероятности. Может ли тогда оказаться, что существует множество других вселенных, которые стартовали иначе, чем наша?

Этот вопрос тесно связан с острейшей проблемой интерпретации квантовых вероятностей. В главе и были описаны две основные альтернативы. Согласно копенгагенской интерпретации, квантовая механика приписывает вероятности всем возможным исходам эксперимента, но лишь один из них на самом деле реализуется. Напротив, эвереттовская интерпретация утверждает, что все возможные исходы реализуются в несвязанных "параллельных" вселенных.

Если принимать копенгагенскую интерпретацию, то творение было однократным событием, в котором из ничего появилась единственная Вселенная. Это, однако, приводит к проблеме. С наибольшей вероятностью из ничего возникает крошечная вселенная планковских размеров, которая не станет туннелировать, а немедленно сколлапсирует и исчезнет. Туннелирование в большие размеры имеет низкую вероятность, а значит, требует большого числа попыток. По-видимому, это совместимо только с интерпретацией Эверетта.

В эвереттовской картине мира существует ансамбль вселенных со всеми начальными состояниями. Большинство из них - "мерцающие" вселенные планковского размера, мгновенно возникающие и прекращающие существование. Но по мимо них есть и вселенные, которые туннелировали в большие размеры и стали инфляционно расширяться. Ключевое отличие от копенгагенской интерпретации состоит в том, что все эти вселенные не просто возможные, a реальные. Однако наблюдаться могут только большие вселенные, поскольку в "мерцающих" невозможно появление наблюдателей.

Все входящие в ансамбль вселенные совершенно независимы друг от друга. Каждая имеет собственное пространство и собственное время. Вычисления показывают, что наиболее вероятными - а значит, и самыми многочисленными - среди туннелирующих вселенных являются те, что имеют наименьший начальный радиус и наивысшую плотность энергии ложного вакуума. Есть все основания предполагать, что наша Вселенная зародилась как раз такой.

В моделях инфляции со скалярным полем наивысший уровень плотности энергии вакуума достигается на вершине энергетического холма, и потому в большинстве зарождающихся вселенных скалярное поле будет находиться в этой области. Это самая предпочтительная стартовая точка для инфляции. Помните, я обещал объяснить, как поле попадает на вершину холма? В сценарии туннелирования из ничего это как раз то состояние, в котором Вселенная обретает существование.

Зарождение Вселенной по сути есть квантовая флуктуация, и ее вероятность быстро убывает с ростом охваченного ею объема. Вселенные, имеющие при возникновении больший начальный радиус, менее вероятны, а в пределе бесконечного радиуса вероятность стремится к нулю. Бесконечная открытая вселенная имеет строго нулевую вероятность зарождения, а значит, в ансамбле должны быть только замкнутые вселенные.

Фактор Хокинга

В июле 1983 года несколько сотен физиков со всего мира собрались в итальянском городе Падуе на ю-ю конференцию по общей теории относительности и гравитации. Конференция проходила в Палаццо делла Раджоне - старинном здании суда XIII века в самом сердце Падуи.
Первый его этаж занят знаменитым базаром, который продолжается снаружи на прилегающей площади. На верхнем этаже располагается вместительный зал, украшенный по периметру фресками со знаками Зодиака. В нем-то и проходили выступления. Гвоздем программы был доклад Сти-"вена Хокинга, озаглавленный "Квантовое состояние Вселенной". Чтобы попасть в лекционный зал, нужно подняться по длинной лестнице, так что доставить туда Хокинга в его инвалидном кресле было непростой задачей. Мне повезло, что я пришел заранее, поскольку к началу доклада зал был полностью забит.

В своем выступлении Хокинг предложил совершенно новый взгляд на квантовое происхождение Вселенной, основанное на работе, выполненной им совместно с Джеймсом Харт-лом Games Hartle) из Университета Калифорнии в Санта-Барбаре. Вместо того чтобы сконцентрироваться на первых моментах творения, он задался более общим вопросом: как вычислить квантовую вероятность пребывания Вселенной в некотором конкретном состоянии? К данному состоянию Вселенная может прийти посредством огромного множества возможных историй, и квантовая механика позволяет определить, каков вклад каждой из них в его вероятность (Точнее, путем суммирования вкладов различных историй определяется величина, называемая волновой функцией. Вероятность данного состояния равна квадрату волновой функции. ). Итоговое значение вероятности зависит оттого, какие классы историй включены в расчет. Хартл и Хокинг предложили включать только истории, в которых пространство-время не имеет границ в прошлом.

Пространство без границ нетрудно себе представить: это просто означает замкнутую вселенную. Но Хартл и Хокинг потребовали, чтобы пространство-время не имело также границы или края во времени со стороны прошлого. Оно должно быть замкнуто во всех четырех измерениях, за исключением границы, соответствующей настоящему моменту (рис. 17.4).

Граница в пространстве означает, что существует нечто за пределами вселенной, так что вещи могут уходить за границу и появляться из-за нее. Граница во времени соответствует началу вселенной, где должны быть заданы начальные условия. Согласно предложению Хартла и Хокинга, Вселенная не имеет таких границ; она "полностью самодостаточна и не испытывает никаких воздействий извне". Это кажется очень простой и привлекательной идеей. Единственная проблема состоит в том, что пространств-времен, замкнутых со стороны прошлого - таких, как на рисунке 17.4, - не существует. У пространства-времени должно быть три пространственно-подобных и одно времени-подобное измерение в каждой точке, а в замкнутом пространстве-времени обязательно есть аномальные точки с более чем одним времени-подобным направлением (рис. 17.5).

Чтобы справиться с этим затруднением, Хартл и Хокинг предложили перейти от реального времени к евклидовому. Как говорилось в прошлой главе, евклидово время не отличается от других пространственных измерений, так что пространство-время просто становится четырехмерным пространством, и его без проблем можно сделать замкнутым. Таким образом, предложение состояло в том, чтобы вычислять вероятности суммированием вклада всех евклидовых пространств-времен без границ. Хокинг подчеркивал, что это было лишь предложение. У него не было доказательства его корректности, и единственным способом получить его была проверка: удастся или нет сделать на данном пути разумные предсказания.
Предложение Хартла-Хокинга обладает определенной математической красотой, но я думаю, что после перехода к евк-лидовому времени оно в значительной мере теряет свою интуитивную привлекательность. Вместо суммирования по всем возможным историям Вселенной нам предлагается суммировать по историям, которые заведомо невозможны, поскольку мы не живем в евклидовом времени. Так что после того, как убираются строительные леса первоначальной мотивации, мы остаемся с довольно формальным рецептом вычисления вероятностей.

В конце своего доклада Хокинг коснулся тех следствий, которые вытекали из нового предложения для инфляционной вселенной. Он показал, что основной вклад в сумму по историям дается евклидовым пространством-временем, имеющим форму полусферы, - точно так же, как и в моих расчетах туннелирования, - и что последующая эволюция описывается инфляционным расширением в обычном времени. (Переключение от евклидова формализма обратно к обычному времени - довольно хитрая процедура, которую я не стану пытаться здесь описать.) Результатом была такая же история пространства-времени, как и на моем рисунке 17.3, но полученная из совершенно других посылок.
Я ожидал, что Хокинг упомянет мою работу по квантовому туннелированию из ничего, и был разочарован, когда он этого не сделал. Но я был уверен, что теперь, когда на площадку вышел Хокинг, вся тема квантовой космологии, в том числе и моя работа, получит значительно больше внимания, чем прежде.

Много шума из ничего

Важное различие между "туннелированием из ничего" и предложением об "отсутствии границ" состоит в том, что они дают сильно различающиеся, в некотором смысле противоположные, предсказания для вероятностей. Предположение о туннелировании благоприятствует зарождению вселенной наименьшего размера и с наивысшей энергией вакуума. Из требования отсутствия границ, наоборот, вытекает, что наиболее вероятной стартовой точкой является вселенная с наименьшей энергией вакуума и наибольшим возможным размером. Самым вероятным будет появление из ничего бесконечного пустого плоского пространства. Мне кажется, в это очень трудно поверить!

Хокинг стал настоящей легендой в кругу физиков, да и за его пределами. Я восхищаюсь как его научными результатами, так и его силой духа и очень дорожу возможностями побеседовать с ним. Поскольку общение требует от него столь больших усилий, люди часто стесняются к нему обращаться. Мне потребовалось время, чтобы понять: Стивен действительно получает удовольствие от диалога и даже не обижается, когда над ним подшучивают. У нас очень разные взгляды на вечную инфляцию и квантовую космологию, но это делает дискуссию только интереснее.

В 1988 году я вступил в схватку на хокинговской территории и сделал доклад перед его группой в Кембриджском университете, подчеркивая преимущества моего подхода. Когда выступление закончилось, Хокинг подкатился ко мне на своем кресле. Я ожидал критических замечаний, но вместо этого он пригласил меня поужинать вместе... После утки с картошкой и пирога со сливами, приготовленных его матерью, мы заговорили об использовании "кротовых нор" - туннелей в пространстве-времени - для межгалактических путешествий. Таково представление физиков о светской беседе после ужина. Что же касается предложения об отсутствии границ, Стивен не изменил своего мнения.

Спор между сторонниками этих двух подходов продолжается до сих пор. Состоялись даже "официальные" дебаты на конференции COSMO-98 в Монтеррее, Калифорния, где Хокинг защищал предложение об отсутствии границ, а я - о туннелировании (На следующий день у Хокинга было другое важное дело: он поехал в Голливуд, чтобы записать свой электронный голос для специального эпизода сериала "Симпсоны" ). Правда, большой полемики в действительности не получилось. Хокингу требовалось много времени, чтобы составить фразу при помощи своего синтезатора речи, так что мы не смогли далеко уйти от заранее заготовленных тезисов.

Разрешить этот спор удалось бы, если изобрести наблюдательный тест, позволяющий выбрать между двумя предположениями. Это, однако, весьма маловероятно по причине вечной инфляции. Квантовая космология дает предсказания о начальном состоянии Вселенной, но в ходе вечной инфляции любые проявления начальных условий полностью стираются.

Возьмем, к примеру, ландшафт теории струн, который мы обсуждали выше. Можно начать с одного инфляционного вакуума или с другого, но неизбежно станут образовываться пузыри иных вакуумов, так что задействованным окажется весь ландшафт. Свойства результирующего мультиверса не будут зависеть от того, как началась инфляция.

Таким образом, квантовая космология пока не собирается становиться наблюдательной наукой. Дискуссия о двух подходах, возможно, разрешится теоретическими выкладками, а не наблюдательными данными. Например, если окажется, что квантовое состояние Вселенной определяется неким новым, еще не открытым принципом теории струн. И оно может, конечно, оказаться отличным от обоих нынешних предложений. Но определенность с этим вопросом вряд ли будет достигнута в скором времени.

Отрывок из книги А. Виленкина "Many Worlds in One: The Search for Other Universes"

Комментарии (27):

К den от 2 June, 22:10

Именно такой подход и есть то, что я называю от "математики к реалиям".

Что не верно просто по определению.

Нет вселенной (нет материи), нет законов!

И это надо понимать буквально!!!

Рождение материи из ничего - основной вопрос физики. Не дав ответа на него, невозможно построение стройной теории. По нашему мнению, акт рождения определяет все физические законы вновь рожденной Вселенной. Вот изложено то, что из этого получается.

К victorpetrov от 12 September, 23:21

Вы запутались в пропулярных терманах. Когда говорят о рождении Вселенной из ничего, или рождении материи из ничего никогда не понимают это буквально. Так вещество нашей Вселенной образовалось в постинфляционный период, вследствие колебаний и потери энергии инфлантоном - скалярным полем вызвавшим инфляцию.

Den, вы так уверенно говорите про это скалярное поле, что просто напоминаете средневековых мудрецов, поучающих о трёх китах. ведь вы отлично понимаете, что это просто одна из теорий. да и существуй это поле, опять непонятно, откуда ОНО взялось, и так без конца

К nefizik от 24 September, 12:40

В любой модели, есть некоторые предположения, в классической теории инфляции предполагается существование скалярного поля. Исходя из этого предположения можно объяснить весь спектр космологических наблюдений, в особенности то что касается анизотропии реликтового излучения. Это минимальное предположение для этого.

Den, я вас понял, у меня возник вопрос по тексту статьи: "Радиус новорожденной вселенной определяется плотностью энергии вакуума: чем выше плотность, тем меньше радиус. Для вакуума Великого объединения это одна стотриллионная сантиметра" мне непонятно, как в момент зарождения вселенной из ничего мы определяем её размер в единицах, имеющих смысл в наблюдаемом нами сформированном мире?

К nefizik от 24 September, 23:28

У этой проблемы на мой взгляд два аспекта. Первый философский, тат на который указали Вы, на него я отвечать не буду. в второй это то что при таких кривизнах и размерах все линейки флуктуируют, и мы не можем измерить размеры с такой точностью. На сколько я понимаю А. Виленкин просто хотел указать известный факт, чем больше плотность энергии тем больше кривизна пространства, или говоря проще, тем больше его отклонение от плоского.

Странно вы, Den, говорите, "мы не можем, потому что линейки флуктуируют" а не флуктуировали, так могли бы? наши линейки и сами мы "работают" на данном этапе эволюции вселенной. ведь пространство и время разворачивалось с точки большого взрыва, а до этого не было ни того, ни другого, согласно современных представлений.

К nefizik от 22 October, 14:22

Если у Вас есть своя версия того, про что и..., то изложите её.

И совсем не важно как к ней отнесутся все те кто прочитает, но важно то, что вы получите (если получите) оценку своих идей_мыслей.

А попытки перебрасывания неких аргументов к Den-у...-это...

Нам всем известен тот факт, что познание бесконечно.

А это означает:

Когда появляется реальный ответ на какой-то вопрос, то сразу возникает новая лавина новых вопросов.

Если же есть желание найти вопрос на который Den ответа дать не сможет, то это не диалог а экзаменовка.

В этом тоже есть смысл, но при условии наличия знаний у экзаменатора уровнем более чем у экзаменуемого хотя бы в области обсуждаемой темы.

Скажите!, Вам не нравится недосказанность неких моментов в инфляционном этапе развития Нашей Вселенной?

Предложите Свой вариант этого этапа (или полностью вариант рождения и развития Вселенной). И если он будет понятен и интересен и в нём не будет ссылок на Высшие силы... обсудим с удовольствием.

Или опять что-то не так?

К Timi от 23 October, 19:31

В общем все, как раз так. Только это выходит за пределы данной теории.

Здесь попытка объяснить саму инфляционую модель, в которой точка сингулярности вселенной лишь неизбежно промежуточный этап её существования, объясняя вопросы о том, что вообще заставило точку сингулярности расширяться и зачем.

Но вот логику происходящего уже внутри макромира вселенной можно будет объяснить лишь поняв логику того пространства в котором эти сингулярности происходят.

Лично мне представляется, что это самое первичное пространство даже не некая материя, а просто логическая среда самой квантовой вероятности.

И кстати, из такого пространства может возникать не только привычная нам материя, но и квантовый разум, способный наперед расчитывать множество вероятностей тунельного перехода и дальнейшего развития событий, что снимает необходимость вероятности миллиардов неудачных вселеных и может вполне ограничиться одной, либо несколькими наиболее удачными вариантами...

Цитата Z-Art:

"Но вот логику происходящего уже внутри макромира вселенной можно будет объяснить лишь поняв логику того пространства в котором эти сингулярности происходят."

Возможно логика, высокая человеческая логика в сингулярности есть, таже самая логика, порадившая однажды религию у наших прщуров, но...

Физическое наличие такой мат. абстракции как сингулярность я не приемлю, поскольку мыслю от реалий к математике, но не наоборот.

Ну да это и не важно. Тут каждый сам себе... (можно стать на общепринятую точку зрения, а можно и не становиться если не загоняться в высокие материи).

Хотелось бы неск. промоделировать процесс

описанный в [den . 23 October 16:02 ] и .

Я могу представить отщепление вселенных от какой-то "основы" двояко.

1-е. как деление одноклеточных организмов

2-е. как появление более мелкой матрёшки внутри более крупной.

Чисто только исходя из принципа бритвы Оккама (и не более чем), предпочтение надо отдать варианту №2, потому что для процесса отщепления новой вселенной от своей пра в этом варианте не требуется долполнительное промежуточное пространство.

Z-Art, а как Вы считаете?

К den от 14 Ноября 2011, 22:26

Религия в любых её проявлениях с абсолютной определённостью возникла из-за необходимости снятия неких критических вопросов на которые нет, во всяком случае на данном историческом интервале развития человечества или некой её части, внятных ответов , что мешает нормальной деятельности этой группы людей или всего человечества в целом.

тоесть мультиверс может существовать в логическом поле, а наиболее удачная вероятность уже воспроизведена в материю.

тут нету понятия внутри или снаружи... свое пространство занимает лишь единственный вариант.

тут скорее рассинхронизация по времени, в которой любая другая вероятность пространства есть логическая абстракция в бесконечном инфополе вероятности, сам динамический коэффиц времени есть та самая точка перехода, через которую выбранный единственный вариант материализуется (хотя само понятие материи тоже весьма условно, но это отдельная и весма огромная тема)

как вероятность они вообще могут зародиться все сразу, но с разным коэффициентом какого нибудь бесконечно малого микрофазового сдвига.

тут встает вопрос,

1) как происходит избирательность

2) насколько сознание (общее или частное) способно проникать в "первичный бульон" вероятности и влиять на точку перехода (но это уже получается транссерфинг реальности:))

>насколько сознание (общее или частное) способно проникать в "первичный бульон" вероятности и влиять на точку перехода...

C первой частью вопроса согласен. Что касается возможности влияния на точку перехода... (влияем ли мы на вероятности перехода через бифуркацию)

Мобыть это старомодно, но бытие определяет сознание (причина-следствие), т.е. бытию без разници как мы его воспринимаем лишь бы не трогали, не вмешивались. Да и влиять можем только потому что сами есть часть бытия.

И вновь к суперструнам или даже эм-теории.

Вполне могу понять ту гордость с которой Nambu говорила про то, что она освоила этот мат. метод.

Ну и что? Есть у СС и МТ положительный выхлоп?

Есть хотя бы прогноз того, что предсказательная сущность СС и МТ как-то проявит себя?

Без этого, без предсказательной сущности это всё пустышка. То, что неким образом и можно назвать "транссерфинг реальности:)".

Этим можно заниматься по принципу "вне денег ", "за интерес ". Тратить же какие либо средства на задачу без перспектив её решения... есть преступление под названием АФЕРА .

Но это лично моё мнение, хотя надеюсь, что это станет понятно так же и для тех, кто финансирует подобную деятельность.

К den от 13 September, 0:14

"вещество нашей Вселенной образовалось в постинфляционный период, вследствие колебаний и потери энергии инфлантоном - скалярным полем вызвавшим инфляцию."

А то, что было до инфляции, откуда взялось? Без рождения из НИЧЕГО, у Вас все равно ничего не получится. Так и придется приглашать Творца.

Для вывода формул можно пользоваться окружением "$$" и \TeX разметкой.

  • Перевод

«Вопрос бытия – темнейший во всей философии». Так заключил Уильям Джеймс , размышляя над самой основной из загадок: как что-то возникло из ничего? Этот вопрос выводит из себя, решил Джеймс, поскольку требует объяснения, отрицая саму возможность его наличия. «Для перехода из ничего в бытие не существует логического моста», писал он.

В науке объяснения строятся на причинах и следствиях. Но если ничто на самом деле ничто, у него нет возможности стать причиной. Дело не в том, что мы не можем найти правильного объяснения – просто перед лицом «ничто» объяснение не работает.

Этот отказ бьёт по больному месту. Мы существа, любящие повествования. Наши простейшие понятия приходят через истории, а как нечто появилось из ничего – это самая главная история, доисторическая повесть, более фундаментальная, чем «путешествие героя» или «парень встречает девушку». Но эта история подрывает суть истории. Эта повесть соткана из самоуничтожения и парадокса.

И как ей не быть такой? Главный её герой – это Ничто. Слово, парадоксальное благодаря самому своему существованию в виде слова. Это существительное, вещь, и однако же, это не вещь. Как только мы представим его себе или назовём его, мы разрушим его пустоту, запятнав его значением. Остаётся удивляться: это проблема с «ничем», или это наша проблема? Космическая или лингвистическая? Экзистенциальная или психологическая? Парадокс физики или мыслей?

Стоит, однако, помнить, что решение парадокса находится в вопросе, а не в ответе. Где-то должен найтись сбой, неправильное предположение, неверное тождество. В таком коротком вопросе «как нечто появилось из ничего?» мало где можно спрятаться. Возможно из-за этого мы всё время возвращаемся к старым идеям в новой оболочке, играя на пути развития науки фугу, или вариации темы. С каждым проходом мы пытаемся уложить ещё один камень для перехода через реку, продлевая неуловимый мост Джеймса.

Самый старый из камней: если нельзя получить нечто из ничего, попробуй сделать ничто не таким уж пустым. Древние Греки считали, что пустое пространство наполнено субстанцией, эфиром. Аристотель считал эфир неизменным пятым элементом, более совершенным, чем земля, воздух, огонь и вода. «Ничто» противоречит Аристотелевой физике, утверждавшей, что тела падают или поднимаются согласно их правильному месту в естественном ходе вещей. Ничто должно быть идеально симметричным, выглядеть одинаково с любого угла, устраняя смысл у абсолютных пространственных направлений «верх» и «низ». Эфир, по мнению Аристотеля, мог бы служить космическим компасом, основной системой отсчёта, относительно которой можно было бы измерить всё движение. Для тех, кто ненавидел вакуум, эфир изгонял его.

Древний эфир существовал тысячи лет, пока его не переосмыслили в конце XIX века физики, например, Джеймс Клерк Максвелл, открывший, что свет ведёт себя как волна, всегда перемещающаяся с одной и той же скоростью. А что же волновалось и относительно чего измерялась скорость? Эфир был удобным ответом, предоставлявшим и среду, и систему отсчёта. Но когда Альберт Майкельсон и Эдвард Морли решили измерить движение Земли сквозь «эфирный ветер» в 1887 году, они не обнаружили последнего. А вскоре Эйнштейн своей специальной теорией относительности вбил последний гвоздь в гроб эфира.

Десятилетиями мы считали эфир исторической диковиной, регрессом. Но убить его оказалось труднее, чем мы думали. Сегодня его можно увидеть в другой форме: хиггсовского поля, пронизывающего вакуум пустого пространства, возбуждаемого знаменитым бозоном Хиггса. Это скалярное поле, единственный представитель своего вида, подтверждённый экспериментально. Это значит, что в каждой точке пространства у него есть единственное значение (в отличие от поля, описывающего свет, у которого в каждой точке есть как размер, так и направление). Это важно, поскольку означает, что поле будет выглядеть одинаково для любого наблюдателя, неважно, покоящегося или ускоряющегося.

Более того, его квантовый спин нулевой, то есть, оно выглядит одинаково с любого угла. Спин – мера того, как сильно нужно повернуть частицу, чтобы она стала выглядеть так же, как до поворота. У переносчиков взаимодействий (фотоны, глюоны) спин целый – повороты на 360 градусов оставят их неизменными. У частиц материи (электроны, кварки) спин полуцелый, а значит, их нужно повернуть дважды, на 720 градусов, чтобы вернуть к начальному состоянию. Но у Хиггса спин нулевой. Как ни вращай, он всегда выглядит одинаково. Прямо как пустое пространство. Симметрия равна невидимости.

Согласно интуиции Аристотеля, сегодняшние физики считают ничто конечным состоянием симметрии – неустанное самоподобие, предшествующее нахождению различий, необходимых для определения «вещей». Если физики запускают космический фильм в обратном направлении, отслеживая историю глубокого прошлого, они видят объединение несоизмеримых осколков реальности, превращение их в растущую симметрию, обозначающую источник – ничто.

Хиггс прославился снабжением элементарных частиц их массой, но это скрывает его настоящее значение. Дать частицам массу – это просто. Замедляйте их до скоростей ниже световой, и вот вам масса. Тяжело дать им массу, не поломав доисторическую симметрию. Поле Хиггса достигает этого, принимая ненулевое значение даже в состоянии наименьшей энергии. В каждом уголке пустого пространства скукожилось 246 ГэВ Хиггса – но мы этого не замечаем, поскольку оно везде одинаковое. Только скалярное поле может спрятаться на виду. Но его замечают элементарные частицы. Каждый раз, когда масса частицы ломает симметрию Вселенной, Хиггс тут как тут, маскируясь под пустое пространство, устраняет повреждения. Всегда трудясь в тени, Хиггс хранит изначальную симметрию Вселенной нетронутой. Можно понять (если и не простить) склонность журналистов к использованию названия «частица Бога» – даже если Леон Ледерман, придумавший оскорбительный термин, изначально хотел назвать её «проклятая Богом частица», а его издатель не разрешил ему это сделать.

Всё это значит, что хиггсовское поле ближе к ничто, чем Максвелловское понятие эфира. Это самая новая из наших кистей для рисования в пустоте. С его необычной симметрией Хиггс работает как маскировка для ничто – но само по себе оно не является ничем. У него есть структура, оно взаимодействует. Физический смысл 246 ГэВ остаётся неизвестным. При помощи Хиггса мы приближаемся к границам ничто, но не можем их переступить.

Если попытки сделать ничто не таким уж пустым не отвечают на вопрос «как нечто появилось из ничего», мы должны сделать причину не такой уж причиной. И у этих попыток есть своя история. Внезапное появление личинок на гниющем мясе во времена Аристотеля привело к распространённому мифу о спонтанном возникновении жизни; дыхание жизни способно возникнуть из пустоты. Граница между ничем и чем-то встала рядом с границей между жизнью и смертью, духом и материей, божественным и земным. В свою очередь это принесло с собой весь набор религий и веры, порождая очень сложное решение нашего парадокса. Мы принимали эту теорию 2000 лет, пока в 1864 её не развеял микробиолог Луи Пастер. Omne vivum ex vivo – вся жизнь из жизни. В последующие десятилетия мы обнаружили спонтанное возникновение ещё одной исторической диковины. Но, как и эфир, она снова вернулась к нам, в овечьей шкуре квантовых флюктуаций.

Квантовые флюктуации, украшенные неопределённостью, это следствия без причины, шум в сигнале, первозданная статика, случайная по своей природе. Правила квантовой механики позволяют – даже требуют – чтобы энергия (и, согласно E=mc 2 , масса) появлялась «из ниоткуда», из ничего. Сотворение ex nihilo – так это выглядит.

Принцип неопределённости Гейзенберга – естественный источник квантовых личинок. [«maggot» по-английски – не только личинка, но и блажь, причуда, каприз – прим.перев.] Он постулирует, что определённые пары физических свойств – расположение и импульс, энергия и время – связаны вместе фундаментальной неопределённостью. Чем точнее мы задаём один из параметров, тем менее ясным становится другой. Вместе они формируют связанные пары и предотвращают существование «ничто». Начните уточнять пространственное положение, и импульс начнёт дико флюктуировать. Определите мелкие и точные отрезки времени, и энергия начнёт колебаться в более широком промежутке маловероятных значений. В самые короткие мгновения на самых кратчайших дистанциях внезапно могут возникать целые вселенные, чтобы затем исчезнуть. Увеличьте изображение мира, и спокойная, структурированная реальность уступает место хаосу и случайности.

Но эти связанные пары сами по себе не случайны: это пары свойств, которые наблюдатель не сможет измерить одновременно. Несмотря на то, как обычно описывают квантовые флюктуации, в мире нет некоей заранее определённой реальности, ёрзающей туда и сюда. Эксперимент показывает, что то, что есть, на самом деле вовсе не существует, а находится в ожидании. Нерождённое. Квантовые флюктуации – это не экзистенциальные, а условные описания – они не отражают то, что есть, но только то, что станет возможным, если наблюдатель решит провести определённое измерение. Будто бы возможность измерения у наблюдателя определяет, что должно существовать. Онтология подводит итог эпистемологии . Неопределённость природы – это неопределённость наблюдения.

Фундаментальная невозможность присвоить определённые значения всем свойствам физической системы означает, что когда наблюдатель проводит измерение, результат получится действительно случайным. На крошечных масштабах, где правят квантовые эффекты, цепочка причин и следствий слетает с катушек. Квантовая механика, как говорил её отец-основатель Нильс Бор, «непримирима с самим понятием причинности». Эйнштейн, как известно, проигнорировал её. «Бог не играет в кости», сказал он – на что Бор ответил, «Эйнштейн, прекратите советовать Богу, что делать».

Но может, это нас стоит винить в ожидании сохранения принципа причинности. Эволюция научила нас любой ценой искать простые шаблоны. Для наших предков, рассекавших африканскую саванну, возможность распознать следствия из причин отмечала границу между жизнью и смертью. Она съела пятнистый гриб и заболела. Тигр приседает перед прыжком. Рассказы означают выживание. Естественному отбору не нужна квантовая физика – так что, как бы мы догадались о её существовании? Но она существует. А причинность – это приближение. Это наше сознание ищет историю.

И что же, вот и всё? Ответ на вопрос «почему мы существуем» заключается в том, что нет никакого «почему», что существование – это случайная квантовая флюктуация? Ну значит, мы можем отбросить всякие объяснения и сделать квантовый скачок для преодоления моста Джеймса. Как нечто появилось из ничего? Да просто так. К сожалению, дальше мы так не продвинемся. Космологи верят, что законы квантовой механики могут спонтанно создавать вселенные, эта история просто перекладывает ответственность. Откуда же взялись эти законы? Помните, что мы хотели объяснить, как нечто появилось из ничего – а не то, как нечто появилось из заранее существовавших законов физики. Недостаточно убрать причинность из уравнения – парадокс остаётся.

Вначале было ничто, а потом что-то появилось.

Главное действующее лицо в этой истории – Время, переносчик перемен. Может ли решение парадокса заключаться в отрицании времени? Если время, как говорил Эйнштейн, всего лишь упорная иллюзия, то мы можем сразу же освободиться не только от причинности, вытекающей из законов природы, но и от вопроса, откуда взялись эти законы. Они ниоткуда не взялись, потому что нет никакой эволюции. Рассказ исчезает, никакой истории нет, и никакого моста тоже нет.

Понятие вечной вселенной, или цикличной, вечно возвращающейся, появляется в самых ранних мифах и историях, от мифологии банту из Африки, до Времени сновидений австралийских аборигенов, от космологии Анаксимандра Милетского до древнеиндийских пуран . Можно увидеть привлекательность этих теорий. Вечность избегает «ничто».

В наше время эта древня идея возвращается в виде теории стационарной Вселенной, сформулированной Джеймсом Джинсом в 1920, и затем уточнённой и популяризованной Фредом Гойлом и другими в 1940-е. Вселенная расширяется, но для заполнения пустот всё время появляется новая материя, поэтому в среднем Вселенная не изменяется. Теория оказалась неверной, её заменила теория Большого взрыва и вечность уменьшилась до каких-то 13,8 миллиардов лет.

Но в 1960-х стационарная Вселенная внезапно вернулась в странном виде – в уравнении

H(x)|Ψ> = 0

Физики Джон Арчибальд Уилер и Брюс Девитт написали его, теперь известное как уравнение Уилера-Девитта, хотя сам Девитт зовёт его «это чёртово уравнение» (нет, никакого родства с «проклятой богом частицей»). Они пытались применить странные законы квантовой механики к Вселенной в целом, как она описывается в эйнштейновской общей теории относительности. Стоит обратить внимание на правую часть уравнения – нулевую. Общая энергия системы – ничего. Никакой эволюции во времени. Ничего не может произойти. Проблема в том, что эйнштейновская вселенная – четырёхмерное пространство-время, комбинация пространства и времени. Но квантовая механика требует, чтобы волновая функция физической системы эволюционировала во времени. Но как может пространство-время эволюционировать во времени, если оно и есть время? Эта дилемма просто бесит – вселенная, описываемая квантовой механикой, застывает во времени . Уравнение Уилера-Девитта – это теория стационарной Вселенной наизнанку. Вместо всегда существовавшей Вселенной у нас получается Вселенная, которой никогда не будет.

Само по себе уравнение Уилера-Девитта элегантно решает нашу задачу. Как из ничего появилось нечто? Оно не появлялось. Но такое решение озадачивает – ведь мы-то здесь.

В этом и суть. В квантовой механике ничего не происходит до тех пор, пока наблюдатель (человек или другая конфигурация частиц) проводит измерение. Но в случае всей вселенной наблюдателя не существует. Никто не может стоять вне вселенной. Вселенная в целом застряла в бесконечном мгновении. Но внутри всё выглядит по-другому.

Изнутри наблюдатель не может измерить всю вселенную, и поэтому разбивает реальность на две части – обозревателя и обозреваемое – благодаря простому, но сильному факту, что наблюдатель не может измерить сам себя. Как писал физик Рафаэль Боуссо , «Очевидно, у прибора должно быть не меньше степеней свободы, чем у системы, чьё квантовое состояние он пытается определить». Философ науки Томас Брюер использовал Гёделевский аргумент для выражения той же мысли: «Никакой наблюдатель не может получить или сохранить информацию, достаточную для того, чтобы различить все состояния системы, в которой он находится».

Как наблюдатели, мы обречены вечно видеть только кусочек большой головоломки, частью которой мы являемся. И это может быть нашим спасением. Когда вселенная распадается на две части, ноль в правой части уравнения меняется на другое значение. Всё меняется, физика происходит, время идёт. Можно даже сказать, что Вселенная рождается.

Если это звучит как ретроказуальность (будущее влияет на прошлое) – ну, так оно и есть. Квантовая теория требует этого странного обращения стрелы времени. Уилер обратил внимание на этот факт при помощи известного эксперимента с отложенным выбором, который сначала был предложен в качестве мысленного, а затем . В отложенном выборе измерение наблюдателя в настоящем определяет поведение частицы в прошлом – прошлом, которое может тянуться назад на миллионы, и даже на 13,8 миллиарда лет. Цепь причин и следствий оборачивается сама на себя, и её конец связывается с началом: мост Джеймса оказывается петлёй.

  • вселенная
  • философия
  • Добавить метки