1. Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности, - и -коэффициентов.
Для оценки качества выбранной множественной модели (6) , аналогично п.1.4 данной задачи, используем коэффициент детерминации R - квадрат, среднюю относительную ошибку аппроксимации и F -критерий Фишера.

Коэффициент детерминации R -квадрат возьмем из итогов «Регрессии» (таблица «Регрессионная статистика» для модели (6)).

Следовательно, вариация (изменение) цены квартиры Y на 76,77% объясняется по данному уравнению вариацией города области Х 1 , числа комнат в квартире Х 2 и жилой площади Х 4 .

Используем исходные данные Y i и найденные инструментом «Регрессия» остатки (таблица «Вывод остатка» для модели (6)). Рассчитаем относительные погрешности и найдем среднее значение
.

ВЫВОД ОСТАТКА


Наблюдение

Предсказанное Y

Остатки

Отн. погрешность

1

45,95089273

-7,95089273

20,92340192

2

86,10296493

-23,90296493

38,42920407

3

94,84442678

30,15557322

24,12445858

4

84,17648426

-23,07648426

37,76838667

5

40,2537216

26,7462784

39,91981851

6

68,70572376

24,29427624

26,12287768

7

143,7464899

-25,7464899

21,81905923

8

106,0907598

25,90924022

19,62821228

9

135,357993

-42,85799303

46,33296544

10

114,4792566

-9,47925665

9,027863476

11

41,48765602

0,512343975

1,219866607

12

103,2329236

21,76707636

17,41366109

13

130,3567798

39,64322022

23,3195413

14

35,41901876

2,580981242

6,7920559

15

155,4129693

-24,91296925

19,0903979

16

84,32108188

0,678918123

0,798727204

17

98,0552279

-0,055227902

0,056355002

18

144,2104618

-16,21046182

12,66442329

19

122,8677535

-37,86775351

44,55029825

20

100,0221225

59,97787748

37,48617343

21

53,27196558

6,728034423

11,21339071

22

35,06605378

5,933946225

14,47303957

23

114,4792566

-24,47925665

27,19917406

24

113,1343153

-30,13431529

36,30640396

25

40,43190991

4,568090093

10,15131132

26

39,34427892

-0,344278918

0,882766457

27

144,4794501

-57,57945009

66,25943623

28

56,4827667

-16,4827667

41,20691675

29

95,38240332

-15,38240332

19,22800415

30

228,6988826

-1,698882564

0,748406416

31

222,8067278

12,19327221

5,188626473

32

38,81483144

1,185168555

2,962921389

33

48,36325811

18,63674189

27,81603267

34

126,6080021

-3,608002113

2,933335051

35

84,85052935

15,14947065

15,14947065

36

116,7991162

-11,79911625

11,23725357

37

84,17648426

-13,87648426

19,73895342

38

113,9412801

-31,94128011

38,95278062

39

215,494184

64,50581599

23,03779142

40

141,7795953

58,22040472

29,11020236

Среднее

101,2375

22,51770962

По столбцу относительных погрешностей найдем среднее значение =22.51% (с помощью функции СРЗНАЧ).

Сравнение показывает, что 22.51%>7%. Следовательно, точность модели неудовлетворительная.

С помощью F – критерия Фишера проверим значимость модели в целом. Для этого выпишем из итогов применения инструмента «Регрессия» (таблица «дисперсионный анализ» для модели (6)) F = 39,6702.

С помощью функции FРАСПОБР найдем значение F кр =3.252 для уровня значимости α = 5% , и чисел степеней свободы k 1 = 2 , k 2 = 37 .

F > F кр , следовательно, уравнение модели (6) является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенными в модель (6) факторными переменными Х 1 , Х 2 . и Х 4 .

Дополнительно с помощью t –критерия Стьюдента проверим значимость отдельных коэффициентов модели.

t –статистики для коэффициентов уравнения регрессии приведены в итогах инструмента «Регрессия». Получены следующие значения для выбранной модели (6) :


Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

-5,643572321

12,07285417

-0,46745966

0,642988

-30,1285

18,84131

-30,1285

18,84131

X4

2,591405557

0,461440597

5,61590284

2,27E-06

1,655561

3,52725

1,655561

3,52725

X1

6,85963077

9,185748512

0,74676884

0,460053

-11,7699

25,48919

-11,7699

25,48919

X2

-1,985156991

7,795346067

-0,25465925

0,800435

-17,7949

13,82454

-17,7949

13,82454

Критическое значение t кр найдено для уровня значимости α=5% и числа степеней свободы k =40–2–1=37 . t кр =2.026 (функция СТЬЮДРАСПОБР).

Для свободного коэффициента α =–5.643 определена статистика
, t кр , следовательно, свободный коэффициент не является значимым, его можно исключить из модели.

Для коэффициента регрессии β 1 =6.859 определена статистика
, β 1 не является значимым, его и фактор города области можно удалить из модели.

Для коэффициента регрессии β 2 =-1,985 определена статистика
, t кр , следовательно, коэффициент регрессии β 2 не является значимым, его и фактор числа комнат в квартире можно исключить из модели.

Для коэффициента регрессии β 4 =2.591 определена статистика
, >t кр, следовательно, коэффициент регрессии β 4 является значимым, его и фактор жилой площади квартиры можно сохранить в модели.

Выводы о значимости коэффициентов модели сделаны на уровне значимости α=5% . Рассматривая столбец «P-значение», отметим, что свободный коэффициент α можно считать значимым на уровне 0.64 = 64%; коэффициент регрессии β 1 – на уровне 0,46 = 46%; коэффициент регрессии β 2 – на уровне 0,8 = 80%; а коэффициент регрессии β 4 – на уровне 2,27E-06= 2,26691790951854E-06 = 0,0000002%.

При добавлении в уравнение новых факторных переменных автоматически увеличивается коэффициент детерминации R 2 и уменьшается средняя ошибка аппроксимации, хотя при этом не всегда улучшается качество модели. Поэтому для сравнения качества модели (3) и выбранной множественной модели (6) используем нормированные коэффициенты детерминации.

Таким образом, при добавлении в уравнение регрессии фактора «город области» Х 1 и фактора «число комнат в квартире» Х 2 качество модели ухудшилось, что говорит в пользу удаления факторов Х 1 и Х 2 из модели.

Проведем дальнейшие расчеты.

Средние коэффициенты эластичности в случае линейной модели определяются формулами
.

С помощью функции СРЗНАЧ найдем: S Y , при увеличении только фактора Х 4 на одно его стандартное отклонение – увеличивается на 0,914 S Y

Дельта-коэффициенты определяются формулами
.

Найдем коэффициенты парной корреляции с использованием инструмента «Корреляция» пакета «Анализ данных» в Excel.


Y

X1

X2

X4

Y

1

X1

-0,01126

1

X2

0,751061

-0,0341

1

X4

0,874012

-0,0798

0,868524

1

Коэффициент детерминации был определен ранее и равен 0.7677.

Вычислим дельта-коэффициенты:

;

Поскольку Δ 1 1 и Х 2 выбрана неудачно, и их нужно удалить из модели. Значит, по уравнению полученной линейной трехфакторной модели изменение результирующего фактора Y (цены квартиры) на 104% объясняется воздействием фактора Х 4 (жилой площадью квартиры), на 4% воздействием фактора Х 2 (число комнат), на 0,0859% воздействием фактора Х 1 (город области).

При изучении сложных явлений необходимо учитывать более двух случайных факторов. Правильное представление о природе связи между этими факторами можно получить только в том случае, если подвергнуть исследованию сразу все рассматриваемые случайные факторы. Совместное изучение трех и более случайных факторов позволит исследователю установить более или менее обоснованные предположения о причинных зависимостях между изучаемыми явлениями. Простой формой множественной связи является ли­нейная зависимость между тремя признаками. Случайные факторы обозначаются как X 1 , X 2 и X 3 . Парный коэффициенты корреляции между X 1 и X 2 обозначается как r 12 , соответственно между X 1 и X 3 - r 12 , между X 2 и X 3 - r 23 . В качестве меры тесноты линей­ной связи трех признаков используют множественные ко­эф-фициенты корреляции, обозначаемые R 1 ּ 23 , R 2 ּ 13 , R 3 ּ 12 и частные коэффициенты корреляции, обозначаемые r 12.3 , r 13.2 , r 23.1 .

Множественный коэффициент корреляции R 1.23 трех факторов - это показатель тесноты линейной свя­зи между одним из факторов (индекс перед точкой) и совокупностью двух других факторов (индексы после точ­ки).

Значения коэффициента R всегда находятся в преде­лах от 0 до 1. При приближении R к единице степень линейной связи трех признаков увеличивается.

Между коэффициентом множественной корреляции, например R 2 ּ 13 , и двумя коэффициентами парной корреляции r 12 и r 23 существует соот­ношение: каждый из парных коэффициентов не может превы­шать по абсолютной величине R 2 ּ 13 .

Формулы для вычисления множественных коэффициентов корреляции при известных значениях коэффициен­тов парной корреляции r 12 , r 13 и r 23 имеют вид:

Квадрат коэффициента множественной корреляции R 2 назы­вается коэффициентом множественной детерминации. Он пока­зывает долю вариации зависимой переменной под воздействием изучаемых факторов.

Значимость множественной корреляции оценивается по F -критерию:

n – объем выборки; k – число факторов. В нашем случае k = 3.

нулевая гипотеза о равенстве множественного коэффициента корреляции в совокупности нулю (h o :r =0)принимается, если f ф <f t , и отвергается, если
f ф ³ f т.

теоретическое значение f -критерия определяется для v 1 = k - 1 и v 2 = n - k степеней свободы и принятого уровня значимости a (при­ложение 1).

Пример вычисления коэффициента множественной корреляции . При изучении взаимосвязи между факторами были получены коэффициенты парной корреляции (n =15): r 12 ==0,6; г 13 = 0,3; r 23 = - 0,2.

Необходимо выяснить зависимость признака X 2 от признака X 1 и X 3 , т. е. рассчитать коэффициент множественной кор­реляции:

Табличное значение F -критерия при n 1 = 2 и n 2 = 15 – 3 = 12 степенях свободы при a = 0,05 F 0,05 = 3,89 и при a = 0,01 F 0,01 = 6,93.

Таким образом, взаимосвязь между признаками R 2.13 = 0,74 значима на
1%-ном уровне значимости F ф > F 0,01 .

Судя по коэффициенту множественной детерминации R 2 = (0,74) 2 = 0,55, вариация признака X 2 на 55% связана с действием изучаемых факторов, а 45% вариации (1-R 2) не может быть объяснено влиянием этих переменных.

Частная линейная корреляция

Частный коэффициент корреляции - это показа­тель, измеряющий степень сопряженности двух признаков.

Математическая статистика позволяет установить корреля­цию между двумя признаками при постоянном значении третье­го, не ставя специального эксперимента, а используя парные ко­эффициенты корреляции r 12 , r 13 , r 23 .

Частные коэффициенты корреляции рассчитывают по формулам:

Цифры перед точкой указывают, между ка­кими признаками изучается зависимость, а цифра после точки - влияние какого признака исключается (элиминируется). Ошиб­ку и критерий значимости частной корреляции определяют по тем же формулам, что и парной корреляции:

.

Теоретическое значение t- критерия определяется для v = n – 2 степеней свободы и принятого уровня значимости a (при­ложение 1).

Нулевая гипотеза о равенстве частного коэффициента корреляции в совокупности нулю (H o : r = 0)принимается, если t ф < t т, и отвергается, если
t ф ³ t т.

Частные коэф­фициенты могут принимать значения, заключенные между -1 и+1. Частные коэффициенты детерминации находят путем возве­дения в квадрат частных коэффициентов корреляции:

D 12.3 = r 2 12ּ3 ; d 13.2 = r 2 13ּ2 ; d 23ּ1 = r 2 23ּ1 .

Определение степени частного воздействия отдельных факторов на результативный признак при исключении (элимини­ровании) связи его с другими признаками, искажающими эту корреляцию, часто представляет большой интерес. Иногда бывает, что при постоянном значении элиминируемого признака нельзя подметить его статистического влияния на изменчивость других признаков. Чтобы уяснить технику расчета частного коэффици­ента корреляции, рассмотрим пример. Имеются три параметра X , Y и Z . Для объема выборки n = 180 определены парные коэффициенты корреляции

r xy = 0,799; r xz = 0,57; r yz = 0,507.

Определим частные ко­эффициенты корреляции:

Частный коэффициент корреляции между параметром X и Y Z (r хуּz = 0,720) показывает, что лишь незначительная часть взаимосвязи этих признаков в общей корреляции (r xy = 0,799) обусловлена влиянием третьего признака (Z ). Аналогичное заключение необходимо сделать и в отношении частного коэффициента корреляции между параметром X и параметром Z с постоянным значением параметраY (r х z ּу = 0,318 и r xz = 0,57). Напротив, частный коэффициент корреляции между параметрами Y и Z с постоянным значением параметра X r yz ּx = 0,105 значительно от­личается от общего коэффициента корреляции r у z = 0,507. Из это­го видно, что если подобрать объекты с одинаковым значением параметра X , то связь между признаками Y и Z у них будет очень слабой, так как значительная часть в этой взаимосвязи обуслов­лена варьированием параметра X .

При некоторых обстоятельствах частный коэффициент корре­ляции может оказаться противоположным по знаку парному.

Например, при изучении взаимосвязи между признаками X, У и Z - были получены парные коэффициенты корреляции (при n = 100): r ху = 0,6; r х z = 0,9;
r у z = 0,4.

Частные коэффициенты корреляции при исключении влияния третьего признака:

Из примера видно, что значения парного коэффициента и частного коэффициента корреляции разнятся в знаке.

Метод частной корреляции дает возможность вычислить частный коэффициент корреляции второго порядка. Этот коэф­фициент указывает на взаимосвязь между первым и вторым признаком при постоянном значении третьего и четвертого. Оп­ределение частного коэффициента второго порядка ведут на ос­нове частных коэффициентов первого порядка по формуле:

где r 12 . 4 , r 13 ּ4 , r 23 ּ4 - частные коэффициенты, значение кото­рых определяют по формуле частного коэффициента, используя коэффициенты парной корреляции r 12 , r 13 , r 14 , r 23 , r 24 , r 34 .

Попробуем для начала найти ответ на каждый из обозначенных нами вопросов в ситуации, когда наша каузальная модель содержит всего две независимые переменные.

Множественная корреляция R и коэффициент детерминация R2

Для оценки совокупной связи всех независимых переменных с зависимой переменной используется множественный коэффициент корреляции R. Отличие коэффициента множественной корреляции R от бивариативного коэффициента корреляции г заключается в том, что он может быть лишь положительным. Для двух независимых переменных он может быть оценен следующим образом:

Коэффициент множественной корреляции может быть определен и в результате оценки частных коэффициентов регрессии, составляющих уравнение (9.1). Для двух переменных это уравнение, очевидно, примет следующий вид:

(9.2)

Если наши независимые переменные будут трансформированы в единицы стандартного нормального распределения, или Z-распределения, уравнение (9.2), очевидно, примет следующий вид:

(9.3)

В уравнении (9.3) коэффициент β обозначает стандартизированное значение коэффициента регрессии В.

Сами стандартизированные коэффициенты регрессии могут быть вычислены по следующим формулам:

Теперь формула для вычисления коэффициента множественной корреляции будет выглядеть так:

Еще одним способом оценки коэффициента корреляции R является вычисление бивариативного коэффициента корреляции r между значениями зависимой переменной У и соответствующими им значениями , вычисленными на основании уравнения линейной регрессии (9.2). Иными словами, величина R может быть оценена следующим образом:

Наряду с этим коэффициентом мы можем оценить, как и в случае простой регрессии, величину R 2, которую принято еще обозначать как коэффициент детерминации. Так же как и в ситуации оценки связи между двумя переменными, коэффициент детерминации R 2 показывает, какой процент дисперсии зависимой переменной Y , т.е. , оказывается связанным с дисперсией всех независимых переменных – . Иными словами, оценка коэффициента детерминации может быть осуществлена следующем образом:

Также мы можем оценить процент остаточной дисперсии зависимой переменной, нс связанный ни с одной из независимых переменных 1 – R 2. Квадратный корень от этой величины, т.е. величина , так же, как и в случае бивариативной корреляции, называют коэффициентом отчуждения.

Корреляция части

Коэффициент детерминация R 2 демонстрирует, какой процент дисперсии зависимой переменной может быть связан с дисперсией всех независимых переменных, включенных в каузальную модель. Чем больше этот коэффициент, тем более значимой является выдвинутая нами каузальная модель. Если этот коэффициент оказывается не слишком большим, то и вклад исследуемых нами переменных в общую дисперсию зависимой переменной также оказывается незначительным. На практике, однако, часто требуется не только оценить совокупный вклад всех переменных, но и отдельный вклад каждой из рассматриваемых нами независимых переменных. Такой вклад может быть определен как корреляция части.

Как мы знаем, в случае бивариативной корреляции процент дисперсии зависимой переменной, связанный с дисперсией независимой переменной, может быть обозначен как r 2. Однако часть этой дисперсии в случае исследования эффектов нескольких независимых переменных оказывается обусловлена одновременно дисперсией независимой переменной, которую мы используем в качестве контрольной. Наглядно эти соотношения показаны на рис. 9.1.

Рис. 9.1. Соотношение дисперсий зависимой (Y ) и двух независимых (X 1 и Х 2) переменных в корреляционном анализе с двумя независимыми переменными

Как показано на рис. 9.1, вся дисперсия Y , связанная с двумя нашими независимыми переменными, состоит из трех частей, обозначенными а, b и с. Части а и b дисперсии Y принадлежат по отдельности дисперсии двух независимых переменных – Х 1 и Х 2. В то же время дисперсия части с одновременно связывает и дисперсию зависимой переменной У, и дисперсию двух наших переменных X. Следовательно, для того чтобы оценить связь переменной X 1 с переменной Y, которая не обусловлена влиянием переменной Х 2 на переменную Y , необходимо из величины R" 2 вычесть величину квадрата корреляции Y с Х 2:

(9.6)

Аналогичным образом можно оценить часть корреляции У с Х 2, которая не обусловлена ее корреляцией с Х 1.

(9.7)

Величина sr в уравнениях (9.6) и (9.7) и есть искомая нами корреляция части.

Определить корреляцию части можно также и в терминах обычной бивариативной корреляции:

По-другому корреляция части называется полупарциальной корреляцией. Это название означает, что при расчете корреляции эффект второй независимой переменной устраняется применительно к значениям первой независимой переменной, но нс устраняется по отношению к зависимой переменной. Эффект Х 1 как бы корректируется с помощью значений Х 2, так что коэффициент корреляции рассчитывается не между Y и X 1 а между Y и , причем значения рассчитываются на основе значений Х 2 так, как было рассмотрено в главе, посвященной простой линейной регрессии (см. подпараграф 7.4.2). Таким образом, оказывается справедливым следующее соотношение:

Для того чтобы оценить корреляцию одной независимой переменной с зависимой переменной в отсутствие влияния других независимых переменных как на саму независимую переменную, так и на зависимую переменную, в регрессионном анализе используется понятие частной корреляции.

Частные корреляции

Частная, или парциальная, корреляция определяется в математической статистике через пропорцию дисперсии зависимой переменной, связанной с дисперсией данной независимой переменной, по отношению ко всей дисперсии этой зависимой переменной, не считая той ее части, которая связана с дисперсией других независимых переменных. Формально для случая двух независимых переменных это можно выразить следующим образом:

Сами значения частной корреляции рr могут быть найдены на основе значений бивариативной корреляции:

Частная корреляция, таким образом, может быть определена как обычная бивариативная корреляция между скорректированными значениями как зависимой, так и независимой переменной. Непосредственно коррекция осуществляется в соответствии со значениями независимой переменной, выступающей в качестве контрольной. Иными словами, частная корреляция между зависимой переменной Y и независимой переменной X i может быть определена как обычная корреляция между значениями и значениями , причем значения и предсказываются на основе значений второй независимой переменной Х 2.

Множественный коэффициент корреляции используется в качестве меры степени тесноты статистической связи между результирующим показателем (зависимой переменной) y и набором объясняющих (независимых) переменных или, иначе говоря, оценивает тесноту совместного влияния факторов на результат.

Множественный коэффициент корреляции может быть вычислен по ряду формул 5 , в том числе:

    с использованием матрицы парных коэффициентов корреляции

, (3.18)

где r - определитель матрицы парных коэффициентов корреляции y ,
,

r 11 - определитель матрицы межфакторной корреляции
;

. (3.19)

Для модели, в которой присутствуют две независимые переменные, формула (3.18) упрощается

. (3.20)

Квадрат множественного коэффициента корреляции равен коэффициенту детерминации R 2 . Как и в случае парной регрессии, R 2 свидетельствует о качестве регрессионной модели и отражает долю общей вариации результирующего признака y , объясненную изменением функции регрессии f (x ) (см. 2.4). Кроме того, коэффициент детерминации может быть найден по формуле

. (3.21)

Однако использование R 2 в случае множественной регрессии является не вполне корректным, так как коэффициент детерминации возрастает при добавлении регрессоров в модель. Это происходит потому, что остаточная дисперсия уменьшается при введении дополнительных переменных. И если число факторов приблизится к числу наблюдений, то остаточная дисперсия будет равна нулю, и коэффициент множественной корреляции, а значит и коэффициент детерминации, приблизятся к единице, хотя в действительности связь между факторами и результатом и объясняющая способность уравнения регрессии могут быть значительно ниже.

Для того чтобы получить адекватную оценку того, насколько хорошо вариация результирующего признака объясняется вариацией нескольких факторных признаков, применяют скорректированный коэффициент детерминации

(3.22)

Скорректированный коэффициент детерминации всегда меньше R 2 . Кроме того, в отличие от R 2 , который всегда положителен,
может принимать и отрицательное значение.

Пример (продолжение примера 1) . Рассчитаем множественный коэффициент корреляции, согласно формуле (3.20):

Величина множественного коэффициента корреляции, равного 0,8601, свидетельствует о сильной взаимосвязи стоимости перевозки с весом груза и расстоянием, на которое он перевозится.

Коэффициент детерминации равен: R 2 =0,7399.

Скорректированный коэффициент детерминации рассчитываем по формуле (3.22):

=0,7092.

Заметим, что величина скорректированного коэффициента детерминации отличается от величины коэффициента детерминации.

Таким образом, 70,9% вариации зависимой переменной (стоимости перевозки) объясняется вариацией независимых переменных (весом груза и расстоянием перевозки). Остальные 29,1% вариации зависимой переменной объясняются факторами, неучтенными в модели.

Величина скорректированного коэффициента детерминации достаточно велика, следовательно, мы смогли учесть в модели наиболее существенные факторы, определяющие стоимость перевозки. 

Множественный коэффициент корреляции характеризует тесноту линейной связи между одной переменной и совокупностью других рассматриваемых переменных.
Особое значение имеет расчет множественного коэффициента корреляции результативного признака y с факторными x 1 , x 2 ,…, x m , формула для определения которого в общем случае имеет вид

где ∆ r – определитель корреляционной матрицы; ∆ 11 – алгебраическое дополнение элемента r yy корреляционной матрицы.
Если рассматриваются лишь два факторных признака, то для вычисления множественного коэффициента корреляции можно использовать следующую формулу:

Построение множественного коэффициента корреляции целесообразно только в том случае, когда частные коэффициенты корреляции оказались значимыми, и связь между результативным признаком и факторами, включенными в модель, действительно существует.

Коэффициент детерминации

Общая формула: R 2 = RSS/TSS=1-ESS/TSS
где RSS - объясненная сумма квадратов отклонений, ESS - необъясненная (остаточная) сумма квадратов отклонений, TSS - общая сумма квадратов отклонений (TSS=RSS+ESS)

,
где r ij - парные коэффициенты корреляции между регрессорами x i и x j , a r i 0 - парные коэффициенты корреляции между регрессором x i и y ;
- скорректированный (нормированный) коэффициент детерминации.

Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации ; он показывает, какая доля дисперсии результативного признака y объясняется влиянием факторных признаков x 1 , x 2 , …,x m . Заметим, что формула для вычисления коэффициента детерминации через соотношение остаточной и общей дисперсии результативного признака даст тот же результат.
Множественный коэффициент корреляции и коэффициент детерминации изменяются в пределах от 0 до 1. Чем ближе к 1, тем связь сильнее и, соответственно, тем точнее уравнение регрессии, построенное в дальнейшем, будет описывать зависимость y от x 1 , x 2 , …,x m . Если значение множественного коэффициента корреляции невелико (меньше 0,3), это означает, что выбранный набор факторных признаков в недостаточной мере описывает вариацию результативного признака либо связь между факторными и результативной переменными является нелинейной.

Рассчитывается множественный коэффициент корреляции с помощью калькулятора . Значимость множественного коэффициента корреляции и коэффициента детерминации проверяется с помощью критерия Фишера .

Какое из приведенных чисел может быть значением коэффициента множественной детерминации:
а) 0,4 ;
б) -1;
в) -2,7;
г) 2,7.

Множественный линейный коэффициент корреляции равен 0.75 . Какой процент вариации зависимой переменной у учтен в модели и обусловлен влиянием факторов х 1 и х 2 .
а) 56,2 (R 2 =0.75 2 =0.5625);